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1. Introduction 
A longstanding question in making inferences 

from unequal probability samples is whether to 
use an unweighted or other model-based 
estimator, say Zrn, or whether to use an 
approximately unbiased estimator Zo that uses 
sampling weights reflecting the unequal selection 
probabilities. (Moments are defined with respect 
to the sampling design unless otherwise noted.) 
An unweighted estimator of a population mean 
will often have smaller variance than a weighted 
estimator but it will have bias proportional to the 
correlation between the characteristic of interest 
and the sample weights (Rao 1966). For many 
sampling strategies, the variances of Zm and Z u 
alike decrease to zero as the sample size 
increases, but although the bias of Z u is zero or 
approaches zero the bias of Zm does not. In 
such cases, for sufficiently large samples, Zo will 
have smaller mean square error. On the other 
hand, for small samples Zm may have a smaller 
mean square error (Cochran 1977, p.296-297). 
If one could know the mean square errors of Zm 
and Z u one could easily choose the optimal one. 
Fortunately, it is possible to use the sample itself 
to estimate the mean square errors, as 
DuMouchel and Duncan (1983) proposed in a 
different context. 

DuMouchel and Duncan were concerned with 
estimation of a regression equation and showed 
that if the assumptions about the error terms in a 
linear regression model were appropriate for the 
population from which the sample was drawn, 
then the regression coefficients could be 
estimated consistently without sample weights. 
They proposed testing a null hypothesis that the 
error terms in the model were uncorrelated with 
the sample weights. Large empirical correlations 
were grounds for rejecting the null hypothesis 
and hence for disbelieving that the regression 
model was correctly specified. Taking an analytic 
approach, DuMouchel and Duncan were only 
interested in estimating the regression 
coefficients if the model was correctly specified; 
faced with evidence of misspecification they 
would try to improve the model specification. 

In this paper we take a descriptive approach of 
trying to estimate the population mean, whether 
or not a particular superpopulation model "holds" 
or is correctly specified. Thus, we may recast the 
DuMoucheI-Duncan procedure as a test-based 
estimator that equals Zu if the empirical 
correlation between the weights and the variable 
of interest is large and that equals Zrn otherwise. 
For many sampling problems, the DuMouchel- 
Duncan estimator has a smaller mean square 
error than either Zm or Z u. However, the 
DuMoucheI-Duncan procedure is not continuous, 
in the sense that a small change in the data can 
shift the estimator from Zm to Z u or conversely. 
We derive a continuously weighted average AZ u 
+ (1 - A)Zm with A chosen to minimize mean 
square error. 

Under rather general conditions, as the sample 
size gets large the bias can overwhelm the 
variance and so A tends to 1. Consequently, the 
estimator converges to Z~ and, under general 
conditions, is consistent. This property is not 
shared by the alternative approaches to 
modifications of sample weighting as proposed by 
Rizzo (1990) and Stokes (-1990); see section 5. 
In practice the optimal value of A is not known 
but must be estimated from the data, as 
discussed below. 

2. General Properties of the Estimator 
Let Zo be an unbiased estimator with variance 

V(Zo) = Vu and let Zrn be an estimator with bias 
B(Zm) = Bm and variance V(Zm) = Vm. Let C be 
the covariance between Z u and Zm. Define 
(2.1) A = A J ( A  u+Am) if Am >0  

= 1 if Au < 0 
= 0 otherwise 

with Am = Vm + Bn~ 2- C and A u = V u- C. The 
following lemma shows that Z A defined by Z A = 
AZ u + (1 - A)Zm has smaller bias than Zm, smaller 
variance than Zo, and smaller mean square error 
(MSE) than Zm or Zo. 
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Lemma2.1 I fA u > 0 t h e n  
(i) IB(ZA)I <-Ig(Zm)l 
(ii) MSE(ZA)_< MSE(Zm) 
(iii) MSE(ZA)_< MSE(Zu) 
(iv) V(ZA) _< V(Zu) 
with strict inequality if 0 < A < 1. 
The proof is given in the appendix. 

The mean square error of ZA is 
MSE(ZA) = A~(Vu) + 2A(1 - A)C + (1 - A)2MSEm . 

The estimator ZA depends on quantities not 
usually known: V u, Vm, Brn ~, and C. A simple 
approach in practice is to estimate A by using 
unbiased estimators of these quantities. 
Thus, let a m = MSE m -~., and au = ~/u- 

A A 
where MSEm = Vm + and 

^ 2 ^ ^ . (2.2) B m =(Z  u-Zm) 2 - V  u-Vm+2~_, 

We define an estimator of A, 
a = min{(am/(am + au), 1} if am>_0 and am+au>0 

= 0 otherwise. 
We now define the two-stage estimator Z a by 

(2.3) Z a -- aZ u + (1 - a)Z m. 

3. Estimation of the Mean in PPS Sampling 
As an application of the preceding results, we 

consider estimation of the population mean from 
an unequal probability sample. 

Under PPS with-replacement sampfing 
(PPSWR) unit i has probability P~ > 0 of being 
selected in each of n independent draws, T_,~__~P i 
= 1. The Hansen-Hurwitz (1943) estimator 

9HH = Y-'n=ly,/(Nnp,), 
where the y~'s and p~'s are the values 
corresponding to the sampled units, is unbiased 
for this sampling design and has variance 
(Cochran, 1977, p.252) 

VD(YHH)  = ~i=lN pi(Yi/(NPi ) _ ~()2/n 
where the Y~ are the population values. 

An alternative to the exact design-unbiased 
estimator is the =-inverse estimator 

• _ n n 1/Pi ) (3 1) YPI ( ~ i = l Y i / P i ) / ( 7 - ' i = l  , 
which is asymptotically design-unbiased 
(S~rndal,1980). 

Model-dependent estimators are motivated by 
assuming various superpopulation models. The 
general regression model, ~, specifies that 
Y~,-"',YN are independently distributed and 

E~(Y,IXI...XN) = ILL + PXi, 
V~(YilX~...XN) = ~2v(Xi) (i = 1 , . . . . ,N ) ,  

where ILL, 13 and o'2 are fixed but unknown, v(.) is 
a known function and X~ are fixed positive 
numbers that are known for the sampled units. 
We assume that v(z) = z g where g is known. The 
population values, Yj,...YN, are assumed to be a 
realization of Y I,....,YN. 

Brewer (1963) and Royall (1970) have shown 
that under model ~ the best linear unbiased (~- 
BLU) estimator of the population mean (i.e., 
minimum variance among all linear unbiased 
estimators) is 

Ym = ,X(T--,~_-lw,y,xi)/(T-.7_-,wix, 2) 
with w i = 1/v(xi). Table 1 shows that, for certain 
variance functions v, the ~-BLU estimator 
assumes a simple form, such as the sample 
mean fy, the regression estimator £reg = 
X(T_.,~=lYiXi)/(T_.,~=lxi2), the ratio estimator, 9R = 

= T2 , (Y/Xi)/n, which equals X(T_,~ ,y,)/( ,=ix,) OrYu=XY_,~= 1 
the (design-unbiased) Hansen-Hurwitz estimator 
fJHH if X~ o~ p~ and the sample is PPSWR. The 
ratio of the ~-expected MSEs of the two 
estimators Ym and YHH is 7 + V~,(B(Ym)/E~V(YHH), 
with 7 = E~,V(Yrn)/E~V(Y'HH). 

Table 1. Special Cases of the General 
Regression Model, 

model specification 
model 
name g !~ 13 

avera.qe-variance ratios 
BLUE E~V(Ym)/ E~V(YHH)/ 
Ym E~V(gHH) E~V(yp,) 

(~a 0 0 0 

~b 0 > 0  0 
~c 0 0 > 0  
~,~ 1 0 0 
(~e 2 0 0 

9 <_1 >1 
9 _<1 >1 
Yreg _< or > 1 _< or > 1 
YR _<or> 1 _< 1 
fJu =1 <1 

When I~ = 13 = 0 and v(.) is constant, E~VD(gHH) 
and E~VD(gpt) are similar in size. 

For the remainder of this paper, Yu will refer to 
YHH (models ~,, ~o and ~a) or 9P~ (model ~b) and Y'm 
will refer to the optimal model-based estimator 
depending on which model we are considering (9 
for models ~a and ~b, Yreg for model ~o and YR for 
model ~d)" 

It follows from the Lemma in section 2 that the 
estimator fJA = AYu + (1 - A)fJ'rn has smaller design- 
mean square error than both Yu and Ym for any 
design, where A is defined as in (2.1) with Vm = 
Vo(Ym), Vu = VD(fJu), Bm = BiaS(gm) and C = 
COVD(gm,~'o). In addition YA has smaller bias than 
fJm and smaller variance than Yu under the same 
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conditions. 

4. Illustration of The Two-Stage Estimator 
To evaluate the performance of Ya we 

performed two sets of simulations. 
Simulation I. Twelve different populations of Y's 
were generated, one for each of the four models 
~a,...~d in Table 1 and each of three sets of 
sampling probabilities. 

The three sets of sampling probabilities were 
generated from a Dirichlet distribution. Let 
ZI,...ZN = iid gamma with parameter ~ with 
density function f(z) = z~"le-z/]-'(o~)and let P~ = Z/Z 
where Z = T_,Ni=~Z=. The joint distribution of the P='s 
is Dirichlet with parameter 11 = (o~,....~). Three 
different values of o~, 0.5, 1 and 3, were used to 
generate the Z='s. The Dirichlet distribution is the 
N-variate analogue to the bivariate Beta 
distribution. 

By letting the parameters vary we can study 
the performance of f/a when the shape of the 
histogram of the sampling probabilities is skewed 
(o~ = 0.5), flat (o~ = 1.0) and normally shaped (o~ 
= 3.0). The ~i's in ~a,...~d were generated from a 
N(0,1 ) distribution. 

Five thousand samples of size 50, twenty-five 
hundred of size 100, one thousand of size 250 
and five hundred of size 500 were selected from 
each of the twelve populations, using a PPSWR 
sampling design. 

The ratios of the mean square errors obtained 
from the simulations were used to compare the 
two-stage estimator (2.3) to the design-unbiased 
estimator and the model estimator. The results 
are summarized in Table 2. 

The first row of Table 2 gives the overall ratio 
of the mean square errors of the estimators. The 
last three rows of the table give the ranges of the 
ratios classified by model, parameter of the 
distribution of the sampling weights and sample 
size. 

Table 2 Ratios of Mean Square Errors, Models 

MSE(Yu)/MSE(~'.) MSE(f,'m)/MSE(y.) 
Overall 3.36 0.94 
Model 1.14 - 5.40 0.50 - 1.69 

o~ 1.52 - 4.46 0.86 - 0.98 
n 2.76 - 3.79 0.82 - 1.12 

i~rn given by (2.2) is a function of the design- 
unbiased estimator. When the data are generated 
from the model, Yu is subject to relatively large 

variation and V(IB~)is relatively large. Since 9r~ 
is unbiased with respect to the models used to 
generate the data in this simulation, we can 
replace IVlSE(£m) with ~/(9r~). In this case the 
overall ratio of MSE(fJm) and MSE(9~) equals 1.06 
with values ranging from 0.92 to 1.63. 
Simulation I1. The efficiency of the estimators 
was compared using data from the National 
Educational Longitudinal Study of 1988 - NELS88 
(Spencer et a1.,1990) which was conducted by 
the National Opinion Research Center. The 
population surveyed is composed of all the 
known public and private schools in the United 
States which have eighth grades. Within certain 
major strata the schools were sampled roughly 
proportional to the estimated number of students 
enrolled in eighth grade at the school. The 
population size is 38,866. The shape of the 
distribution of the sampling probabilities is 
skewed with a long right tail, similar to a Dirichlet 
with o~ = 0.5. 

Three variables from the NELS88 study 
(percent of white students in the school, percent 
of black students and percent of hispanic 
students) were used to study the properties of Ya 
under each of the four models ~a,...~a. 

The sample sizes and number of samples 
selected were the same as for the first simulation. 

The ratios of the mean square errors obtained 
from the simulations were used to compare the 
two-stage estimator (2.3) to the design-unbiased 
estimator and the model estimator. The results 
are summarized in Table 3. 

The first row of Table 3 gives the overall ratio 
of the mean square errors of the estimators. The 
last three rows of the table give the ranges of the 
ratios classified by model, variables and sample 
size. 

Table 3 Ratios of Mean Square Errors, NELS88 
MSE(Y'u)/MSE(Ya) MSE(Y'm)/MSE(£J.) 

Overall 1.05 14.41 
Model 0.74- 1.18 7.37- 19.30 
Variables 0.90- 1.27 6.83- 24.84 

n 0.98- 1.21 3.23 - 32.45 

Unlike the first simulation, none of the models 
considered fits the data well and 9m is biased. In 
this case, IVlSE(fj~) is of the same order of 
magnitude as MSE(gm). 

By estimating the components of A we lose the 
"minimum mean square error" property which YA 
has, but the results of the two simulations show 
that Ya works well as a compromise estimator. 
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5. Related Estimators 
The property of design-consistency is not 

shared by a different class of estimators which is 
derived assuming that the sample is given and 
the unobserved population values are predicted 
under an assumed model. The resulting estimator 
can be represented as 

,T--, n (1 - n / N ) U ,  T = ( l / N )  i-lYi + 

where U is a predictor of  (7_.,N=IYi - T-,n_~y~)/(N - n). 
The observed sample is sometimes used to 
estimate the unknown parameters of the 
distribution of Y under the assumed model. One 
approach (e.g. Cassel, S~rndal and Wretman, 
1977) is to choose U to minimize the ~-expected 
mean square error of T, which is equivalent to 
minimizing the ~-mean square error of T when 
the sampling design does not depend on the 
sampled y-values. A more general approach 
(Rizzo, 1989)is to include the sample indicator, 
the inclusion probabilities as well as the joint 
inclusion probabilities into the model, as random 
variables. The sample indicator is a vector 
indicating which elements are selected into the 
sample. Under this approach the sample indicator 
and the variable of interest Y have a joint 
distribution. The predictive estimator under the 
simplest specification of the model (E~(YiI~) = Y~i) 
is 
YP = (l/N)[ ; (,T--,?=I["[ i - ,T--,?=l/1;i) 4" ,T--, ni=lyi) 

where ~/ = (i=~iYi)/(~-n ,T--, ni=l/~i 2). AS mentioned 
above, this estimator does not converge to the 
unbiased estimator as the sample size increases. 
Since the unbiased estimator converges almost 
surely to the population mean, it follows that f/p is 
not design-consistent. 

Another approach which leads to an estimator 
similar to f/~ is described by Stokes (1990). The 
population consists of H strata of M~ units each, 
i = 1,....,H. The model assumed is E(Y~ilp~) = p~ 
and Var(Y~jlP~) = "c 2 where E(p~) = ILL, Var(p~) = o -2, 
the Yij'S and ~'s are independent and m units are 
sampled from each stratum. The BLU estimator 
of the population mean Y = T_,H=~w~'7~ (where W~ = 
Mi/(T-,H=IMi) a n d  Y~ is the mean in stratum i) is 

~-= (1/(Hm))T_,y=~T_,T__~w,y,j 

where w~ = B + (1 - B)(HW,), B = (1:2/m)/(~ + 
"c2/m). T can also be written as  T = B~ + (1 - B)Yst 

where 9~t = 7"Hi=lWiYi is the conventional design- 
unbiased estimator and 9' is the unweighted 
sample mean. T is called a shrinkage estimator 
because its weights (w~ = B + (1 - B)Wi) are a 
weighted average of the weights of the 
conventional estimator (w~ = Wi) and 1/H. The 
amount of shrinkage is determined by the relative 
variability of f/~ and #~. When the variance within 
the strata is small compared to the variance 
between the strata, the estimator is almost 
identical to the conventional estimator. On the 
other hand, if the variance between the strata is 
small compared to the variance within the strata, 
then all the units in the sample are weighted 
approximately equally. As in the case of YA, this 
estimator can only be calculated if B is known. 
Stokes (1990) describes the performance of the 
estimator when B is estimated from the sample. ^ 

T is design-consistent when the number of strata 
is kept fixed and the sample size in each stratum 
increases. When the number of strata increases 
as well, ]- does not converge to a design- 
unbiased estimator. If in our approach we replace 
the PPSWRX sampling design with a stratified 
design as described above, the resulting 
estimator is 

fJA = AYst + (1 - A)Y 

where 1 -A  = (~(,T-,H=lWi 2 -  1/H)/(8(T_,~=lW, 2- l /H )+  
(F_,~=~'7/H _~()2) with 8 = Var~(Yi). This differs from 
the weight B given to f/in T which can be written 
as B = Var(y~)/(Var(9~) + o-2). Unlike T, YA does 
not require any model assumptions and W i and Y~ 
can be correlated. 

DuMouchel and Duncan (1983) give a method 
of choosing between the randomization-based 
and the model-based approach. Their method 
can be applied to our case by assuming that the 
model under consideration is the general 
regression model with 13 = 0 and g = 0 and the 
sampling design is PPSWRX. Let X~ = 1, i = 
1 ...... n and w~ = 1/p~. Then the least squares 

A 
estimate of the regression coefficient is b = 9 and 
the weighted least square estimate is 
A n 
bw = (F_,~=~y~/p~)/(Y_,~=~l/p~) which is equivalent to 9p~ 
given by (3.1). 

A test of whether fj o r f / . ,  should be used is 
based on the difference ~.y = fj - 9p~. 

We compared the compromise estimator with 
the estimator obtained using DuMouchel and 
Duncan's method of selecting the "optimal" 
estimator. We generated three data sets from 
Model ~ a  (0~, " -  1) with correlations of 0, 0.1 and 
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0.5 between Y~ and P~. Then we selected one 
thousand samples from each data set using the 
same PPSWR sampling method as in section 7. 
For each sample we calculated the F statistic for 
testing E(Ay) = 0 and its p-value denoted by p. 

The DuMouchel- Duncan estimator is defined 
as follows 

fJu if p < 0 . 0 5  

f/o = 
~j otherwise. 

We also calculated the mean square error of the 
two-stage estimator as well as that of the 
DuMoucheI-Duncan estimator. The results are 
given in Table 4. 

TABLE 4 Mean Square Errors of the Two-Stage 
Estimator and the DuMoucheI-Duncan Estimator. 

CORRELATION COEFFICIENT 
ESTIMATOR 0 0.1 0.5 
Two-Stage 0.0262 0.0336 0.0528 
DuMoucheI-Duncan 0.0468 0.0552 0.1181 

The power of the F - test as calculated from the 
simulation is 0.113 and 0.463 for a correlation 
coefficient of 0.1 and 0.5 respectively. 

In conclusion, Ya protects us against 
misspecification of the model and it has 
appreciably smaller mean square error than Yu in 
those cases where the model fits. 

6.Conclusions 
This paper introduces a method of developing 

new estimators which are optimal under both a 
given sampling design and superpopulation 
model. The compromise estimator, f/A, is better 
than both the unbiased and the optimal model 
estimator under the fixed population approach as 
well as the superpopulation approach for 
PPSWRX sampling and all the models 
considered, however it is not of practical use. The 
two-stage estimator, f/a, can be used to estimate 
the population mean any time we are willing to 
tolerate some bias in exchange for smaller mean 
square error. When the model fits the data 
exactly, ~/a approaches the model-optimal 
estimator which has smaller design-mean square 
error than the unbiased estimator. When the 
model is misspecified Y'a approaches the 
unbiased estimator which in this case has smaller 
variance than the mean square error of the 
model-based estimator. In all other cases, Y'a 
approaches YA which is better than both the 
unbiased estimator and the model-based 

estimator. 
The mean square error of Y'a can be 

considerably smaller than the variance of the 
unbiased estimator if the model fits the data well, 
and than the mean square error of the model 
estimator when the model is misspecified. 

Appendix 

Proof of Lemma 2.1 
(i) If A m< 0 t h e n A =  0 and i fA  u > 0 t h e n A =  
A~/(Au + Am) < 1. Thus 0 < A <  1. Combining 
these two facts we have 0 < A <_ 1. It follows that 
IBD(ZA)I = (1 - A)IB=I <-IB=I with strict inequality if 
A < 1. Thus (i)is established. 
(ii) If A = 0 then Zm = ZA and (ii) holds. 

If A > 0 then 
MSE(ZA) = A2(Arn + Ao) - 2AAm + Am + C 
=Am(1 - A ) + C < A  m+C=MSEo(Zm) 
since A < 1. Thus (ii)is established. 
(iii) Note that MSE(Zu) = Au + C. 
If A > 0 then MSE(Zu) - MSE(ZA) = A u - AmAu/(A u 
+ Am) = Au2/(Au + Am) > 0. 
If A = 0 then A m _< 0 and A u - Am > 0. 
Thus, MSE(ZA) = MSE(Zm) < MSE(Zo). 
(iv) MSE(ZA) > V(ZA) with strict inequality if A > 0, 
and MSE(Zu) = V(Zu). The result follows from 
(iii) .# 

The framework for the asymptotic analysis is 
that of Brewer (1979). The original population of 
N units is reproduced (k-l) times. A sample is 
selected from each of the resulting k populations 
using the same sample-selection procedure (i.e. 
the same P~'s) for each one. The k populations 
are aggregated to a population of size N k = kN 
units with a population total Yk = kY. The k 
samples are aggregated to a sample of n k units. 
k is allowed to tend to infinity. We assume that 
all of the P~ are greater than zero and the 
variances and covariances of sample averages 
and functions of sample averages approach zero 
as nk approaches infinity. 

Proposition A. 1 
E(a) = A + O(n -~) and 

(A.1) Va r (a )=  { ( C -  MSE=)2Var(Vu) + 2(C - 
MSEm)(V u - C)CoV(Vu,MSEm) + 2(C - 
MSE~)(MSEm- Vu) ^ 
Cov(Vu,C) + (Vu-^C)2Var(MSEm) + 2(Vu- C) ,, 
(MSEm - Vu)COv(MSEm,~) + (MSEm - Vu)Var(C)} 
/(n(MSE(£m - f/u)) 4) + O(n~2). 

Proof 
First, note that all the components of a can be 
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expressed as functions of sample averages. 
Second, if MSE(CYr, ) + Var(£u) - 2Cov(9r,,£u) > 0 
then a satisfies condition (1) of Theorem 14.5-2 
in Bishop, Fienberg and Holland (1975, p.486). 
Note that MSE(fJrn) + Var(9u) - 2Cov(y=,yu) = 
MSE(CYm - f/u) > 0. Third, a is bounded by 
definition. Thus, we can apply the theorem 
mentioned above and see that E(a) = A + O(n ~) 
and (A.1) holds as well.# 

proposition A.2 
The asymptotic expected value of fj, to order n ~ 
is 
(A.2) E(~G)= '~ + O(n ~) 
and the asymptotic mean square error of ~, to 
order n ~2 is MSE(Ya) = [B2Var(a) -2ABCov(a,~'u) - 
2(1 - A)BCov(a,~'m) + A2Var(Yu) + 2A(1 - 

A)Cov(Yu,fJm) + (1 - A)2MSE(Y'r,)]/n, where Var(a) 
is given by (A.1). 
Proof 
Both equations above are derived using the 
same theorem as in Proposition A.I. Note that Y'a 
< ~, + cy m, and this expression is bounded. Thus, 
E(Ya) = Y + (1 - A)B + O(n ~) and (1 - A)is o(n ~) 
and B is O(1) so that (A.2) holds.# 

Proposition A.3 
n~/2(~G- Yu) --> 0 in probability as n --> oo. 

Proof a = Op(nl), Yr~ = Cf + B + Op(n 1/2), ~/u = Y + 
Op(n -~j21 and B = O(1). Thus (fYr~ - Yu) = Op(1) 
and 
n l / 2 ( y a  - fJu) = n~/2( 1 - a)(Ym - f/u) = Op(n~/2)Op(1) = 
Op(n-1/2).# 
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