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1. S U M M A R Y  

In this report, we describe the methodology and the results of 
a Monte Carlo study of different variance estimators intended for 
six different methods of imputation. 

The imputation methods considered in the study were: 
1). Single imputation by regression (KEG) 
2). Single imputation by regression with added residual (KE- 
GRF~)  
3). Single imputation by regression with added standardized 
residual (REGRF~ST)  
4). Single imputation by nearest neighbor (NN) 
5). Multiple imputation by. regression with added residual 
MULT~a~G) 
6). Multiple imputation by nearest neighbor (MULTNN) 

We used M = 2 repetitions for the multiple imputation methods 

5 and 6. For each imputation method, we evaluated one or more 
variance estimators. A total of 10 variance estimators were 
included in the study. 

The simulations were carried out with 12 different populations 
representing a variety of relationships between x (the auxiliary 
variable used in the imputation) and y (the study variable). For 
each population, three different response mechanisms were used, 
leading to a total of 12 x 3 = 36 different cases. The objective 
was to identify variance estimators that perform reasonably well 
under a variety of conditions. Ideal performance under all 
possible circumstances seems impossible to attain. 

Some of the main conclusions are: 
1). Concerning the point estimators corresponding to the six 
imputation methods: All imputation methods have a tolerable 
bias if the nonresponse is ignorable (that is, when the nonresponse 
occurs at random for given x; the precise definition is given in 
Rubin (1976)). However, all of the methods lead to a fairly 
substantial bias when the nonresponse is non-ignorable (that is, 
when the probability of nonresponse is systematically related to 
the variable of interest). Nearest neighbor imputation tends to 
produce a greater bias than regression imputation. 
2). Concerning the variance estimators: None of the 10 variance 
estimators included in our study comes close to yielding unbiased 
estimates in all 36 cases. However, out of the ten variance 
estimators that we tested, there are a few whose overall per- 
formance can be termed acceptable. Their bias is fairly limited 
in all or most of the 36 cases, and they typically alternate between 
a mild overestimation and a mild underestimation. These meth- 
ods, defined in detail in Section 2, are: KEGRES-SARN, REG- 
RAO1 and KEG-RAO2 for single regression imputation; 
NN-SARN for single nearest neighbor imputation; the multiple 
imputation variance estimators M U L T R E G  for multiple regres- 
sion imputation and MULTNN for multiple nearest neighbor 
imputation. Some of the variance estimators we examined may 
work very well under the particular conditions for which they were 
designed. For instance, the methods REG-RAO1 and REG- 
RAO2 (for single regression imputation) perform very well when 
the nonresponse is ignorable. The multiple imputation variance 
estimators are more variable than the other alternatives; conse- 
quently, the confidence intervals calculated with these methods 
have a more unpredictable length. This disadvantage is in addition 
to the heavy calculations caused by two or more imputations. 

Our study shows the difficulty of identifying variance estimators 
that have impeccable behavior under a variety of conditions. Our 
study also emphasizes that the variance estimators based on 
"standard formulas" must not be used. The standard estimators 

are based on an usually invalid assumption that imputed values 
have the same quality as observed values. These estimators lead 
to a considerable underestimation of the variance. 

2. T H E  S I X  I M P U T A T I O N  M E T H O D S  A N D  T H E  

C O R R E S P O N D I N G  

V A R I A N C E  E S T I M A T O R S  

The objective is to estimate the mean yu = ( 1 / N ) ~ u Y k of the 

finite population U = ( 1 .. . . .  k .. . . .  N > . A simple random sample 

without replacement (SRSWOR), s, of size n is drawn from U. 
Denote by r the set of responding units; let m be the size of r. The 
nonresponse set is s -  r ; its size is n -  m .  For every unit k c r ,  

the value y k is observed. However, for the units k c s -  r ,  the 

Y k-values are missing, and imputed values are derived with a 

specified imputation method. The six imputation methods studied 
in this paper are defined in the following. 

The imputation leads to a completed data set, called the data 
after imputation. This data set is denoted as {y.k" k e s ) ,  where 

y.k equals the observed value y~ if k is a responding units, that 

is, if k e r ,  and y.k equals the imputed value if k is a nonre- 
sponding unit, that is, if k e s - r .  

The point estimator for the single imputation methods REG, 
NN, REG RES  and REGRESST consists simply of the mean of 

the data after imputation, Y.s = ( 1 / n ) ~ s y . ~ .  The estimator 

formula is thus the same as the one that would be used in the case 
of 100% response. In other words, there is an implicit assumption 
that a negligible bias is caused by replacing missing data by 
imputations. This assumption is often violated, particularly when 
the nonresponse is nonignorable. 

In the multiple imputation methods M U L T R E G  and 
MULTNN, the point estimator is calculated as the average of the 
means of two sets of data after imputation. In the multiple 
imputation methods, too, the bias of the point estimator is 
considerable when the nonresponse mechanism is nonignorable. 

When the nonresponse is nonignorable, any available infor- 
mation on the characteristics of nonrespondents should be used 
to reduce the bias of the point estimator of the population mean. 
However, we did not try to do this because our primary objective 
was to see how various variance estimators perform under a 
variety of conditions. 

In all the methods studied, the imputation was carried out with 
the aid of an auxiliary variable, x. We assume that x k , the value 

of x for the unit k, is positive and known for every unit k e s .  
1). Imputation Method REG. (Single regression imputation): 

If the unit k requires imputation, the value/~ x k is imputed, where 

= (~ r  Y k) / (~ r  Xk) • (The method is also referred to as ratio 

imputation.) The data after imputation are therefore 
Yk, if k E r  

Y'k= Bx~, if k e s - r .  

The point estimator in this method becomes 
D w 

y . ~ = ( 1 / n ) ~ y . ~ = x ~ y r / x r  where x ~ = ( l / n ) ~ x ~  , 

Y r = ( 1 / m ) Z r Y k  and x ~ = ( 1 / r n ) ~ r x ~ .  Four different vari- 

ance estimators are considered with this imputation method: 
REG-ORD.  This method uses the ordinary variance estimator 

formula, but computed using the data after imputation, that is, 
9 = ( l / n -  1/N)S~.~  ,where S ~ . ~ = ~ ( y . , , - y . ~ ) 2 / ( n  - 1).  The 

method is known to underestimate the real variance and is 
included in the study only to assess the underestimation caused 
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by acting as if imputed data are as good as actual data. 
REG-SARN.  This model-assisted variance estimator, derived 

in S~irndal (1990) and also in Deville and S~irndal (1991) for more 
general cases, is given by 

12=(1 . . . . .  1 )  a %2) ( 1  1)C,% a 
n N { S Y " + C °  + m n 

where 

X s X s - r  
C l ~ - - . ~  ~ 

X r  

~/(~-~)  
~ 2 =  

X r { 1 - ( C V x r ) Z / m )  ' 

with x~_r = ~ _ r x ~ , / ( n - m ) ,  e~ ,=y~ , -#x~  and CVxr = S x r / x ~  , 

which is the coefficient of variation of x in the response set r. This 
variance estimator is based on the model ~ stating that 

y ~ = [3 x ~ + c ~ , for k =. 1 . . . . .  N ,  where 

f ~ ( e ~ ) = 0 ,  V ~ ( e ~ ) = a  zx~ and the model errors ~ are inde- 

pendent.  The R E G - S A R N  variance estimator is therefore 
expected to perform particularly well when the finite population 
scatter (y~,  x~) agrees closely with this model. For  many 

practical purposes,  C0 ~" ( 1 - m /n )x~_~  and 8 z ~- ~ r  e ~ / ~ x 

are good approximations of the more cumbersome exact expres- 
sions when m is large. 

R E G - R A O 1 .  This variance estimator is justified by a two-phase 
sampling argument  and was suggested by Rao (1990). It is given 
by 

n N S + - ~r y r  rn .  /2 

_ - - r )  2 where .92~ = Er(Y~ Y / ( m -  1 ) and 32~ - ~ .re~, / (rn-  1 ) . 

R E G - R A O 2 .  This variance estimator, also suggested by Rao 
(1990), is given by 

n-- ~s n - - ~  ~}s~.r+ m---N °~ 

where S ~ =  ~ r e ~ X ~ / ( r r t -  1 ) . 

2). Imputat ion Method REGRES.  (Single imputation by 
regression with added residual): If unit k requires imputation, the 
value #x~ + e ~ is imputed, where e ~ is selected with S R S W R  

from the set of residuals (e ~ = y~ - /~x~" k ~ r ) . The data after 

imputation are then 

( y~, if k e r  

Y'~= B x ~  + e~, if k e s -  r .  

For this method, the only variance estimator included in the study 
was: 

R E G R E S - O R D .  This method consists of the ordinary variance 
estimator, I /= ( 1 / n -  1 / N)SZy.~ , where 

S z = ~ ( y . ~ - y  ~ ) z / ( n - 1 )  is the variance of the data after y . ~  

imputation. 
3). Imputat ion Method R E G R F ~ S T  (Single imputation by 

regression with added standardized residual): If unit k requires 
imputation, the imputed value is # x~ + e ~ , where e ~ is obtained 

by the following procedure: First, calculate a supply of m 

standardized residuals, e ~ = e ~ /x / -~ ,  k ~ r ; then for every 

k c s - r ,  calculate e° = ~ e e ' ,  where e e. is randomly drawn 

with S R S W R  from the supply;, finally, calculate 
e ~, = e o _ [~_~ e o / (n - rrt) . The e ~ are thereby centered to have 

zero mean. The resulting data after imputation are 

( y~, if k e r  

Y'~= /~x~+e~, if k e s - r .  

The only variance tried for this method was: 
R E G R E S S T - O R D .  This method uses the ordinary variance 

estimator, ( 1 / n - 1 / N ) S  y.s2 computed on the data after impu- 

tation. 
4). Imputation Method NN. (Single nearest neighbor 

imputation): If the unit k requires imputation, the imputed value, 
Y nnk, equals the y-value of a donor  unit that is as close as possible 

to k, as measured by the x-variable. More specifically, the donor  
unit is the one forwhich the distance I x k - x L [ is minimum among 

all potential donors l such that l c r ,  l # k .  The data after 

imputation are 

(~ , if k e r  

Y.k:  if k e s - r  NNI¢ ' 

Two variance estimators were used with this imputation method" 
NN-OR£).  Ordinary variance estimator, F" = ( l / n - i / N ) S ~.~ 

computed on the data after imputation. 
NN-SARN. This variance estimator is given by the formula for 
as in the R E G - S A R N  method, but S~.~ is computed using the 

data with nearest neighbor imputation value Y N,~ (instead of 

/~ x ~ ) for k c s - r,  whereas ~ 2 is computed with the aid of the 

residuals e ~ = y ~ - # x k , for k c r .  e lbus  the residuals y k - Y N, k 

are not used because the use of them leads to overestimation of 

5). Imputation Method M U L T R E G .  (Multiple imputation by 
regression): Assuming that y ~- N ([3 x k. a2 x k ) and nonresponse 

is ignorable, the multiple imputation is carried out as follows. 
First, [3 and a 2 are estimated, respectively, by/~ and 

~2 = re-'E--i-- I I  Z (Yk-/~Xk) 2 x k  

Then, for each i= 1 . . . . .  M (M = 2), perform the following steps: 

Step 1: Draw a ×z  random variate with ( m -  1 ) degrees of 

freedom, say g ,  and let a ~. * 8 2 (m - 1 ) / g; 

Step 2: Draw a N ( 0 ,  1) random variate, say z ,  and let 

~ , . ' ~ + o , . z ( E ~ x ~ )  -''2", 

Step 3: For  each k e s - r ,  draw aN (0 .  l ) variate independently, 
. 

say u ,  and let e +~ = u o +.. 

Two data sets after imputation thus obtained are, 

([3 Yk, if k e r  
Y'Ik= " if k c s - r  

l,-,XTk + Q i g ,  

and 
Yk, if k e r  

Y.2~= [~2,xk+e2~, if k c s - r  

A modification to the above procedure for a nonnormal case 
is to replace Step 3 by the following: 

Step 3': For  each k c s - r ,  draw a number, say w k, with 

replacement from the set of standardized residuals 

( ( y ~ - # x ~ ) / ~ / ( 1 -  1 / m ) x ~ 6 2 " l r r )  and lete~'k = Wk~X-~k0t.. 

For  more detail, see Rubin (1987, pp.166-168). We tried both 
but the results for the latter method are reported here. 

The point estimator of the population mean is 

Y.. ~ = (Y. ~ ~ + Y. 2 ~) / 2 ,  where y. ~ and y. z ~ are the means of the 

data sets (y .  ~ k" k c s )  and ( y  zk" k e s ) ,  respectively. The cor- 

responding variance estimator, suggested by Rubin (1986), is 

1 / < ( 1  l )  2 ( 1 ) ( M - - - ~ ) £  - - 
I ; ' - ~  n- ,gy.n+ I+ (y.j_y..~)2 

= )=I 

with M-2 where ,.9 2 y.j~-~(y.j~-y.js)Z/(n -I) is the variance 

calculated from the j-th completed data set (y.jk' k c s ). 

6). Imputation Method MULTNN. (Multiple imputation by 
nearest neighbor): For  each nonrespondent ,  the two nearest 
neighbors are selected by the NN method based on the x-value 
and one of their y-values is randomly picked and assigned to the 
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first imputation, y NN~ and the remaining y-value is assigned to 

the second imputation, yNN2~ • Two data sets after imputation 

are thus obtained, namely, 

( y~, if k 6 r  

Y ' ~ =  Yuu~ , ,  if k r s - r  

and 

( y~, if k E r  

Y.2~ = YNuak' if k C s -  r .  

The point estimator of the population mean is 
y . . , = ( y . , , +  y .2~) /2  ,where y . , ,  and y.~, are the means of the  

two data sets { y . l k : k e s )  and ( y . z k ' k E s ) ,  respectively. The 

variance estimator for M U L T N N  is calculated in the same way 
as the variance estimator for M U L T R E G .  The only difference 
is that nearest neighbor imputations are used to calculate the 

- -  2 quantities y . / ,  and S y.js , / '  = 1 , 2 .  This method is not "proper" 

(see Rubin, 1987, pp.118-128, for the definition of a proper  
multiple imputation) but was illustrated in Rubin (1986) and 
suggested in Rubin (1987). 

3.  T H E  T W E L V E  P O P U L A T I O N S  A N D  T H E  

T H R E E  R E S P O N S E  M E C H A N I S M S  

The performance of the different variance estimators was 
studied with the aid of the customary Monte Carlo summary 
measures: Mean, bias and variance of the variance estimators; 
coverage rate of the confidence interval. The performance of the 
different imputation methods was also investigated in terms of 
mean and bias of the point estimators of the population mean. 

The Monte Carlo simulations were carried out using 12 dif- 
ferent artificially generated populations. These populations were 
generated as follows: a set of N = 100 x-values was generated 

according to a 1--distribution with the mean 48 and the variance 
768. Then, for each fixed value of x, we generated the corre- 
sponding value of y according to a F-distribution with the mean 

I - t ( x ) = a + b x + c x  2 and the variance o Z ( x ) = d 2 x  2~ with 

appropriately chosen constants a, b, c, d, and g. If the density of 
the V-distribution is written as 

1 0 t - I  
~ x  e x p ( - x / f ~ )  f 0 r x > 0 ,  
r (a ) [3  ~ 

then the mean and the variance are, respectively, a [3 and a[32 . 

We thus have the equations ~ t ( x ) = a + b x + c x ~ " a f 3  and 

a 2 ( x ) = c l 2 x 2 O = a f A  2 , which imply that the constants e~ and 13 

used to generate the y-value associated with a given x-value are 
determined by 

( t l ( x ) )  2 ( a + b x + c x 2 )  2 

o2( x ) ct2 x 2~ 

o2(x )  d 2 x 2 ~  

~ ( x )  cl + b x  + c x  2" 

The coefficient of correlation between x and y is also a function 
of the five constants a, b, c, d, and g. We first specified the values 
for a, b, c and g, and then determined the remaining constant, d, 
as a consequence of the desired theoretical correlation, which we 
fixed at 0.75 for all populations. The values of a, b, c, d and g are 
given for the 12 populations in Table 1, as well as the correlation 
coefficient p and the mean of y calculated from the N = 100 

pairs of ( x k , y ~ ) ,  k = l , ' " , l O 0 ,  that were generated by the 

procedure. 
The constants, a, b and c are shape parameters. The popula- 

tions are classified into 4 population types as coded in the above 
table according to the shape parameter  values. Populations 1 to 
3 represent a linear regression through the origin. Populations 4 
to 9 have a second degree polynomial regression through the 
origin with slight curvature. Populations 10 to 12 are based on 
linear regression with a non-zero intercept. 

Table 1 
Characteristics of the 12 Populations Used in Simu- 

lation Study. 

Pop. Type a b c d g O Mean 

1 RATIO 0 1.50 0.00 13.78 .25 .773 70.44 
2 " 0 1.50 0.00 5.13 .50 .775 73.47 
3 " 0 1.50 0.00 1.84 .75 .755 72.93 
4 CONCAVE 0 3.00 -.01 15.04 .25 .760 112.93 
5 " 0 3.00 -.01 5.60 .50 .765 117.10 
6 " 0 3.00 -.01 2.01 .75 .746 110.31 
7 CONVEX 0 .25 .01 13.20 .25 .761 44.77 
8 " 0 .25 .01 4.91 .50 .746 46.51 
9 " 0 .25 .01 0.75 .75 .755 34.93 

10 N O N - R A T  20 1.50 0.00 13.79 .25 .746 91.97 
11 " 20 1.50 0.00 5.13 .50 .763 91.29 
12 " 20 1.50 0.00 1.84 .75 .767 91.22 

For  each of the 12 populations, three different nonresponse 
mechanisms were used. Let 0 ,  denote the probability of nonre- 

sponse for the unit k. Then the three nonresponse mechanisms 
are as follows: 

(i) 0 k decreases as y increases where 0 k = e x p ( -  c ~ y , )  and 

the constant c~ is chosen so that the average nonresponse 

probability over the whole finite population is 0.3. (A numerical 
method was used to achieve this goal.) This mechanism, which 
is such that small y-values are under-represented among the 
respondents, is denoted $. 

(ii)Ok increases as y increases where Oj,= 1 - e x p ( - c 2 y k )  and 

the constant c2 is chosen so that the average nonresponse 

probability over the whole finite population is 0.3. This mecha- 
nism, which is such that small y-values are over-represented 
among the respondents, is denoted $. 

(iii) 0k is constant at 0.3 for all k c U .  Both large and small 

y-values are evenly represented among the respondents. This 
mechanism is denoted 

In cases ( i ) and  ( i i ) the  nonresponse probability depends on 
the value Y k of the variable of interest; these nonresponse 

mechanisms are non-ignorable. In case (iii), the probability of 
nonresponse is constant throughout the population; the nonre- 
sponse mechanism is ignorable. 

For  each population, we drew 1,000 samples, each of size 
n -- 3 0 .  For  each of these samples, 50 realizations for each of the 
three nonresponse mechanisms were obtained by performing a 
Bernoulli trial on each of the 30 sample units. For  each of the 
12 x 3 = 36 different combinations of population x nonresponse 
mechanism, we thus obtained 50,000 realized nonresponse sets. 
The size of the nonresponse set (n - m )  is random. The expected 

size of the nonresponse set is 30 x 0 .3  = 9 for each of the three 
mechanisms. 

4. A S U M M A R Y  O F  T H E  S I M U L A T I O N  R E S U L T S  

4.1. Bias of the Point Estimators of the Population 
Mean 

For  the mechanism -, , the Monte Carlo means of all 6 point 
estimators agree well with the respective population means for all 
12 populations. That  is, all point estimators have small bias when 
the nonresponse is ignorable regardless population type. As 
expected, all point estimators are noticeably biased for the 
mechanism $ (where the bias is positive) and for the mechanism 

1' (where the bias is negative). The bias can be substantial 

especially for the CONVEX type populations, in which the 
absolute relative bias lies between 12 and 22% with the 

mechanism and between 30 and 37% with the T mechanism. In 
the other cases, the absolute relative bias is less than 13%. 
Therefore,  if the nonresponse is nonignorable, elimination of the 
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imputation bias in the point estimator is actually a more urgent 
concern than finding roughly unbiased estimators of the variance. 
In other words, the squared bias can be a large component of the 
mean square error (MSE). One should in particular be on guard 
against situations where a CONVEX type population is combined 
with the 1' mechanism. 

We noted above that the REG imputation procedure leads to 

the ratio estimator Y.s " ( 1 / n) ~ s y. k " x ~ y r / x r • For the non- 

ignorable mechanisms T and ~ ,  the relative bias of this 
estimator is considerable. This is true even for population 2, 
although this population is ideal for the ratio estimation in the 
sense that it was constructed according to a linear regression 
passing through the origin with the variance o 2 ( x ) ~  x. The bias 

arises because the slope estimate, (~ r  Y k) / (~-~-r X g ) , is consid- 

erably biased when the nonresponse is nonignorable. 
It is interesting to note that, for the nonignorable mechanisms 

T and $ , the nearest neighbor imputation estimators, NN and 
MULTNN, are more severely biased, for most of the populations, 
than the regression imputation estimators REG, REGRES,  
REGR E~S T  and M ULTREG.  There are a few exceptions to this 
for the CONVEX type populations. 

4.2 Variance of the Point Estimators 
For a majority of the 36 cases, the regression imputation 

estimators, REG and R E G R F S S T  have distinctly lower variances 
than the nearest neighbor imputation estimators, NN and 
MULTNN. (MULTNN, which is formed as an average of 2 
repetitions, has a slightly lower variance than NN.) However, 
R E G R E S  (regression with added residual) often has a higher 
variance than both NN and MULTNN. 

4.3.  B i a s  of the Variance Estimators 
Table 2 below shows overall performance of the 10 variance 

estimators in terms of average absolute relative bias, average 
relative root mean square error (MSE) and average coverage rate. 
Needless to say, the most important performance criterion would 
be the bias. In the following, we discuss in detail the performance 
of the 10 variance estimators based on this criterion. Figures 1-4 
show graphs of relative biases of the 10 variance estimators for 
Populations, 2, 5, 8 and 11. The graphs are fairly similar each 
other for other populations within the same population type. 

Table 2 

O v e r a l l  P e r f o r m a n c e  o f  t h e  10 Variance Estimators 

Variance 
Estimator 

Ave. Ave. Ave. 
Abs. Rank- Rel. Rank- Cov. Rank- 
Rel. ing Root ing I Rate ing 1 
Bias MSE 

R E G - O R D  30.2 8 40.4 - 80.9 - 

NN-ORD 38.6 10 47.0 - 76.9 - 

R E G R E S - O R D  30.5 9 41.1 - 81.1 - 

R E G R E S S T - O R D  24.0 7 38.8 - 82.2 - 

REG-RAO1 17.2 6 43.8 4 85.8 3 

REG-RAO2 14.3 4 41.9 3 86.5 2 

REG-SARN 11.4 3 40.2 2 87.5 1 

NN-SARN 10.2 2 38.1 1 84.7 5 

M U L T R E G  8.3 1 56.1 6 85.6 4 

MULTNN 16.6 5 50.5 5 80.8 6 

Note 1" The methods based on the ordinary variance formula are 
not included in the rankings because of their large absolute 
relative bias. 

The variance estimator REG-SARN. Recall that both Pop- 
ulation 2 and the variance estimator REG-SARN were con- 
structed from the model ~ stating that y k z 13 x k ÷ e k, E ~ (e k ) = 0 

and Vt(e ~) = o 2x~ (that is, g = 0.~ ). Population 2 therefore 

represents the ideal conditions for REG-SARN, and our results 
confirm this. However, not only for population 2 but also 
populations I and 3 (i.e. for the RATIO type populations), REG- 
SARN is nearly unbiased with the absolute relative bias less than 
10% for all three response mechanisms, 1' , $ and ~ . For the 
CONCAVE type populations 4, 5 and 6, and the NON-RAT type 
populations 10, 11 and 12, REG-SARN leads to minor overesti- 
mates for all three mechanisms, t , $ and ~ . For the CONVEX 
type populations 7, 8 and 9, it underestimates. The overall 
performance of REG-SARN w.r.t, bias is one of the best (it ranks 
3rd among the 10 methods). 

The variance estimators REG-RAO1 and REG-RAO2. These 
two variance estimators should, according to theory, work well 
for the mechanism -~ (ignorable nonresponse) regardless of 
population type, and this is confirmed by our study. For the 
nonignorable mechanisms 1' and ~ , REG-RAO1 and REG- 

RAO2 will either overestimate (in the case of the mechanism $ ) 
or underestimate (in the case of the mechanism 1' ); sometimes 
this bias is quite pronounced. REG-RAO2 ranks 4th of the 10 
methods and has, in most of 36 cases, a smaller bias than 
REG-RAO1, which ranks 6th. The overall performance of 
REG-RAO1 and REG-RAO2 is reasonably good but somewhat 
less satisfactory than REG-SARN and MULTREG.  

The "standard formula" variance estimators, REG-ORD,  
R E G R F ~ - O R D  and REGRESST-ORD.  All three, and especially 
REG -O RD  and REGRF_~-ORD, are clearly unsatisfactory and 
should not be used; they yield large underestimates in virtually 
all of the 36 cases. One might expect that adding a residual in the 
R E G R E S - O R D  method would have the effect of reducing the 
underestimation of the REG -O RD  method. However, it is 
somewhat surprising to observe that the performance of 
REGRF_~-ORD is not any better than that of REG-ORD.  A 
possible explanation for the unexpected results is that adding a 
residual would help properly capture the sampling variance 
component, V . . . .  at least for the ignorable mechanism ~ but it 

would also increase the imputation variance component, V ~ p .  

Neither REG -O RD  nor R E G R E S - O R D  contains a component 
aimed at estimating the imputation variance (see S/irndal (1990) 
for the decomposition of the variance). On the other hand, 
REGRESST-ORD does reduce the underestimation noticeably 
as intended. In this method, adding standardized residual does 
not increase the imputation variance component which is the 
same as that of RFS-ORD. 

The variance estimators for the nearest neighbor imputation, 
NN-ORD and NN-SARN. Here, NN-SARN is more prone to 
underestimate than to overestimate (underestimates are noted in 
29 of the 36 cases). The bias is fairly limited in most cases except 
for the cases of the CONVEX type populations with the nonre- 
sponse mechanism t where it has a fairly large bias. However, 
the overall performance is good, ranking the 2nd among the 10 
methods with an average absolute relative bias of about 10%. On 
the other hand, NN-ORD is inadequate and is the worst in terms 
of average absolute relative bias; it leads to a large underesti- 
mation, which is explained in part by the fact that this estimator 
contains no component for the imputation variance, V ~,~p, which 

is much bigger than the imputation variance of REG. 
The multiple imputation variance estimator MULTREG.  For 

about two thirds of 36 cases, this estimator leads to overestimation 
of the variance; in all 36 cases, the bias is fairly limited. It performs 
very well. It ranks first in term of the average relative bias among 
the 10 methods. 

The multiple imputation variance estimator MULTNN. This 
method consistently underestimates in all 36 cases the imputation 
method is not proper. But in most cases, it is a fairly limited 
underestimation. The overall performance is reasonably good. 
It ranks 5th. 
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4.4. Variance and MSE of the Variance Estimators 
A striking observation in most of the 36 cases is that the multiple 

imputation variance estimators, MULTREG and MULTNN, 
usually have a much higher variance than REG-SARN, NN- 
SARN, REG-RAO1 and REG-RAO2. For example, the variance 
of MULTREG is not uncommonly 4 to 5 times higher than the 
variance of REG-SARN. It follows that MULTREG and 
MULTNN have the drawback that the corresponding confidence 
intervals vary considerably in length. According to the average 
relative MSEcriterion, NN-SARN ranks 1st and REG-SARN 2rid. 
MULTREG ranks 5th here due to its large variance even though 
its bias is the smallest in average. Here we do not discuss the 
variances of the "ordinary formula" variance estimators, since 
they are eliminated from contention due to their great bias. 

4.5 Coverage Rate of the 95% Confidence Interval 
The 95% confidence interval was constructed using a point 

estimate and the square root of its associated variance estimate 
assuming the normality of the point estimator. The coverage rate 
was calculated as the proportion of the number of times that the 
interval included the true population mean out of 50,000 samples. 

As expected, the coverage rates of the ordinary variance 
estimators are generally much lower than the nominal value 95%. 
Other variance estimators achieved 85% or over on average 
except MULTNN. It was clearly noticed that the coverage rate 
is very poor for all variance estimators under the CONVEX type 
populations with the nonresponse mechanism 1'. For example, 
even for the best method, REG-SARN, the coverage rate was only 
between 40 and 50% as compared to the nominal 95%. The reason 
for this phenomenon is that the problem of severe underestima- 
tion of the point estimator is compounded by underestimation of 
the variance estimators in these cases. One notes that although 
NN-SARN ranks 2nd of the 10 methods in terms of average 
absolute relative bias, it ranks only 5th in terms of average 
coverage rate. The reason is that the point estimator is, as we 
noted earlier, more biased in the case of NN imputation than the 
case of REG imputation. 

The coverage rates of the 6 good variance estimators (REG- 
SARN, NN-SARN, REG-RAO1, REG-RAO2, MULTREG and 
MULTNN) are fairly good for the nonresponse mechanism ~ . 
They could have been better if the Student t reference had been 
used instead of the normal. 

5. C O N C L U S I O N  

The performance of the 10 variance estimators included in the 
study can be summarized as follows: the 6 variance estimators, 
REG-SARN, NN-SARN, REG-RAO1, REG-RAO2, MUL- 
TREG and MULTNN, show reasonably good overall perform- 
ance with average absolute relative bias ranging from 8 to 17%, 
considering all 12 populations and all three response mechanisms. 
They sometimes underestimate, sometimes overestimate the true 
variance. 

At any case, all of the estimators based on the "ordinary 
formula", REG-ORD,  REGRE~-ORD,  REGRESST-ORD and 
NN-ORD, are outfight unsatisfactory and lead to gross under- 
estimation; they should definitely not be used to estimate variance 
in the presence of imputation. 

MULTREG,  REG-SARN and NN-SARN are fairly insensitive 
to the nonresponse mechanism having average relative bias of 
less than 15% for all three nonresponse mechanisms, while 
MULTNN, REG-RAO1 and REG-RAO2 have average absolute 
relative bias of more than 20% under at least one of the 
nonresponse mechanisms. REG-SARN, NN-SARN, REG- 
RAO1 and REG-RAO2 enjoy the advantage of simplicity, since 
they require only a single imputation. Besides the disadvantage 
of storing several data sets generated by the multiple imputation, 
MULTREG and MULTNN often have a large variance. REG- 
RAO1 and REG-RAO2 perform reasonably well overall, in fact 
the best, as long as the nonresponse is ignorable (the mechanism 
-~ ). When nonresponse is nonignorable, however, their per- 
formance is less satisfactory. They still perform better than 

ordinary variance formulae under the 1' mechanism but even 

worse than the ordinary ones under the $ mechanism. 
The 1' mechanism has a striking effect on the coverage rate; 

for all 10 variance estimators the coverage rate is <80%. On the 
other hand, the 6 variance estimators identified above have fairly 
good coverage rate under the mechanisms $ and -~ 

The population type also has a big effect on the performance 
of the variance estimators. For all variance estimators except 
REG-SARN, the largest biases occur under the CONVEX type 
populations (7, 8 and 9) with nonignorable nonresponse mecha- 
nisms. The combination of the population type CONVEX and 
the 1' mechanism has an especially harmful effect on both 
average absolute relative bias and coverage rate. 

The type of model variance (that is, the value of g) does not 
seem to have much effect on the variance estimators as long as 
the correlation is kept constant. Its effect on the coverage rate 
is virtually none. However, there is reason to believe that this will 
not be true if the scale parameter d is kept constant instead of 
the correlation. 

Judging from the overall performance based on the three 
criteria (bias, MSE and coverage rate), REG-SARN seems to be 
the best when the regression imputation is used and NN-SARN 
is the choice for the nearest neighbor imputation. If the 
nonresponse is believed to occur at random (the mechanism -~ ), 
REG-RAO2 is hard to beat for the regression imputation and 
NN-SARN should be used for the NN imputation. The combi- 
nation of a CONVEX type population and the T nonresponse 
mechanism creates a situation where one should be particularly 
careful. In this case, none of the variance estimators performs 
well and the confidence intervals will be grossly misleading. 

Remark. The multiple imputation methodology as presented 
by D.B. Rubin has been developed primarily for situations where 
the response mechanism is ignorable, as in the case of our 
mechanism -~. In order to apply the multiple imputation 
methodology for nonignorable cases, such as our mechanisms 

and T , Rubin (1986) suggests to "adjust" the imputed y-values 
by a factor based on an assumption about the nonresponse bias. 
For example, in the nearest neighbor imputation, one may assume 
that the nonresponse bias is such that a nonrespondent will, on 
the average, have a y-value 20% higher than the y-value of the 
donor. That is, the donor y-value is multiplied by 1.2 to obtain 
the imputed value. Clearly, the 20% assumption is subjective; 
however, the success of the multiple imputation variance esti- 
mators depends on the validity of the assumption. We did not use 
the adjustment factor procedure in our study. 
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Figure 1: Relative Biases (%) of the 10 Variance Estimators for Population 2 
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Figure 2: Relative Biases (%) of the 10 Variance Estimators for Population 5 
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Figure 3: Relative Biases (%) of the 10 Variance Estimators for Population 8 
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Figure 4: Relative Biases (%) of the 10 Variance Estimators for Population 11 
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