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1. INTRODUCTION k -  L -  p+ l .  Thus, the Wald statistic 
X W =-01V-10 can have very low power (Korn 

Complex surveys usually involve and Graubard 1990). 
multistage cluster sampling where the selection 
of primary sampling units (PSU's) is within Alternative test procedures the Wald 
well-defined s trata  at the first stage of sampling, test, along with their asymptotic properties, are 
The standard error of an estimator can be presented in the next section of this paper. 
computed from the variability of the estimator These procedures are based upon the work of 
using data  from different subsets of the sampled Rao and Scott (1981) and Fay (1985). An 
PSU's. For parameters involving nonlinear application to testing whether sampling weights 
combinations of population means, methods are informative (i.e., reduce bias) in a multiple 
including Taylor series linearization, the linear regression analysis is given in the third 
jackknife, balanced half sample replication, and section. In the last section we discuss related 
the bootstrap have been developed to estimate work. 
standard errors (Efron 1982; Wolter 1985; Rao 
and Wu 1985) . The beauty of these replication 2. TEST  STATISTICS AND THEIR 
methods is that  they accommodate quite ASYMPTOTIC P R O P E R T I E S  
complicated sampling and estimation at the 
second and further stages of sampling. 2.1 Framework for Hypothesis Testing and 

Construction of Test Statistics 
In this paper, we are interested in 

testing hypotheses about an infinite population Let 0 be a p-dimensional vector of 
parameter 0 -  g(p) where # is a mean vector, parameters that  is equal to zero under the null 
Following Krewski and Rao (1981), we do not hypothesis, i.e., Ho: 0 - 0. We assume that  0 
specify the infinite population. Instead, it is can be expressed as a (nonlinear)function of a q- 
assumed that  there is sequence of increasing dimensional mean vector #, i.e., 0 - g(p). 
finite populations whose means converge to #. Additionally, we assume the existence of a 
Another aspect of the inferential approach of quadratic test statistic that  would be utilized if 
this paper is that we utilize replicated estimates we had a simple random sample (srs) of size n 
of standard errors instead of model-based from the population namely, nT(Ysrs) - n O~ s r s  

estimates for hypothesis testing. It can be M(Ysrs) 0sr s , where Ysrs is the sample mean, 
difficult to model the complex variance structure 0srs - g(Ysrs) and M(Ysrs) is a pxp matrix. 
from data  that  comes from a multistage For example, nT could be a Wald statistic for 
stratified cluster sample, and even if modeled, testing a vector of regression coefficients equaling 
the model-based variances can be sensitive to zero. In this case, # would equal the vector of 
deviations from model assumptions (Skinner expected values of the dependent variable, the 
1989). Replicated standard errors have the independent variables, and their cross products. 
advantage of requiring fewer model assumptions. For a complicated sample design, the weighted 
However, they can be more unstable than model- mean y incorporating the sampling weights will 
based estimates when there are few PSU's. This be a (design) unbiased estimator of tile finite 
can be a serious problem with inference for a population mean Y. This suggests calculating 
multidimensional parameter  0 when the number nT(y)  - n O' M ( y ) O ,  where O - g(y). Under 
of sampled PSU's is small (Skinner 1989). For the null hypothesis we would expect nT(y)  to be 
example, consider testing a p-dimensional vector small but with a complicated distribution. 
of regression coefficients equaling zero in a Under this framework, the asymptotic null 
sampling design with a total of k sampled PSU's distribution of nT(y)  is given by: 
from L strata. Although we can estimate the 
covariance (V) of the estimated regression Proposition 1. Under the null hypothesis, as 
coefficients 0 using a replication method, the k---+cx~, and under conditions C1-C8 given in 

^ 

degrees of freedom associated with V is only Graubard (1991) 
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(i) k 1/2 (y - #) D_~ N(0, r) 

(ii) M(y) P M(#) 

P 
(iii) n T ( y ) D  E $i X~i) 

1=1 

O 
where F is a covariance matrix, the X~;~ are i.i.d. 
chi-squared random variables with one~'Jdegree of 
freedom, and )~i are the eigenvalues of cEM(p) 
where n/k ~ c and E = q(p)FG'(p)  with 
G(#) the pxq matrix [0g(x)/0x] ~-~t" 

Proof of Proposition 1. Parts (i) and (ii) follow 
from results in Krewski and Rao (1981) and a 
further assumption (C5) about the rate of 
convergence of Y to p. (iii) follows from an 
extension of well-known results concerning 
quadratic forms (Johnson and Kotz 1970, pp. 
150-151); see Graubard (1991) for details. 

The $i' s are referred to as generalized design 
effects (Rao and Scott 1981). 

2.2 Rao and Scott's Test Procedures 

The approach Rao and Scott (1981) take 
to utilizing nT(y) for testing is based on the 
following result: 

Proposition 2 (Rao-Scott). Let A i be the 
eigenvalues of cEM(#) as in Proposition 1, and 
let Ai be the eigenvalues of (n/k)EM(y), where 
is a consistent estimate of E. Under the null 
hypothesis, as k--~oc, and under conditions C1- 
C8 given in Graubard (1991) 

P 
(i) n T ( y ) / ~  D E (Ai/~)X~i) 

i=1 

D (ii) nT(y) /  [~ (1+~2)]--~ 

P 
{ Ai/~(l+a2)] } X~i) 

i=l  

p p 
where -~ -- pi E ~i and £2 _ 1 E (~i _-~)2/(-~2), 

1=1 i=1 

and ~ and a 2 are analogously defined using the 
~. ~S. 

1 

Proof of Proposition 2. Parts (i) and (ii)follow 
from (iii) of Prop. 1 and the consistency of E. 

When the A i - A  and in particular when the 
$ i - 1 ,  the right hand sides of (i) and (ii) in 
Proposition 2 reduce to chi-squared distributions 
with p degrees of freedom. 

Rao and Scott (1981) give two 
procedures, denoted here by RS1 and RS2, which 
utilize nT(y) for testing the null hypothesis. 
The rejection regions for level c~ tests are 

RSI" nT(y)/-~ > X 2, l-or 

and 

RS2 " nT(y) /  [~ (1+~2)] > X 2 
p/(1 + ~2), 1-a 

where X2wl a is the 1 - a  th upper tail of a 
(central) clai~squared distribution with w degrees 
of freedom. RS1 uses an average design effect 
correction to approximate the asymptotic 
distribution of nT(y) whereas RS2 uses a 
Satterthwaite correction to approximate it. 

2.3 Fay's Jackknife Procedure and Modifications 

Following the approach of Fay (1985), 
consider the test statistic 

X = nT(y ) - (~  
1/2 v1 

where 0 is an estimate of the expected value of 
nT(y) under the null hypothesis, and Q 1 is an 
estimate of the variance of nT(y). After a 
square root transformation, we have 

[ nT(y) ]1 /2_  41/2 

Xj1 - { 91 /  [4 nT(y)] }1/2 

using the delta method. (Note that "Vl here is 
half the corresponding quantity defined in Fay 
(1985).) The estimators 0 and V1 depend upon 
the replication method (i.e., balanced half- 
sample repeated replication (BRR)or  jackknife) 
employed. We describe an approach which uses 
BRR for sample designs consisting of two PSU's 
per stratum. (The use of the jackknife method 
of replication for computing C and V1 is 
described elsewhere (Graubard 1991)). Let ~(i,1) 
and ~(i,2) be the half-sample and complement 
half-sample replicate estimates of Y, respectively 
( i.e., ~(i,1) + ~(i,2) = 2y). We can write 
estimators for the mean and variance of nT(y) 
as follows: 
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r 2 
0 - n / ( 2 d 2 r ) E  E [ T ( y + q ( i d ) ) - T ( y )  ] 

i=1 j - 1  Note that 91 is not a consistent estimator of the 
and asymptotic variance of nT(y) but is 

r 2 asymptotically unbiased. As a result of 
91 - n 2 / ( 4 d 2 r ) ~  y~  [ T(y + q(id))_ T ( y ) ] 2 ,  Proposition 3, when all the A i - A, 

i = l j - 1  
[(Xj  1/~-2)+ q-~ 12 D X2 " 

where q(id) _ d(E(iJ) _ y), r is the number of 
replicates and d is a small constant (following Following Fay (1985), we use this result, even 
Fay (1985)^ it is chosen to be .05). When the though the Ai are not all equal, to 
estimator C is negative it is set to zero (Fay obtain the test procedure FJ1 which rejects the 
1985) for computing the test statistic Xj1 (also null hypothesis when 

for Xj2 definedto thelatter)" The statistic Xjltest FJI" ~ [ " /  / ] 
corresponds jackknife chi-squared Xj1 > L ( x2, 1-c~ ) 1 2  _ pl .2  J. 
statistic of Fay (1985) for testing independence 
with categorical data using the Pearson chi- Note that for Xj1 to be useful, (1) C should 
squared statistic and related test statistics, remain close to its expected value under the null 

In the next proposition, the asymptotic hypothesis even under alternative hypotheses, 
properties of C and V1 are given as d--+0 (see and (2) V1/ nT(y) should not be very variable. 

These considerations lead to other possible 
Graubard, 1991, for further details), choices for (~ and V1 which will now be 

Proposition 3 (Fay). Under the null hypothesis 
as k--+c¢ and under conditions C1-C9 given in 
Graubard (1991) 

P 
(i) a T ( y ) D  E Ai X~i) 

p i - 1  
(ii) C P ~ I i 

i=1 

P 
(iii) 9 1 D 2 . ~  $i 2X~i) 

l=l  

D 
(iv) Xj 1 --4 

( ~  Aix~i ) - (~P~ A i 
i=l  i=l  

[ p 1 (~i=l A2 X ~ i ) ) / ( 2 i ~ l "  Ai X~i) 1 / 2  

discussed. 

Another estimator for the variance of T 
which is commonly used to estimate the variance 
of nonlinear statistics (Wolter 1985, Ch. 3.4) is 

r 
V2 - ( 1 / 8 r ) E  [ nW(~(i'l)) - nW(~(i'2))]2. 

i=l  

Substituting Q 2 for V1 in Xj1 , we obtain the 
test statistic 

X j2 = 
[ nT(y) ]1 /2_  01/2 

{92/  [4 nT(y)] }1/2 " 

Under the null hypothesis and under the same 
set of conditions as stated in Proposition 3, Q 2 
has the same limiting distribution with the same 
chi-squared random variables as on the right 
hand side of Proposition 3(iii) (Korn and 
Graubard in press). Therefore, Xj2 has the 
same limiting distribution as Xj1. We will refer 
to the test procedure FJ2 which rejects the null 

where the convergence in (i) and (ii i)is joint hypothesis when 
c°nvergence" The Ai' i - 1' "'" ' P are the [ 2 ] 
eigenvalues of cEM(p) where E is as given in F J 2 : X j 2  > q-2 ( X ,  1 - a  )1/2 _ pl /2  . 
Proposition 1. 

It should be noted that there exist consistent 
Proof of Proposition 3. Part ( i) is  Proposition estimators of the variance of nT(y), e.g., the 
l(iii). (ii) and (iii)follow from asymptotic usual BRR variance that utilizes only the 
arguments given in Graubard (1991). (iv) replicates and not the complement replicates. 
follows from (i)-(iii). Such consistent estimators are not as correlated 
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with nT(y) as are 91 and 92, making them less dietary calories). NHANES II is a national 
useful, household survey which used a stratified 

We can substitute p~, a consistent multistage probability sample. We consider the 
problem of testing whether in a regression 

estimate of ~ Ai, for (~ in Xj2 to obtain the test 
statistic 

Xj3 - 
[ nT(y) ]1 /2  _ ( p~ )1/2 

{92/  [4 nT(y)] }1/2 " 

Thus, Xj3 has the same limiting distribution as 
Xj1 and Xj2. We will refer to the test 
procedure FJ3 which rejects when 

FJ3" Xj3 > 4 ( X 2 p ,  l _ a ) 1 / 2  1 /2J  - p 

2.4 The Wald Procedure 

analysis the weighted least squares estimate 
(/)w) and the ordinary least squares estimate (1)) 
are estimating the same population quantity. 
Loosely speaking, this is a test of whether the 
weights "matter" in terms of bias reduction. A 
Wald statistic can be constructed, 
k(flw-fl)'E-l(flw-fl),- - - - - where now k-lE is a 
BRR estimate of the covariance of /)w-C). 
Fuller (1984) suggests a similar Wald statistic 
based on a linear transformation o f / ) w -  ¢), and 
using a replicated Taylor series linearization 
estimate of the covariance of this linear 
transformation. These tests may lack power 
when there are limited degrees of freedom for the 
covariance estimation. We consider all 30 

One of the earliest methods used for regression coefficients (including the intercept)so 
testing H o with complex survey data is the Wald that fl and /)w are both vectors of length 30. 
procedure (WP) (Koch, Freeman, and Freeman The Wald statistic is X W - 813.0 with 30 and 2 
1975). It utilizes the Wald test statistic degrees of freedom, yielding a p-value =0.43. 

X w - k O ' ~ - l ~ ,  

where k-lE is a consistent estimator of the 
covariance matrix of 0, e.g., one obtained using 
a replicated variance estimator. WP rejects the 
null hypothesis when 

WP" ( k - L - p + l ) x  w 
( k -  L)p > 

F p, ( k - L - p + l ) ,  1 - c ~ '  

where F u v 1 is the 1 - a u p p e r t a i l o f a F -  
distribution with u and v degrees of freedom; see 
Thomas and Rao (1987) and Korn and 
Graubard (1990). It should be noted that the 
RS procedures reduce to WP for one dimension 
and the FJ procedures do not. 

3. AN APPLICATION TO TESTING THE 
INFORMATIVENESS OF SAMPLING 
WEIGHTS FOR MULTIPLE REGRESSION 

An alternative approach to testing the 
effect of the sample weights is suggested by 
DuMouchel and Duncan (1983) which has the 
form n(/) w - / ) ) ' V - l ( / )  w - f l ) ,  where ~r is a 
model-based estimate of the covariance of 
/ ) w - / )  under simple random sampling. This 
testing procedure did not allow for cluster 
sampling. We show here how the DuMouchel 
and Duncan (1983) test statistic can be 
replicated so that its use can be extended to 
multistage sampling. In our framework, the 
population parameter 0 = g(#) is the difference 
between the vector of population regression 
coefficients and the population regression 
coefficients estimated by the unweighted 
regression (OLS). We are interested in testing 
the null hypothesis H0:0 = 0. First, we define 
the vector of finite population means 

V= 1 ( ~ w j - l u j 2 ,  Z u j x j i l ,  ~ w j - l u j X j i l  ' 

Z w j u j x j i  1' ZXj i lX j  "l 2' Y~w'-lX'ilXji 2 j  J , and 
In this application, we utilize a multiple \ 

• , ° m , . . . .  ) , regression analysis of systolic blood pressure on Zwjx j i lX j l  2' i l '  i2 1 30 
25 dietary and blood chemistry variables in a 

] 

sample of 2377 white males from the second where uj , (Xjl , ..., x..,,] and w. are the values 14u: . j 
National Health and Nutrition Examination of the dependent, independent and sample 
Survey (NHANES II) (McDowell, Engel, Massey, weight for the jth individual in the target finite 
and Mauer 1981) controlling for four background population with -- 1. Next, we define 

- _ i 1 1 I 1 variables (age, age 2, body mass index, and total g ( Y ) -  (X 'X)-Ix 'u  xjl (X W- X)- X W- V 
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where X and U are as in the first example, and discussed in this paper: the Wald procedure 
W is the diagonal matrix whose jth element on (WP) and five procedures which utilize nT(y) 
the diagonal (wj) is the sample weight for the and replication methods to approximate the 
jth individual m the finite population. The distribution of nT(y). Another procedure based 
quadratic test statistic to be replicated is on the Bonferroni adjusted t-statistic consists of 
n T ( y ) -  ng(y) 'M(y)g(y) where y is the taking the maximum of the absolute value of p 
weighted estimate of Y and M(y) is obtained by univariate replicated test statistics and 
substi tut ingy for Y in comparing it to the a/p cut-off from a t- 

M(V/) -1 - [  (X' X)-I (x  ' W X) (X' X) -1 

- ( X ' W  -1 X) -1]  ~r 2, 
with 

a2 - UIW-1U _ UIW -1 X(XIw- lx ) - lx Iw-1U 

- g ( ? ) '  [ (X'X) -1 (X'WX)(X'X) -1 

- (X'W- lx)-  1]g(V(). 

distribution with degrees of freedom equal to 
the number of sampled PSU's (k) minus the 
number of strata (Korn and Graubard 1990). 
Each replicated t-test is formed by dividing a 
different component of/9, i.e., 0i, by its design- 
based standard error estimate. The Bonferrroni 
procedure can have better power than the WP 
when only a few of the components of 0 are 
different from zero and the dimension of /9 is 
large relative to k. Unlike the procedures 

With this notation ( n - 2 p ) T ( y )  is precisely p discussed in this paper, one potential drawback 
times the DuMouchel-Duncan test statistic, of the Bonferroni procedure is that it is not 
(For our example, (n -2p)T(y)=25 .28 .  Ignoring invariant to linear transformations of the data. 
the clustered sample design and comparing the For example, suppose we are testing 25 
DuMouchel-Duncan test statistic to a F30 2317' parameters for which the first five correspond to 
the p-value is 0.71.). Using the BRR estin~ate of dummy variables of a single categorical variable 
the covariance of f l w - f l ,  we compute the 30 with six categories. The results of the 
eigenvalues of [ (n -2p) /k ]~M(y) .  These Bonferroni procedure depend on how the dummy 
eigenvalues range from .0021 to 7.85 with a variables are created. A reasonable modified 
mean of A -  1.05, and a coefficient of variation Bonferroni procedure would be to use any of the 
&-1 .46 .  Using the Rao-Scott procedure (RS2), procedures discussed here to test the first five 
we compare 7.65 to a chi-squared distribution variables at the a/21 level, and then use 
with 9.6 degrees of freedom. The p-value is replicated t-tests at the a/21 level for the last 20 
0.63. Using the Fay procedure (FJ1), we variables. 

^ 

replicate with d=.05 and find C - 0 . 8 2 0  and Other possible procedurcs intended 
V1 - 0.116. The statistic Xj1 - .096, and specifically for multiple linear regression 
[ (X31/~2)+ 3 ~  ] 2  30.75, which can be applications have been described by Wu ttolt 
compared to a chi-squared distribution with 30 
degrees of freedom. The p-value is 0.43. (For 
test procedures FJ2 and FJ3, ~r 2 -  139.69, 
Xj2--0.059 and X j 3 = - 0 . 4 9 7  , and the p-values 
are 0.44 and 0.66, respectively.) These p-values 
suggest that there is not strong evidence that the 
OLS analysis is different from the design-based 
analysis (i.e., the population parameter t9 is not 
different from zero). This inference is useful 
because there can be large losses in efficiency if a 
weighted analysis of survey data is performed 
when the weights are unimportant (Korn and 
Graubard, 1991). 

4. DISCUSSION 

Six procedures for simultaneously testing 
the null hypothesis that a parameter vector /9 is 
zero with complex survey data have been 

and Holmes (1988). They propose modified F- 
tests in which the modifications take account of 
intra-cluster correlation of the observations from 
two-stage cluster samples. Their test procedures 
are asymptotically equivalent to the RS1 
procedure when there is a common intra-cluster 
correlation coefficient among the residuals. 
Their procedures do not apply to more complex 
sampling schemes in which there are differential 
sampling weights or more than two stages. 
Earlier work on the effect of two-stage cluster 
sampling on OLS regression analysis has been 
done by Scott and Holt (1982). 

In Graubard (1991), simulations are 
conducted for simultaneously testing vectors of 
2, 14 and 25 means and multiple regression 
coefficients. The results are presented for sample 
designs of 16, 32 and 64 strata and under null 
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and alternative hypotheses. It is based on these Linearization, Jackknife and Balanced 
simulation results that we make the following Repeated Replication Methods for Stratified 
recommendations concerning the choice of Samples," Annals of Statistics. 
testing procedure: 1)choose the WP when the Korn, n. L., and Graubard, B. I. (1991), 
number of degrees of freedom for covariance "Epidemiologic Studies Utilizing Surveys: 
estimation is large relative to the number of Accounting for the Sampling Design," 
dimensions of /9 and otherwise, 2) use FJ2 for American Journal of Public Health, 81, 
testing means and RS2 for testing regression 1163-1173. 
coefficients. Additionally, in this latter case Krewski, D., and J. N. K. Rao (1981), "Inference 
consider the Bonferroni procedure when it is from Stratified Samples: Properties of the 
thought that only a few of the components of/9 Linearization, Jackknife and Repeated 
are different from zero. Recommendation (2) Replication Methods," Annals of Statistics, 
should be viewed as tentative; further research 9, 1010-1019. 
will hopefully define a more generally applicable McDowell, A., Engel, A., Massey, J. T., and 
test statistic. Mauer, K. (1981), Plan and Operation of the 
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