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On July 15, 1991 a decision was made to use un- 
adjusted rather than adjusted census populations 
as the official counts from the 1990 census. The 
unadjusted counts were more biased (at least at 
highly aggregated levels) than those adjusted by 
factors estimated with the Dual System Estima- 
tor (DSE), calculated using information from the 
census and the Post Enumeration Survey (Hogan 
and Wolter 1988). On the other hand, the vari- 
ance of the adjusted counts was substantial, since 
they are based on a relatively small sample of the 
total population and there are a number of forms 
of sampling and nonsampling error that  may affect 
the adjusted estimates. The unadjusted census, on 
the other hand, is regarded as having essentially no 
variance. 

Thus, the choice between the two, as it has been 
typically formulated, is a choice between a precise 
but biased estimator of population and a noisy but 
less biased one. Current analyses of the decision 
problem (Spencer 1990, Hogan and Mulry 1989) 
have considered comparing the risk (expected loss) 
of the two sets of estimates and choosing the set 
with smaller estimated risk. 

This formulation of a bias-versus-variance trade- 
off suggests consideration of composite estima- 
tors incorporating information from the census and 
DSE, and possibly from evaluation projects as well. 
The resulting estimates might have less bias than 
the unadjusted counts, but less variance than the 
DSE. Depending on the sizes of the various compo- 
nents of bias and variance, the optimal estimator 
might be such a composite of the census and DSE, 
rather than either one alone. 

In this paper we consider a number of issues re- 
lated to the question of how to obtain optimal es- 
t imates using the census counts and DSE. In Sec- 
tion 1 we formally specify the objectives of the es- 
timation procedures and models for the underlying 
processes. In Section 2 we derive a number of es- 
t imators of population, and in Section 3 we eval- 
uate them on simulated populations. Finally, in 
Section 4 we apply these methods to data from the 
1991 census and PES, comparing various estimators 
and examining sensitivity to model assumptions. 

1 Specif ication of object ives  
and populat ions  

1 .1  N o t a t i o n  a n d  loss  f u n c t i o n  

The following vectors will be of interest in form- 
ing composite estimates of population: T = true 
(unknown) population shares of the various do- 
mains, C = Census (unadjusted) population shares, 
D = Dual System Estimator (adjusted) population 
shares, bd = bias of the Dual System Estimator 
in the various domains, bd -- estimate of this bias 
from evaluation projects. 

Population shares are of primary importance for 
allocation of funds and political representation. We 
will assume that  our objective is to minimize some 
loss function that  is an aggregate measure of error 
in estimating shares, focusing on the loss function 
L x  = ~ Wi(Xi- ~r~)2 with Wi = l /T/ ,  the size- 
weighted relative squared error loss function, asso- 
ciated with any estimate of population shares X. 

1 . 2  A m o d e l  f o r  p o p u l a t i o n  s h a r e s  i n  

t h e  c e n s u s  a n d  D S E  

In order to develop procedures for estimation of 
domain populations, we must specify a model for 
the relationship among true population shares T, 
their dual system estimates D and their sampling 
biases b, and the census counts C. This same model 
will be used to generate populations in simulations. 

The model is specified as follows: 

Population model: 

' O ' ~ d U  o'¢¢U (1) 

Sampling (data) model: 

DIT , b, b, C ..~ N (T + b, Vd) (2) 

biT, b, C, D ... N(b, Vb) (3) 

The interpretations of these distributional speci- 
fications are as follows: 

P r i o r  distribution of biases. The biases of 
the dual system estimator (b = E D -  T) and the 
census counts ( C -  T) are a priori normally dis- 
tributed around 0. The prior variance-covariance 
matrix of the components of b is proportional to 
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a matr ix  U representing the degree of similarity 
believed to exist between domains with respect to 
propensity to be under/overest imated by the DSE. 
The prior variance-covariance matr ix of the com- 
ponents of T - C  is proportional to the same matrix 
U. The covariance matr ix between the two vectors 
is also proportional to U, i.e. the propensity to be 
under/overest imated by the DSE is related to the 
same propensity with respect to the census, and 
the relationships between census and DSE biases 
in different domains are similar to those between 
biases of the same procedure in the corresponding 
domains. 

S a m p l i n g  v a r i a b i l i t y  of  t h e  d u a l  s y s t e m  es- 
t i m a t o r .  The observed DSE D varies around its 
expectation T + b with variance-covariance matr ix 
Vd, independently of all other measures. (The cen- 
sus is assumed to have no sampling variability.) 

S a m p l i n g  v a r i a b i l i t y  of  t h e  bias  estimate 
for  t h e  d u a l  s y s t e m  e s t i m a t o r .  The estimated 
bias b varies around the true bias b with variance- 
covariance matr ix  Vb, independently of all other 
measures. 

If there is substantial lack of sampling indepen- 
dence between b and D then the covariance Vbd 
could be estimated and included in the model. An 
argument can be made that  this component is likely 
to be small, and our specification and estimators 
will assume Y~d -- 0. 

Note that  since the sum of population shares is 
fixed, the matrices U, Vb and Vd are necessarily 
singular. As a computational  device, and without 
altering the model specification, we may drop the 
components corresponding to one arbitrarily cho- 
sen domain from each vector, thereby making all 
of the matrices nonsingular. (However, all compo- 
nents must be included in computation of losses.) 

1 . 3  S p e c i f i c a t i o n  o f  U 

As noted above, the matr ix U describes the extent 
to which different domains are believed to be sim- 
ilar with respect to the undercount process. We 
will assume that  U is known and elicit it from 
prior knowledge about factors likely to affect un- 
der/overcount. 

Elicitation of prior v a r i a n c e - c o v a r i a n c e  
m a t r i x  of  u n d e r c o u n t  r a t e s :  Suppose that  
a number of different factors enter, roughly ad- 
ditively, into determining the undercount rate for 
a domain, so that  for a domain with levels 
(cl ,c2, . . .cg)  of factors 1 , 2 , . . . F  the undercount 
rate is approximately al(cl)+a2(c2)+...JvCeF(CF), 
where al(cr)  is a priori a random effect with vari- 
ance Var ay,  assumed to be independent of the ef- 

fects for distinct f or cy. Then the covariance 
between the undercount rates for two domains is 
the sum of the variances of the random effects 
corresponding to the factors on which the do- 

_ ,  Var h i .  Thus, by enumer- mains agree, ~c.,_cj 
ating a plausible set of factors with relative im- 
portances in contributing to undercount, a ma- 
trix U* of a priori covariances of undercount rates 
may be constructed. This procedure requires no 
prior assumptions about the magnitude of the un- 
der/overcount or about which domains are likely to 
be under/overcounted, but only about the degrees 
of relationship between domains. 

The variance-covariance matrices Var b, Var C, 
and Cov(b, C) are assumed to be proportional to 
each other. This specification is plausible if the fac- 
tors that  make domains similar to each other with 
regard to Census undercount are like those which 
make domains similar to each other with regard to 
the bias of the DSE. 

C o n v e r t i n g  u n d e r / o v e r c o u n t  r a t e s  into 
population sha res :  If X* is a vector of un- 
der/overcount rates and T is the vector of approxi- 
mate true population shares for the same domains, 
then the population shares corresponding to X* 
are X** where X~* - (1 + X* )7~ / ~ j ( 1  + X~ )7) 
T / +  X~ 7} - ~ X~ 7), as long as X~ ~ 0. Therefore 
X** ~ ( I -  TI~)X *, where 1 is a vector of l 's. Fi- 
nally, the last component of X** may be dropped 
(to make the covariances nonsingular) by premul- 
tiplying by the matr ix I0 (the identity matr ix with 
the last row omitted). Then X ,~, I o ( I -  T I ' ) X * ;  
U - I o ( I -  T I ' ) U * ( I o ( I -  T I ' ) ) '  where U* = 
V a r X *  and U - V a r X .  

Sampling variance-covariance matrices for under- 
count rates, Vb* and lid* , may similarly be converted 
to the corresponding matrices Vb and Vd for popu- 
lation shares. 

2 E s t i m a t i o n  of popu la t ion  
shares 

In this section we develop various composite esti- 
mators of population shares. 

P u r e  s t r a t e g i e s .  First of all, of course, are the 
unadjusted census counts and the DSE (X = C 
and X = D). Each of the two pure strategies 
corresponding to these two estimates will have a 
risk that  is a function of the sampling distributions 
and the (unknown) biases of the census and DSE. 

Naive bias  c o r r e c t i o n .  If an estimate of the 
bias of the DSE is available, an unbiased estimate 
of the true population share may be obtained by 
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subtracting the estimated bias from the DSE esti- 
mate ( D -  b). If the bias estimates and DSE are 
uncorrelated with each other, the MSE of this es- 
t imate Xi will be vbi + Vdi. Since bias estimates 
have large variance (because evaluation samples are 
small), the variance of this estimator will be large. 

M i n i m u m - r i s k  c o m b i n a t i o n s .  Several strate- 
gies are based on choosing between or combining 
the census and DSE estimates so as to minimize 
the estimated risk of the estimator. The "Better" 
strategy chooses between the two by comparing 
estimates of the risk of each set of shares that  are 
functions of unbiased estimates of population pa- 
rameters. The calculation regards the biases C - T  
and b of the census and DSE as fixed but un- 
known quantities. (Thus, for inferential purposes 
these procedures use only the part of the model 
that  describes the sampling distributions of b, D.) 

The mean squared error (MSE) of the unad- 
justed census counts for domain i is (Ci - i /~)  2 and 
the MSE of the DSE is b 2 + Vdi, where Vdi is the 
sampling variance of the DSE for domain i (the i-th 
diagonal element of Vd). 

We may write 

E RD -- E ~ W i ( b  2 + V d i ) -  RD + ~ W i v b i  

E R c  - E ~ Wi((Ci - Di - bi) 2 - Vdi) 

= R c  + ~ Wivbi 

so that  R e  and RD may be compared by comparing 
/~c and /~D. Then the "Better" estimate is X - C 
if/~c < /~D, X -- D otherwise. This is the proposal 
of Spencer (1990). 

Rather than selecting C or D we may choose from 
a continuum of combinations of the two estimators 
of the form X~ - AC + (1 - A)D. The risk R~ - 
E - ( 1  - + ( 1  - o f  

the combined estimator may be estimated by R~ - 
Wi( ,k2(Ci-Di  )2+2)~(b(Ci-Di)-Vdi )+(b~ +vdi)) • 

Then E Tt~, - R~, + ~ Wivbi The estimated risk is 
minimized for 

Wi([~i(Ci-  D i ) -  Vdi) 
Wi(Ci - Di) 2 

The "Best" linear combination then is X~..  If 
Vdi = 0 for all i this reduces to the weighted regres- 
sion of the DSE bias on the difference between the 
Census and DSE estimates; positive Vdi increase )~ 
(reduce the weight given to the DSE) relative to 
the regression coefficient. (This procedure was pro- 
posed by Spencer (1980).) 

If A* < 0 or A* > 1 then X~. may not be as 
plausible or acceptable as when 0 < A* < 1, since 

it is more extreme than either of the estimates it is 
based on. (Nonetheless, under some circumstances 
it may be a sensible estimator, as when the biases 
of the census and DSE are in the same direction 
and the census bias always has larger magnitude. 
The data may provide evidence that  this is, in fact, 
the case.) We therefore also consider a best convex 
linear combination estimate ("Best01") which dif- 
fers from the best linear combination only in that  
A* is truncated to lie in the interval [0, 1]. 

(Note that  only C, D, b, and {Vdi}, but not the 
complete covariance matr ix Vd nor Vb, are required 
to calculate the "Better" and "Best" estimates.) 

Bayes  and  E m p i r i c a l  B a y e s  e s t i m a t e s .  
From the Bayesian point of view, the estimate 
which minimizes posterior MSE (and therefore the 
risk under the loss functions considered here) is the 
posterior mean vector. We now turn to estimators 
based on posterior mean calculations. 

First, consider posterior distributions conditional 
on the variance components (add,O'cd, O'c¢). To 
complete the model we must specify a prior distri- 
bution for the true population shares T. We will 
assume that  any prior information we may possess 
about the shares is negligible compared to the in- 
formation derived from the census and DSE, so the 
prior may be reasonably approximated by a uni- 
form prior on the space of shares summing to unity. 
(Equivalently, the prior is uniform on the space of 
shares of all but the last domain.) 

We may wish to calculate two posterior distribu- 
tions. The distribution conditional on C, D, b and 
the variance components makes use of all available 
data. The distribution conditional on C, D, and 
the variance components, but not on b, excludes 
the information from b except as it is used in esti- 
mation of variance components. Inference from the 
latter distribution might be appropriate to a sit- 
uation in which b is regarded as so unreliable that  
it should not be directly weighted into the esti- 
mates, but only used for the essentially evaluative 
function of estimating variance components. 

Inferences for T are by application of Bayes's 
Theorem to the uniform prior and the data distri- 
bution specified by Equations 2 and 3. Calculation 
of the posterior means given the variance compo- 
nents is straightforward by the usual formulae for 
the normal distribution. 

The remaining issue for the Bayes/Empirical 
Bayes approach is estimation of these variance 
components. It is not difficult to write down un- 
biased estimators of (Odd, O'cd, 0"~) by equating the 
expectations of certain quadratic forms to their ob- 
served values (see Appendix). Estimates obtained 
by fixing (O'dd, O'cd, O'cc ) at  these "Method of Mo- 
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ments" estimates are labelled "MM" estimates. 
However, the unbiased estimates of the variances 

may be negative and even if they are not, the es- 
t imated covariance matr ix  may not necessarily be 
positive definite. This phenomenon is common in 
variance components problems. The probability 
of its occurrence is high here since the number of 
domains used in the evaluation exercise, and there- 
fore the number of degrees of freedom, is small, and 
the sampling variances may be large. Maximum 
likelihood estimates may lie on the edge of the pa- 
rameter space, i.e. MLE variances ~dd, O'cc may be 
0 or the correlation red = &¢d/X/&dd~¢c may be 
+1. Substi tuting meaningless or implausible vari- 
ance estimates does not produce plausible results. 

Our preferred solution to this problem is to sam- 
ple from the posterior distribution of the vari- 
ance components and combine the estimated con- 
ditional posterior means T by averaging them to 
estimate an unconditional posterior mean. This 
fully Bayesian procedure has the following appeal- 
ing properties: (1) Each draw of the variance com- 
ponents is guaranteed to be valid in the sense of 
yielding a positive definite covariance matr ix for 
(b, C). (2) Prior beliefs about the components, for 
example that  the ratio rYdd/rYcc is likely to be near 
some predetermined value, can be incorporated 
into the distribution. (3) Although closed-form ex- 
pressions for the distributions are complex, draws 
from the posterior distributions may be obtained 
via Gibbs sampling. 

Results obtained by this procedure (representing, 
for each simulated data  set, the mean shares over 
a fixed number of draws from the posterior distri- 
bution of the variance components) are reported as 
"Hierarchical Bayes" ("HB") estimates. Two differ- 
ent prior distributions were considered for the vari- 

ance components: reparametrizing ( (rddrrcd rrcd)(r~c 

as two standard deviations and a correlation, ere = 
1/2 _1/2 

O'cc , O ' d  - -  Odd , r e d  - -  5rcd/~cbrd, then the priors 
0 0(1 2 0 2 are proportional to ¢r¢ - r e d  ) • (Bayes2:HB 

1 
a n d  Bayes3"HB), or alternatively ¢rcrr~(1 _ red)2 0.2 
(Bayes2:HB.2 and Bayes3:HB.2). 

3 S i m u l a t i o n s  

The performance of the various estimators of popu- 
lation shares described in Section 1.2 was evaluated 
by a series of simulations. For each set of simula- 
tion trials, values were selected for the following 
parameters: k (number of domains), T (true popu- 
lation shares), U* (covariance matr ix structure for 
undercount rates and DSE biases), rrcc, trod, and add 

(scale of variances and covariances of undercount 
and biases), Vd (sampling variances of the DSE), 
and Vb (posterior variances of differences between 
estimated and actual biases of DSE). The simula- 
tion conditions are chosen so that  on the average 
over all simulations, the mean squared error of the 
census and the DSE are equal, allowing us to fo- 
cus on the effectiveness of the other estimators in 
improving on both of the pure strategies. 

On each trial, values of census and DSE popula- 
tion shares C and D were drawn from the models 
in Section 1.2. The estimates described in Section 2 
were calculated, and for each estimate the loss func- 
tion described in Section 1.1 was calculated. Ten 
draws of the simulated populations were performed 
for each simulation condition. 

In some simulations, the structure of U was as- 
sumed to be known. In others, a different matrix 
V~t was assumed in fitting the models than the U* 
which generated the data, in order to determine 
sensitivity to misspecification of U. 

The Gibbs sampler for the hierarchical Bayes es- 
t imators was run for 1500 iterations and the first 
100 values were discarded. It was determined that  
the loss of efficiency at this number of iterations 
(relative to a very large number of iterations) did 
not affect the loss comparisons substantially. For 
the Empirical Bayes estimators using method-of- 
moments variance estimates, an ad hoc correction 
was used to force the variance estimates to be pos- 
itive definite when the method-of-moments esti- 
mates were not. 

The various estimators were compared by the fol- 
lowing measures: 

(1) Mean loss across the trials for each estimator, 
relative to the average of the mean loss for the Cen- 
sus and the DSE for the same simulation conditions 
(to facilitate a scale-free comparison). ("MEAN") 
(2)The number of simulation conditions (paramater 
values) on which the estimator had the smallest 
mean loss. ("DOMINATES") 

A number of estimators can be eliminated be- 
cause they make little or no improvement on C or 
are almost always dominated by another estimator, 
e.g. Best dominated by Best01. 

Estimator MEAN DOMINATES 
C 
D 
Best01 
D-b 
Bayes2:ttB 
Bayes3:HB 

0.980 0.013 
1.020 0.002 
0.525 0.104 
1.146 0.003 
0.493 0.275 
0.453 0.603 

Attention was focused on the Bayes2:HB, 
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Bayes3"HB and Best01 estimators, which were the 
only real competitors. Overall, the Bayes3 estima- 
tor had smaller loss umder the largest number of 
simulation conditions. Fit t ing a logistic regression 
model to discriminate those conditions under which 
Bayes3 outperformed its competitors, the following 
factors were found to be relevant: 

1. Bayes3 performed better relative to Bayes2 
and Best01 as k (the number of domains) be- 
came larger. 

. Bayes3 performed better as rcd, the model cor- 
relation between the biases of the DSE and 
the Census, became positive (i.e. when the 
DSE tended to underestimate the undercount 
in domains with large undercounts). Under 
this condition the correct estimate of the pop- 
ulation would lie outside the range between 
the census and DSE, so the Best01 estimator 
would be unable to approach the t ruth while 
the Bayes3 estimator best makes use of the bias 
estimates. 

3. The Bayes3 estimator improved relative to the 
Bayes2 estimator as the fraction of DSE vari- 
ance due to sampling (rather than model vari- 
ance) increased. 

4. The Bayes3 estimator did worse relative to the 
the other two as the total error of the DSE 
increased relative to that  of the census. 

4 R e s u l t s  w i t h  1990 C e n s u s  
and  P E S  d a t a  

In this section, the various methods are applied to 
data from the 1990 Census and PES and the evalua- 
tion programs following the PES. In all of the anal- 
yses of this section, the domains of interest are the 
thirteen Evaluation Poststrata  (EPS), described in 
the Undercount Steering Committee report. 

The following data  were available for analysis 
from the Census Bureau report on the total error 
analysis: census estimates of population for each 
EPS; DSE estimates of population for each EPS; 
sampling SD of each DSE estimate; estimated bias 
of DSE by EPS, separated by source of bias, and 
estimated total bias (obtained by simulation); esti- 
mated SD of bias estimates by EPS, separated by 
source of bias, and combined by simulation. 

Covariances of DSEs and biases in different 
EPS's were not available. DSE's in different EPS's 
were assumed to be uncorrelated; this is nearly but 

not exactly true because of the overlap of sam- 
ple blocks for Black/Hispanic and Other within the 
same region and urbanicity. 

The model variance matr ix  U was assumed to be 
of the form ruUo + ( 1 - r u ) I ,  where U0 - {uij} 
and uij - (number of factors for which EPS i and 
j have a common value)/3. This corresponds to 
a model in which ru is the fraction of the variance 
across EPS's of the biases of Census and DSE which 
is explained by a model in which the three factors 
have a priori equal explanatory power, and the re- 
maining variance is due to independent model error 
in each EPS. 

The variance of b was divided into five com- 
ponents" "process" variance vp associated with 
bias due to matching, address and E-sample error 
and PES fabrications, model variance Vu associ- 
ated with estimation of correlation bias, imputat ion 
variance vl due to imputat ion of individual unre- 
solved cases, imputat ion variance VB due to estima- 
tion of the parameters of the imputat ion model, and 
imputat ion variance VnA due to uncertainty among 
"reasonable alternatives" in the specification of the 
imputat ion model. The inter-EPS correlation ma- 
trix of each of these error sources was assumed to be 
of the form rcUo + (1 - re)I ,  c - P ,  I, B, RA, where 
U0 is the similarity matr ix defined above, rc may 
be interpreted as the fraction of the corresponding 
variance component which is explained by the three 
factors which define the EPS. Then for any selected 
values {re}, V~ -- ~c=P,I,B,RA diag(vc)l /2(rcUo 4- 

(1 - r~)I)diag(v~) ~/2. 
The first part of this analysis assumes fixed val- 

ues of {re}, henceforth referred to as the "pre- 
ferred" values, and compares the various estimators 
of population shares. In principal, all of these val- 
ues except ru could be estimated using data very 
similar to those developed in the PES evaluation 
programs, but this analysis has not yet been car- 
ried out by the Census Bureau, and may not be en- 
tirely feasible with existing data, given limitations 
of sample size and design. In the second part of the 
analysis, sensitivity to a range of plausible values of 
these parameters is tested. Since the estimates of 
correlation bias were regarded as somewhat contro- 
versial, sensitivity to omission of this component of 
error is also tested. An alternative specification of 
model correlation U is explored as well. 

4 . 1  Comparison of est imators  with 
preferred pa ramete r  values 

We assumed r p  - -  .1 because the process er- 
ror estimates are nearly independent across EPS's; 
rRA -- .6 because the choice of alternatives would 
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have similar effects on adjustment factors in ev- 
ery EPS; rB - "  .2 because some but not all of the 
parameters in the imputation model are common 
between EPS; r1 = 0 since each person is imputed 
independently of all others, given the parameters 
and model specification; and r M  - - - -  .5 because var- 
ious assumptions about correlation bias might be 
expected to have generally similar effects on corre- 
lation bias estimates in every EPS. We somewhat 
arbitrarily assume ru = .5, i.e. that  half the model 
variance between EPS's is explained by the three- 
factor model. (With a more complicated model, 
not explored here, ru could also be estimated from 
the data.) 

Five estimators of undercount (not including the 
unadjusted census, adjustment factor = 1) were 
compared (see table). 

The most striking feature of the estimates is the 
close agreement between the different estimators for 
each EPS. In every EPS (with the possible excep- 
tion of EPS 6, 7 and 12 where the DSE relative ad- 
justment factor is very close to 1), every estimate 
is closer to the DSE than to the Census. By defi- 
nition, the Best01 estimates are shrunk toward the 
census by a constant factor; the estimated value of 
,~ is 0.123 so the shrinkage factor is 1 -  ,~ = 0.877. 
The amount of shrinkage under the Empirical Bayes 
models varies from EPS to EPS. 

The Empirical Bayes estimates are generally 
closer to D than to D -  b. This suggests that the 
model fits did not find much evidence for the exis- 
tence of substantial bias in the DSE. This conclu- 
sion is supported from classical arguments, since 
the test statistic for non-zero biases (under inde- 
pendence) ~ ( b i a s / S E )  2, nominally X 2 with 13 de- 
grees of freedom, evaluates to 20.53 (p = 8.3%). 
The Bayes3 estimators generally gave more weight 
to the bias estimates than did the Bayes2 estima- 
tors. The choice of prior (first versus second set of 
Empirical Bayes estimators) appeared to have very 
little effect on the estimates. 

4 . 2  C o m p a r i s o n  o f  a l t e r n a t i v e  p a -  

r a m e t e r  a s s u m p t i o n s  

There are two reasons for examining the sensitivity 
of estimates to the choice of parameter values. Sev- 
eral parameters (rp, rRA, rB, the numerical value 
of RM) describe quantities that  are potentially es- 
timable from existing or obtainable data. While it 

is interesting to know how much uncertainty our 
ignorance of these quantities introduces into the 
current estimates, this does not reflect fundamen- 
tally on the proposed methods, and the contribu- 
tion of the individual parameters is not of great 
importance. Another set of parameters (ru, the 
specification of U0, and the choice of inclusion or 
exclusion of correlation bias in the bias estimates) 
represent modeling assumptions that  may not be 
directly verifiable from the type of studies that have 
been carried out. 

Potentially estimable parameters. Varying as- 
sumptions about the estimable but unknown pa- 
rameters have effects that  are small compared to 
the effects of the modeling parameters, the differ- 
ences between the EPS's, or the standard errors of 
the estimates. 

Modeling assumptions. The point estimates are 
more sensitive to the modeling assumptions than to 
the potentially estimable covariances. However, the 
range of estimates for each EPS is still small com- 
pared to the standard errors or differences between 
EPS's. 

The weight rv appears to have a systematic ef- 
fect on the estimates, especially when race is given 
high weight in the model. Taking account of corre- 
lation bias appears to have an effect in a few EPS's, 
particularly EPS 1,2, 5 and 11, where ignoring cor- 
relation bias pulls the adjustment factors slightly 
toward 1. 

Overall, however, the estimates are remarkably 
insensitive to the choice of ass.umptions as well as 
to the choice of estimation procedure. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

D D-b 
1.046 1.054 
0.972 0.971 
1.033 1.028 
0.979 0.974 
1.035 1.021 
0.998 0.995 
0.997 1.002 
1 018 1.034 
0.992 0.991 
0.983 0.983 
1.039 1.047 
1.000 1.024 
0.997 0.991 

Estimator 
Bayes2 Bayes3 Best01 
1.045 
0.974 
1.022 
0.985 
1.035 
0.998 
0.997 
1.019 
0.991 
0.986 
1.039 
1.000 
0.998 

1.047 
0.974 
1.022 
0.985 
1.035 
0.998 
0.997 
1.027 
0.992 
0.986 
1.041 
1.001 
0.994 

1.041 
0.975 
1.028 
0.982 
1.031 
0.999 
0.998 
1.016 
0.993 
0.985 
1.035 
1.000 
0.998 
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