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1. INTRODUCTION 
In complex large-scale surveys, particularly 

household surveys, post-stratification is a commonly 
used technique for improving efficiency of estimators. 
A clear description of the method and the rationale for 
its use was given by Holt and Smith (1979) and is 
paraphrased here. Values of variables for persons 
may vary by age, race, sex, and other demographic 
factors that are unavailable for sample design at the 
individual level. A population census may, however, 
provide aggregate information on such variables that 
can be used at the estimation stage. After sample 
selection, individual units are classified according to 
the factors and the known total number of units in the 

cth cell, M~, is used as a weight to estimate the cell 

total for some target variable. The cell estimates are 
then summed to yield an estimate for the full 
population. 

Because post-stratum identifiers are 
unavailable at the design stage, the number of sample 
units selected from each post-stratum is a random 
variable. Inferences can be made either 
unconditionally, i.e. across all possible realizations of 
the post-strata sample sizes, or conditionally given the 
achieved sample sizes. In a simpler situation than that 
considered here, Durbin (1969) maintained, on 
grounds of common sense and the ancillarity of the 
achieved sample size, that conditioning was 
appropriate. In the case of post-stratification in 
conjunction with simple random sampling of units, 
Holt and Smith (1979) argue strongly that inferences 
should be conditioned on the achieved post-stratum 
sample sizes. 

Although conditioning is, in principle, a 
desirable thing to do, a design-based conditional 
theory for complex surveys may be intractable, as 
noted by Rao (1985). A useful alternative is the 
prediction or superpopulation approach which is 
applied in this paper to inference from post-stratified 
samples. We will concentrate especially on the 
properties of two commonly used variance estimators 
to determine whether they estimate the conditional 
variance of the post-stratified estimator of a finite 
population total. 

Section 2 introduces notation, a 
superpopulation model that will be used to study 
properties of various estimators, and a class of 
estimators which will be used as the starting point for 
post-stratification estimation. Section 3 discusses the 
model bias and variance of estimators of the total 
while sections 4 and 5 cover the linearization and 

balanced repeated replication variance estimators. In 
section 6 we present the results of a simulation study 
using data from the U.S. Current Population Survey 
and the last section gives concluding remarks. 

2. NOTATION AND MODEL 
The population of units is divided into H 

design strata with stratum h containing N k clusters. 

Ouster (hi) contains M u units with the total number 

stratum h being M h = ~i__N~ M~ and the of units in 

g M .  total in the population being M = ~h--I k A two- 

stage sample is selected from each stratum consisting 

of n k > 2 sample clusters and a subsample of m~ 

sample units within sample cluster (ht). The total 

number of clusters in the sample is n = ~.,hn,,. The 

set of sample clusters from stratum h is denoted by sh 

and the subsample of units within sample cluster (ht) 

by s~. 

Associated with each unit in the population is 

a random variable y~ whose finite population total is 

'. 
~--i --i Y~" Each unit is also a member of 

a class or post-stratum indexed by c. Each post- 

stratum can cut across the design strata and the set of 

all population units in post-stratum c is denoted by So. 

The total number of units in post-stratum c is 

M~ = ~ h  ~.N~ ~__M~ ~ ~ where ~ = 1 if unit 

(hij) is in post-stratum c and is 0 if not. We assume 

that the post-stratum sizes M~ are known. Our goal 

here will be to study the properties of estimators under 
the following superpopulation model: 

E(Yhq ) = IZc 

cov(y~, yh,iT, ) = 

h = h ' , i = "  =y' ,  

( hij) ~ S~ 

h = h ' , i = i ' , j ~ j ' ,  

( hij) ~. Sc , ( h'i T") ~ Sc 

h h ' , i = " j : / : "  - t ,  .1", 

( hij) ~ S~ , ( h'i T") ~ S~. 

otherwise (1) 
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In addition to being uncorrelated, we also assume that 
the y's associated with units in different clusters are 
independent. The model assumes that units in a post- 

stratum have a common mean ¢t ~ and are correlated 

within a cluster. The size of the covariances oa~p~ 

and ~rj,,~. are allowed to vary among the clusters and 

also depend on whether or not units are in the same 

post-stratum. The variance specification oa~ is quite 

general, depending on the design stratum, cluster, and 
post-stratum associated with the unit. 

The general type of estimator of T that we will 
consider has the form 

where y .  is a coefficient that does not depend on the 

y's, ?'~ = M.y .  , and y~ = Ei~,,, Y~ /m,i . In common 

survey practice, the set of 7 .  is selected to produce a 

design-unbiased or design-consistent estimator of the 
total under the particular probability sampling design 
being used. Alternatively, estimator (2) can be written 
a s  

t=Z.E ,.ZoK (3) 

where K,e = 7,~M~ m,~/m~, m~ is the number of 

sample units in sample cluster (hi) that are part of 

post-stratum c, and y,~ = ~ i~ , .  YkoS~/m*~" If 

m,e = 0, then define Y,e = 0. There are a variety of 

estimators, both from probability sampling theory and 
superpopulation theory, that fall in this class. Six 
examples are given in Valliant (1987) and include 
types of separate ratio and regression estimators with 

M,~ used as the auxiliary variable. Also included in 

class (2) is the Horvitz-Thompson estimator when 
clusters are selected with probabilities proportional to 

M,~ and units within clusters are selected with equal 

probability in which case 7~ = Mk/(n,M~). Note 

that, as discussed in section 3, the estimators defined 
by (2) are not necessarily model-unbiased under (1). 

Next, we turn to the definition of the post- 
stratified estimator of the total. The usual design- 

based estimator of M~ in class (2) is found by using 

5 ~  in place of Yk0 in (3) and omitting the sum over c, 

which gives 

= E , Y _ , .  
The post-stratified estimator of the total T is then 
defined as 

g,=E (4) 

where/}c = M,/M~ and T, = ~ k 2 e ,  Kh~y~. With 

this notation the general estimator (3) can also be 

written as T =  2 . L "  

3. BIAS AND VARIANCE OF ESTIMATORS OF THE 

TOTAL 

The model bias under (I) of the unadjusted 

estimator T is 

E(7"-T)=EcCtc(t~'t~-M~). 

Estimators in class (2) are model unbiased if M~ = M~ 

a condition which in general does not hold for a 
particular sample but may be true in expectation 
across all samples that a particular design can 
produce. On the other hand, the post-stratified 

estimator 7~j,, is model-unbiased under (1), as is easily 

verified. 
The prediction variance of the post-stratified 

estimator is defined as var(L, - T). Under so me 

reasonable assumptions, similar to those given in 
Royall (1986) or Valliant (1987), on how certain 
population and sample quantities grow as H ---> oo, we 
have 

var(¢ , . )  (5) 

where ~-- denotes "asymptotically equivalent to." 
Details are sketched in Val liant ( 1991). 
Consequently, we will concentrate on the estimation 

of var(~'p,). 
In order to compute the variance, it is 

convenient to write the post-stratified estimator as 

where 

. . . .  

Tk (KmYm ..... ' -  ' = , - Kmy,c ) , 

( KIm, s)'  K~: = Kmc . . . . . .  and 

. . . . .  

The variance can be found as 

var(Tp,) = ~kl / 'K;VkKhl /  (6) 

where K~ is the C xnhC matrix whose cth row is 

, , , , )  , 0 .... 0. , ,K~,0,~ .... 0., , i.e. K~: is preceded by c-1 
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zero row vectors of length nt and followed by C-c 

such zero vectors. The matrix Vk is defined as 
" Vkt D . n  "'" De, tc 

v,= D.~, V,~ ". 

D,~ Vkc 

with V k = diag(v~),i x,~ and D ~c = diag( "rji,~,),~,~ 

where i ~ sh for both V~ and D,s,w. A key point is 

that, although the factors /~, may be random with 

respect to the sample design, they are constant with 
respect to model (1), so that (6) is a variance 

conditional on the values of/~,. 

The variance of the unadjusted estimator 
can be found by minor modification of the above 

arguments. Because f = X,'i 'k. i.e. the value of Tv, 

when/~ = 1 for all c. we have 

vat(T) = ~ ,  lcK~ VkKklc (7) 

where I c is a vector of C l's. Note that, if the sample 

design is such that the post-stratum factors /~ each 

converge to 1, then var(Tv.) and var(T) are about the 

same in large samples. 

4. A LINEARIZATION VARIANCE ESTIMATOR 
Linearization or Taylor series variance 

estimators for post-stratified estimators are discussed 
for general sample designs by Fuller and Sullivan 
(1987), Rao (1985), and Williams (1962). An 
application to a complex survey design is given in 
Parsons and Casady (1985). Our interest here is in 
how a linearization estimator, derived from design- 
based arguments, performs as an estimator of the 
approximate conditional variance given by (6). For 
clarity and completeness we will sketch the derivation 
of the estimator for the class of post-stratified 
estimators studied here. In a design-based analysis, 

the product/~cL is expanded about the point (Mc,T~) 

where T, is the finite population total for post-stratum 

c. The usual first-order Taylor approximation to/~,T, 

is 

k:, 

From this expression it follows that 

L-T---E,E,. a, 

where ~t~ = ~--qe,, X, y~g~S,@ [y~ -(T#/M,)Vm,~. 
For computations, the usual procedure is to substitute 

estimators for the unknown quantities in ds producing 

a. = ~.,~,,,, X~ r . M . a . ( y , #  - # . ) / m .  

where /~, = T~/M,. The linearization variance 
estimator, including an ad hoc finite population 
correction factor, is then defined as 

v'-(L,) = Xk nknh-1 ( I -  f k )~ ' ° .  ( d . -  d'h)' C8) 

where/. = ,,,IN. and "d, = ~ , . .  a.ln~ . 
In order to determine whether the general 

linearization estimator (8) estimates the conditional 
variance (6), we examine its large sample behavior. 
As shown in Valliant (1991) 

n v , , 0  

Thus, the linearization estimator v L actually estimates 

var(T) given by (7)rather than var (L  ) in (6). In 

large samples the linearization estimator differs from 

var(Tp,) by a factor that depends on how different the 

adjustment factors I~ are from 1 c. 
This conditional bias can be eliminated by 

using the adjusted deviate 

a~. = 2 , . , . E  k,?' .M.S,(y~-~t,) /m. 

in the linearization estimator. For later reference 

define the adjusted linearization estimator using d~ as 

, A 

vL(T,,,) and note that it can be written as 

• A 

" V ]' ,,,_lO-.r,,)Y_., . 
ie :~ c. c 

Proof that this adjusted variance estimator is 

consistent for var(Tp,- T) is given in Valliant (1991). 

5. A BALANCED REPEATED REPLICATION 
VARIANCE ESTIMATOR 

Balanced repeated replication (BRR) or 
balanced half-sample variance estimators, proposed 
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by McCarthy (1969), are often used in complex 
surveys bex~use of their generality and the ease with 

which they can be progrannned. Suppose n~ = 2 in all 

strata. A set of J half-samples is defined by the 
indicators 

10 if unit i is in half-sample ¢z 

6"~ = if not 

for i= 1,2 and a~=l ..... J. Based on the 6"~,,, define 

~or) = 2G,,o r - 1 

:{11 if unit hl is in half- sample ¢z 

if unit h2 is in half-sample a.  

Note also that -~or)= 2G2or-1. 

samples is orthogonaUy 

A set of half- 

balanced if 

Z / or Z I or a ,~-s G, = ,~-, G G,  = 0 (h' ~ h) with a minimal set 

of half-samples having H + 1 < J < H + 4. One of the 
choices of balanced half-sample variance estimators is 

v ,~  (Tp,) = ~ (T~or) - Tp,)2 / J (9) 
orffil 

where f~or) ~--,c "(or)"(or) "(or) = R~ T~ with R~ being the post- 

stratum c adjustment factor and T,(or) being the 

estimated post-stratum total based on half-sample a~, 
both of which are defined explicitly below. 

In applying the BRR method, practitioners 
often repeat each step of the estimation or weighting 
process, including post-stratification adjustments, for 
each half-sample. The intuition behind such repetition 
is that the variance estimator will then incorporate all 
sources of variability. The goal here is the estimation 
of a conditional variance. This raises the question of 
whether, to achieve that goal, the post-stratification 
factors 1~ should be recomputed for each half-sample 
or whether the full-sample factors should be used for 
each half-sample. 

First, consider the case in which the factors are 
recomputed from each half-sample and define 

~or)= M,/M~ or) to be the factor and T,(or) to be the 

estimated total for post-strattan c based on half- 
sample a~. In particular, 

fY)= and 

Next, expand ~or)~or) around the full sample 

estimates/~, and T, to obtain the approximation 

( t , , ° , -  °, - s , , )  

where 

(10) 

a,~ = K.,,L,, - K~,y~, and 

a~ ,  = K~, - K ~ . .  
The variance estimator (9) can then be approximated 
a s  

or=l 

where z~ = A ~ - h  Ar~. Squaring out the term in 

brackets and using the fact that ¢.(,or)2= 1 and the 

orthogonality of ~or) and ~?) (h ¢ h'). lead to 

v ,~  (~t,) -- Z ,  (Zc/~c z~:) 2 . (11) 

Squaring out the fight-hand side of (11) and noting 
that 

z,~z,~.= n, E(d,_-g,~)(d,,e_-d,~. ) 
n, - 1 ~E,, 

when n h = 2, it follows that, aside from the factor 

1-fk,  vs~(Tp,)is approximately equal to the adjusted 

linearization estimator in section 4. Consequently, the 
BRR estimator does appropriately estimate the 
conditional variance when the number of strata is 
large and when the post-stratification factors are 
recomputed for each half-sample. 

Suppose, alternatively, that the full-sample 
factors are used for each half-sample, and denote the 

resulting estimator as v;pa (Tp,). Expression (10) then 

becomes 

and the term z~ in (11) reduces to z~ = A~:. By 

direct calculation the expectation of approximation 
(11) is 

where I t '=  (/.t,, .... ,tt c) and Vx, is a C x C matrix 

with the (cc') a element equal to 

L~ , ,  (Ku, - r~: )(K~" - K'~ • ) 

where "K~: = ~_~,~,, K~:/nh. Because V•, is a type of 

covariance matrix, it is positive semi-definite. As a 
result, using the full sample post-stratification factors 
in each replicate can lead to an overestimate of the 
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variance of Tp,. As will be illustrated in the empirical 

study in section 6, the overestimation can be severe. 

6. A SIMULATION STUDY 

The preceding theory was tested in a 
simulation study using a population of 10,841 persons 
who were included in the September 1988 Current 
Population Survey (CPS). The variables used in the 
study were weekly wages and hours worked per week 
for each person. The study population contained 
2,826 geographic segments. The segments were those 
used in the CPS with each being composed of about 
four neighboring households. Eight post-strata were 
formed on the basis of age, race, and sex using 
tabulations of weekly wages on the full population. 
Table 1 shows the age/race/sex categories which were 
assigned to each post-stratum, and Table 2 gives the 
means per person of weekly income and hours worked 
per week in each post-stratum. As is apparent from 
Table 2, the means differ considerably among the 
post-strata, especially for weekly wages. 

A two-stage stratified sample design was used 
in which segments were selected as the first-stage 
units and persons as the second-stage units. Two sets 
of 10,000 samples were selected. For the first set, 100 
sample segments were selected with probabilities 
proportional to the number of persons in each 
segment. For the second set, 200 segments were 
sampled. In both cases, strata were created to have 

about the same total number of households and nk = 2 

sample segments were selected per stratum. A simple 
random sample of 4 persons was selected without 

replacement in each segment having M~ > 4. In 

cases having M~ <4 ,  all persons in the sample 

cluster were selected. 
In each sample, we computed the Horvitz- 

Thompson estimator Tur (which is a special case of 
the general unadjusted estimator defined in section 2), 

the post-stratified estimator 7~p,, and the four variance 

estimators vt., v't., v m ,  and v m." For the two BRR 

estimators, the half-sample total #t,,) was computed as 

~'~:> = ~_~~,, 41-A(2¢~-1)K~A,, which has 

the effect of inserting finite population correction 
factors for each stratum in the approximation given by 
(11). Table 3 presents results summarized over all 
10,000 samples. Empirical mean square errors (rose's) 

were calculated as rose(7 ~) y__,s=, (~, _ T)=/S = with S 

= 10,000 and T being either T,r or Tp,. Average 

variance estimates across the samples were computed 

_ ~_s v , /S  where v, is one of the five variance as V-- s=l 

estimates considered. The table reports the ratios 

. 

As anticipated by the theory in section 4 the 

linearization variance estimator v L is more nearly an 
estimate of the rose of the Horvitz-Thompson 

estimator Tin- than of the rose of Tp,. The adjusted 
lit 

lineafiz.ation estimator v L, on the other hand, is 

unbiased for mse(7~p,), as is the approximately 

jackknife. Of the two BRR estimates, the root of the 

average vB~ performs well while the adjusted choice 

v ~  is a serious overestimate as predicted by the 

theory in section 5. The estimate v B~ is also much 
i 

more variable than either v, or van, as shown in the 
lower part of Table 3. 

7. CONCLUSION 
Post-stratification is an important estimation 

tool in sample surveys. Though often thought of as a 
variance reduction technique, the method also has a 
role in reducing the conditional bias of the estimator 
of a total, as illustrated here. The usual linearization 

variance estimator for the post-stratified total 7~p, 

actually estimates an unconditional variance as shown 
here both theoretically and empirically. This 
deficiency is easily remedied by a simple adjustment 
which parallels one that can be made for the case of 
the ratio estimator. Standard application of the BRR 
and jackknife variance estimators does, on the other 
hand, produce conditionally consistent estimators. An 
operational question that is sometimes raised in 
connection with replication estimators is whether to 
recompute the post-stratification factors for each 
replicate or to use the full sample factors in each 
replicate estimate. Judging from the theoretical and 
empirical results for BRR reported here, recalculation 
for each replicate is by far the preferable course, 
leading to a variance estimator that is more nearly 
unbiased and more stable. 
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Tab/e 1. Assignment of age/race/sex categories to 
post-strata. Numbers in cells are post-stratum 
identification numbers (1 tl, 8). 

Non-Black Black 
Age 
19 & under 
20-24 
25-34 
35-64 
65 & over 

Male Female Male Female 
1 1 
2 3 
5 6 
7 8 
2 3 

1 1 
3 3 
4 4 
4 4 
3 1 

Tab/e 2. Means per person in each of the eight post- 
strata for weekly wages and hours worked per 
week. 

Post- 
stratum 

1 
2 
3 
4 
5 
6 
7 
8 
Total 

No. of 
persons 

M~ 

Weekly Hours 
wages worked 

815 111.1 23.7 
691 278.7 37.9 
829 221.7 34.7 
955 349.7 38.8 

1,543 455.9 43.5 
1,262 319.1 37.5 
2,541 554.2 43.1 
2,205 326.9 36.4 

10,841 372.3 38.3 

Table 3. Summary results over two sets of 10,000 two-stage stratified 
samples of 100 and 200 segments each. 

Weekly wages Hours worked 
Summary quantity n= 100 n=200 n= 100 n=200 

Empirical 4"~-~(+10' ) 

~,,+ 156.1 111.1 6.8 4.9 

eT-, 138.0 96.0 6.2 4.3 

1.034 1.002 1.031 .993 

[Avg. var. est.Bnse(Tp,)] lt2 

vL 1.170 1.159 1.122 1.110 

• 1.004 1.013 .999 .998 
Vt, 
vB ~ 1.061 .993 1.028 .982 

• 1.229 1.133 1.277 1.160 VBRR 
vj 1.006 1.014 1.002 .998 

Std. dev. of var. est.(+ 103) 
vL 5616 1935 14.7 5.1 

° VL 4290 1500 12.2 4.2 

VB~¢ 4941 1455 13.1 4.1 

• 6900 2022 20.9 6.2 YBRR 
vj 4326 1503 12.3 4.2 
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