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1 . 0  I n t r o d u c t i o n  

Since the start of NHIS about 30 years ago, 
PSUs have been selected with probability 
proportional to total population. However, there are 
compelling arguments for considering measures of 
size for PSUs that reflect the interaction of 
demographic composition with the type of 
oversampling that is desired by demographic domain. 
The various schemes proposed along these lines can 
reduce both between-PSU variance for targeted 
demographic domains and variation in interviewer 
workload from PSU to PSU. Moreover, these 
positive effects can be realized with minimal impact 
on within-PSU variance. The reduction in between- 
PSU variance is caused by: greater number of sample 
PSUs with nontrivial minority concentrations; less 
variability in the number of minority sample persons 
per sample PSU; and higher correlation between the 
PSU probability of selection and minority statistics. 

On the negative side, the proposed alternate 
measures of size can increase the between-PSU 
variance for nontargeted domains and for totals, and 
they can lead to decreased efficiency for surveys who 
share the same set of PSUs but do not share the same 
oversampling goals. In particular, utilization of these 
measures might cause the 1995 NHIS to have fewer 
PSUs in common with the 1985 redesign which 
could lead to increased recruiting and training cost for 
the phase-in of the new design and slightly greater 
turbidity in time-series. Consequently, the most 
important trade-off in considering these alternate 
measures of size appears to be in reduction of 
between-PSU variance and workload variation on the 
one hand, and possibility of degrading the utility of 
the design (NHIS) for other surveys on the other 
hand. 

In this paper we consider the traditional 
measure of size along with three proposed 
alternatives. We compare these measures on 
theoretical grounds, and present the results of a 
simulation study. Although the focus is on a general 
demographic survey (NHIS), the results are applicable 
to other multistage samples where the overall 
sampling rates vary among ultimate sample units, 
e.g., sample of students clustered by school where 
students in different fields are to be sampled at 
different rotes. 

For a two-stage sampling scheme, Waksberg 
(1975) proposed two alternative measures of size, 

each emphasizing the importance of one of the stages. 
The first alternative places priority on equalizing the 
cluster size of the total sample in each PSU, and 
requires measures of size proportional to: 
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where Njk is the number of ultimate units in the k-th 
domain of the j-th PSU, and n represents a constant 
sample size per each domain. 

It should be noted that Hendricks has used a 
similar measure of size for the National Assessment 
of Educational Progress (NAEP) in the early 1970's. 
Folsom (1980) has developed a general multiple 
domain version of this measure which maintains a 
fixed workload in each PSU and achieves a self- 
weighting sample in each domain. In order to allow 
changes in the sampling rate and domain membership 
definition, Folsom et al. (1987) have introduced 
modifications of the above composite measure. 
While preserving the self-weighting feature of the 
sample, these modifications result in a varying 
number of elementary units selected in each PSU. 

Waksberg's second alternative measure of 
size is designed to ensure that first-stage units with 
strong concentration of any rare domain are selected 
with higher probabilities. It is of the form: 

1 . 1  D e f i n i t i o n s  

For illustration purposes we define three 
demographic domains: households with a Black 
nonHispanic householder; households with an 
Hispanic householder; and all other households. Let 
f l ,  f2 and f3 be the resulting overall sampling 
fractions for these three domains of households, and 
let Qijl, Qij2 and Qij3 be corresponding estimates of 
households in the i-th first-stage stratum for the j-th 
PSU. The traditional or generic, the first alternative 
(Hendricks/Waksberg/Folsom), and the second 
alternative measures of size (Waksberg), respectively, 
are then given by 
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3 
k=l { Qi / MOS - max × Q-2. l 

Furthermore, we wish to consider a third 
alternative. This alternative comes from a class of 
size measures due to Don Malec (1990), derived by 
considering an admissibility concept. M is 
inadmissible if there is some other measure of size, 
M*, such that the between-PSU variance for every 
statistic in a predefined set is at least as good with 
M* as with M and the between-PSU variance of one 
statistic is actually better with M* than with M. 
Given a fixed stratification, Malec states that any 
measure of size with the following form is 
admissible: 

= (Qijt/2 
M 4 ~ t  Xt~i.t] 

where t ranges across the set of statistics and ~.t>O. 
Specifically, the third alternative measure of size 
considered in this paper is given by: 
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1 .2  O p e r a t i o n a l  E f f e c t s  

1 . 2 . 1  W o r k l o a d  

We define the workload for a PSU as the 
sum of sample sizes from each of the 3 domains of 
ultimate units from the PSU. With the generic MOS 
when the overall sampling fractions are not constant, 
the only way to get constant workloads is to limit the 
extent of oversampling in some PSUs and accept 
wider variations in overall probabilities. But this has 
adverse effects on within-PSU variances; hence this 
sort of procedure is rarely worth considering. 

The first alternate MOS, while self- 
weighting, has the benefit of inducing constant 
expected workloads. The second alternative measure 
of size will also have effects on workloads. By 
increasing the measure of size for PSUs with unusual 
concentrations of any of the ultimate domains, it 
decreases all the within-PSU sampling fractions for 
such PSUs and results in fewer extremely large 
workloads than what would result with the traditional 
MOS. The third alternative appears to fall between 
the first and second. 

1 . 2 . 2  V a r i a n c e  Ef f ec t s  

Within-PSU Variance" Let S2jk be the 
population variance for some characteristic within the 

k-th ultimate domain of the j-th PSU in the i-th 
stratum. Then when the sample is self-weighting, 
the within-PSU variance of an estimate of the total 
prevalence of that characteristic is 
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where next to the last statement follows due to self- 
weighting scheme within domains. 

Typically, within-PSU sampling fractions 
are tiny. Thus, under all but exceptional 
circumstances, 

i j k fk 

where it is noted that the first-stage probabilities play 
no role. 

Between-PSU Variance: Once the strata are 
fixed, selection of PSUs with probability 
proportionate to a measure of size sensitive to 
targeted populations will result in a further decrease in 
between-PSU variance for those targeted populations 
(and a further increase in between-PSU variance for 
the total population and for nontargeted populations). 
This is fairly obvious from inspection of the formula 
for between-PSU variance. 

~ ' -  .~1 EPijIXij'" -Xi...) 2 
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where Xijkl is the value of some statistic on the l-th 
ultimate unit within the k-th domain within the j-th 
PSU of the i-th first-stage stratum and a dot signifies 
summation on a subscript. A strong correlation 
between Xij.. and Pij makes for more accurate 
projection of PSU totals to stratum totals and thus 
smaller between-PSU variance. It is easy to see that 
the correlation between Xi" for targeted domains and 

J ' °  
Pij will be increased through use of the first alternate 
measure of size to determine Pi" Although less 

J "  
obvious for the second and third measures of size, the 
same is thought to hold true. 

The second alternate measure of size affects 
between-PSU variances a little differently. The effect 
of this measure of size is to increase the probability 
of selection for PSUs that have unusually high 
concentrations of any of the ultimate classes. This 
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provides a guard against missing any PSU that is 
extremely important for any class. It thus guards 
against having a large between-PSU variance for any 
class. 

2.  S i m u l a t i o n  

Given the obduracy of several of the 
alternative measures of size to intuitive 
comprehension, it seemed wise to conduct a small 
simulation study prior to making a final decision on 
which alternate (if any) to use. There were several 
steps in the simulation study. The first was to create 
a set of pseudo PSUs. For each PSU, it was 
necessary to develop models for population sizes for 
each of the three domains (Blacks, Hispanics, and 
others) and models for underlying and realized disease 
prevalence rates. These were then used to calculate 
the measure of size for each PSU under each scheme. 
The second step was to stratify the PSUs. The final 
step was to calculate between-PSU variances on 
disease incidence by domain given the probabilities 
induced by the stratification and the various measures 
of size. 

2 .1  Creation of Pseudo PSUs 

First, the population specific to each domain 
was assumed to follow a Gamma distribution across 
PSUs. The Gamma distribution was selected because 
of its non-negative and right-skewed properties which 
are fairly realistic for PSU population totals. A 
separate gamma distribution was used for each of the 
three domains. The distribution parameters were 
chosen such that the nonBlack/nonHispanic 
population would have the largest mean and the 
smallest coefficient of variation (cv), the Black 
population would have a much smaller mean and a 
somewhat larger cv, and the Hispanic population 
would have a mean smaller yet with a very large cv. 
The three gamma variables were generated for each of 
100 pseudo PSUs using the standard SAS pseudo 
random number generator. (The three variables 
should be nearly independent across pseudo PSUs.) 
The specific parameters and resulting population 
means and cv's follow: 

Black Population 
Q l i -  r (a=l .0 ,  fl=lO,O00), with 
E[Ql i ] -  10,000, cv(Qli)-  1.00 

Hispanic Population 
Q2i - F(ot---0.4, ~= 18,000), with 
E[Q2i] - 7,200, cv(Q2i ) - 1.58 

Other Pooulation 
Q3i - 1-'(o~--4.0, ~=15,000), with 

E[Q3i] -= 60,000, cv(Q3i ) = 0.50 

Using the resulting set of domain by pseudo- 
PSU populations and reasonable sampling fractions 
(f1=0.000554, f2=0.000596 and f3=0.000380 for 
Blacks, Hispanics and other, respectively), the 
traditional measure of size along with the three 
proposed alternative measures of size were computed 
for each pseudo PSU. 

Three different models were used to simulate 
disease prevalence rates for the three domains across 
PSUs. (The disease simulated is a generic disease.) 
The first model assumed that the prevalence of the 
disease follows a binomial distribution across PSUs 
with a different mean for each domain. Let Xli, X2i 
and X3i represent counts of cases for some rare 
disease in PSU i among Blacks, Hispanics and others, 
respectively. 

Modol 1 
X l i -  B(Qli, pl=0.05) 
X 2 i -  B(Q2i, p2-0.03) 
X3 i -  B(Q3i, p3=0.02) 

Furthermore, let X4i = (Xli + X2i + X3i) 
represent the overall count of cases of the disease in 
the i-th PSU. We generated two replications of 
Model 1 using different seeds for the pseudo-random 
number generator. Both PSU populations and disease 
counts were replicated. 

In the second model, we assumed that the 
prevalence of the disease follows a beta-binomial 
distribution across PSUs with a different mean for 
each domain. This distribution was selected because 
of the larger variance it creates. The resulting "hot 
spots" in the disease correspond more closely to 
reality for many diseases. 

Mod¢l 2 
Xli - B(Qli, Oli), with 

O l i -  Beta(al=l,~l=19) 
X 2 i -  B(Q2i, O2i), with 

O2i-  Beta(a2=l,~2=32.33) 
X 3 i -  B(Q3i, O3i), with 

O3i-  Beta(a3=l,~3=49) 

Note that the beta parameter for each 
distribution was chosen such that the mean for the 
beta-binomial variable for a domain was equal to the 
corresponding mean in the first model; i.e., 
E[Oki]=Ctk/(ak+13k)=Pk for every k. As for Model 1, 
we generated two replications of Model 2 using 
different seeds for the pseudo-random number 
generator. Both PSU populations and disease counts 
were replicatM. 

The third model was very similar to the 
second model but assumed that all three domains had 
equal susceptibility to the disease. This model was 
examined not because of plausibility but to test out 
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some theories on the behavior of the alternate 
measures of size. 

Model 3 
X li-- B(Qli, Oli), with 

O l i -  Beta(oq=l,131=32.33) 
X2i-- B(Q2i, O2i), with 

O2i -- Beta(o~2= 1,132=32.33) 
X 3 i -  B(Q3i, O3i), with 

O3i - Beta(t~3=l,~3=32.33) 

As for Models 1 and 2, we generated two 
replications of Model 3 using different seeds for the 
pseudo-random number generator. 

2 .2  Strat i f icat ion 

After generation of random variables, PSUs 
were divided into 10 groups of 10 PSUs each 
according to proportion Black. These groups were 
ordered by ascending Black density. Within each 
group, the PSUs were sorted by proportion 
Hispanics. However, this sort did not have a constant 
direction. In the first Black density group, the PSUs 
were sorted on ascending Hispanic density. In the 
second Black density group, the PSUs were sorted on 
descending Hispanic density. This procedure reduces 
discontinuity for the second sort key at the boundaries 
of the first sort key. 

Each of the four measures of size under 
consideration was calculated for each PSU for each 
replicate and model. To make the four measures of 
size for a PSU in a given replicate more comparable, 
we standardized the measures of size. After 
standardization, the sum of each MOS across the 100 
PSUs in a replicate was equal to 100,000. This 
makes it easier to get an intuitive feeling for the 
impact of the different rules. 

For each measure of size and replicate, a 
stratification was created with 5 component strata. 
These strata were formed in such a manner as to 
minimize the differences between stratum measures of 
size (come as close as possible to 20,000 for each 
stratum) subject to the constraint that PSUs in the 
same stratum should never be separated by PSUs 
from a different stratum with respect to the 
Black/alternating Hispanic sort. The first stratum 
was formed for each measure of size by starting at the 
top of the file with respect to the shown sort and 
cumulating downwards until the measure of size for 
the first stratum was close to 20,000. This process 
was repeated to form the remaining four strata for 
each measure of size. 

2.3  Between-PSU Variances 

The variances were calculated using the 
standard formula given in Section 1.2. To ensure 

stability of the results, the preceding process was 
repeated once for each model using a different seed for 
the creation of all random variates (including PSU 
populations) before variances were computed. The 
resulting sets of between-PSU variances are 
summarized in Table 2.3.1. Corresponding relative 
between-PSU variances are shown in Table 2.3.2. 

Examining the columns for Model 1 in 
Table 2.3.1, we see that the first and third alternative 
measures of size (MOS 1 and MOS 3) are better than 
the generic measure of size for Blacks on both 
replications. The second alternate, MOS 2, can be 
better or worse for Blacks than the generic. For 
Hispanics, any of the three alternates are better than 
the generic measure of size. Furthermore, the 
reduction in between-PSU variance appears more 
substantial than for Blacks. Among the alternates, 
the second and third appear to be better for Hispanics 
than the first alternate, with a slight preference for 
M OS 2. For the other population, the traditional 
MOS consistently produces the smallest between- 
PSU variance. The penalty for using the second or 
third alternate can be extremely severe. For the entire 
population, the first alternative measure of size, 
MOS 1 outperforms the others. 

The superiority of MOS2 and MOS3 for 
Hispanics is easy to understand since the distribution 
of the Hispanic population across PSUs is the 
lumpiest of the three domains and since MOS 2 and 
M OS 3 are very sensitive to lumps. (This is 
especially true of MOS2.) Similarly MOS 1 or 
M OS 3 is best for Blacks because the Black 
population distribution is slightly less lumpy. The 
traditional MOS T is best for the other population 
since the correlation is high between Q3 (the count of 
other population) and MOS. The superiority of 
M OS1  to MOS T for the entire population is 
somewhat surprising. We suspect that it is mainly 
due to the conjunction of the higher disease 
prevalence assumed for minorities with the 
oversampling of minorities. Note that improvements 
achieved for minorities by adopting the second or 
third alternates over the traditional MOS or first 
alternate are trivial compared to the degradation for the 
other and total populations. 

Examining the columns for model 2 in 
Table 2.3.2, we see similar patterns emerge: the 
MOS 3 is best for Blacks (with MOS 2 a close 
second), the traditional MOS is best for others, and 
M OS • is best for the entire population. For 
Hispanics, the second and third alternative measures 
of size, MOS 2 and MOS 3 seem to be about equally 
satisfactory. For this model, the advantages of the 
second and third alternates for the minority 
populations are closer in magnitude to the 
disadvantages for the other and total populations. 

Finally, examining the columns for model 3 
in Table 2.3.2, we see that the findings for Model 1 
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were replicated for Hispanics, others and overall, 
while for Blacks the second and third alternatives 
appear to be equally satisfactory with the first 
alternate clearly in third-place. Here we see that the 
traditional MOS and the first alternate are essentially 
tied for the total population, thereby partially 
confirming our explanation of the puzzling 
superiority of MOS1 to MOS T for the total 
population under model 1. Even the fact that they are 
tied is at first surprising. We suspect that it is due to 
the greater variance in the distribution of PSU-level 
populations for minorities. The disease count, X'i,.1 
for a PSU and domain is binomial given n=Qji and 
p=O'ij. O'ij has the same distribution for each domain 
in model 3, but Qji does not. The greater relative 
variance in Q2i and Q3i means that X2i and X~i have 
greater relative variance than Xli. Since MOS l leads 
to smaller variances on X2 and X] than does MOS T, 
perhaps this explains why MOS t appears to be as 
effective in reducing the variance on X4 as MOS T 
even though the correlation is greater between X 4 and 
MOS T than between X 4 and MOS 1. 

2 .4  Summary 

i. M OS 1 is consistently better for both 
minorities than the traditional MOS T . 

ii. M OS2 and MOS 3 are the best for the 
Hispanic population (because of the lumpy 
distribution). In no case does either method 
produce a worse result than MOS T or 
MOS 1. There is little reason to prefer one 
to the other for the Hispanic population. 

iii. MOS 2 and MOS 3 perform well for the 
Black population, but MOS2 does 
occasionally produce a worse result than 
M o s T  and MOS1. MOS 3 thus seems 
preferable for the Black population. 

iv. MOS 2 and MOS 3 can produce extremely 
unfavorable results for the other and total 
populations with MOS 2 the more dangerous 
of the two. The degradation is less severe 
for the beta-binomial models than for the 
straight binomial model, but it is still 
troubling. 

3.  Recommendat ions  

At this point, it is clear that Blacks and 
Hispanics are to be intensively oversampled for 
NHIS. Assuming that the use of NHIS sample PSUs 
for other surveys is a secondary concern, then one of 
the alternate size measures should be used. Given our 
past experience with MOS1 and the results of the 

simulation study, we recommend it. MOS 2 and 
MOS 3 are so extremely oriented to optimization for 
minority statistics, that their use might make NHIS 
PSUs unsuitable to serve as the basis for an 
integrated design for several surveys. 

This tentative recommendation becomes 
more emphatic if there is a continued belief at the 
Census Bureau that PSU-level workloads need to be 
tightly controlled for efficient administration of the 
program. In that case, use of MOS 1 at the first stage 
would allow oversampling at the second stage while 
simultaneously maintaining workload control and 
self-weighting samples within the intersections of 
second-stage strata and ultimate domains. 

On the other hand, thinking about total 
variances, as within-PSU sampling procedures are 
skewed more and more to reduction of within-PSU 
variance for minority statistics at the expense of 
precision on white and other statistics, there is some 
point at which it would be better to adopt a more 
radical measure of size, such as MOS 3, for PSUs 
than to further skew the within-PSU sample. We are 
not sure where that point is but think that the current 
NHIS within-PSU sampling plans have not yet 
reached it. Even if NHIS plans become skewed more 
to minority statistics than they are currently, it 
appears that MOS 3 would be a better choice than 
MOS 2 since the difference between the two are slight 
for minority statistics and large for other and total 
statistics under model 1. However, this would 
probably need further research. 
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Table 2.3.1. Between-PSU variances (in millions) 

MOS Domain 

Traditional Black 
Alter. 1 Black 
Alter. 2 Black 
Alter. 3 [Black 

Traditional Hispanic 
Alter. 1 Hispanic 
Alter. 2 [Hispanic 
Alter. 3 Hispanic 

Traditional [Other 
Alter. 1 Other 
Alter. 2 Other 
Alter. 3 Other 

Model 1. 
Binomial X 

Varying means 
across domians 

Seed 1 Seed 2 

97 93 

61 [ 68 

58 i01 

42 72 

154 141 

119 106 

51 35 

61 40 

i00 87 

159 145 

1,304 1,189 

924 778 

Traditional Total 68 56 
Alter. 1 [ Total 15 13 
Alter. 2 Total I, 314 I, 389 

Alter. 3 Total 735 762 
,,,, 

Table 2.3.2. Relative between-PSU variances 

MOS Domain 

Traditional Black 

Alter. 1 Black 

Alter. 2 Black 
, ,, ,= 

Alter. 3 [Black 
Traditional Hispanic 
Alter. l Hispanic 

Alter. 2 I Hispanic 

Alter. 3 Hispanic 

Traditional IOther 

Alter. 1 Ot he r 

Alter. 2 Ot he r 

Alter. 3 ot he r 

Tm~don~ Total 

~dter. 1 I Total 

Admr. 2 Total 

Alter. 3 Total 
, 

Model 1. 
Binomial X 

Varying means 
across domians 

Seea  ! seea2  

0.0344 0.0366 

0.0217 [ 0.0267 

0.0206 0.0397 

0 . 0 1 4 9  0 .0283  

0. 1977 0.2628 

0.1527 0.1975 

0.0G55 o.oGs2 
0.0783 0.0745 

Model 2. Model 3. 
Beta-Binomial X Beta-Binomial X 

Varying means Constant means 
across domians across domians 

1 i 1 ! seeB2 

708 1,256 417 721 

680 i, 132 403 668 
, 

575 721 [ 221 375 

544 697 240 383 

333 466 

286 408 

192 239 

190 I 253 

i, 812 2,087 

1,936 2,134 

3,681 3,980 

3,061 3,390 

3,387 4,675 

3,368 4,376 

5,207 5,527 
4,293 4,710 

Model 2. 
Beta-Binomial X 

Varying means 
across domians 

See l ! Seed2 

0.3720  0 .4935  
0.3573 0.4448 

0.3021 0.2833 

0.2859 0.2739 

0.4319 0.7097 

0. 3710 0. 6214 

0.2490 0.3640 

0 24G4 0.3853 

507 449 

442 394 

240 230 

255 243 

3,976 4,362 

4,150 4,484 

9,669 8,824 

7,065 7,465 

4r 929 ! 5,811 
4,950 5,680 

10,133 9,649 

7,405 8,101 

0. 0073 0. 0059 0. 1581 0. 1610 

0. 0117 0. 0098 0. 1690 0. 1646 

0. 0956 0. 0803 0. 3213 0. 3070 

0. 0677 0. 0525 0. 2672 0. 2615 

0. 0017 0. 0015 0. 1064 0. 1296 

0. 0004 0. 0003 0. 1058 0. 1213 

0. 0336 0. 0364 0. 1635 0. 1532 

0. 0188 0. 0200 0. 1348 0. 1306 
, 

Model 3. 
Beta-Binomial X 

Constant means 
across domians 

S eea ! 

0 .5380  0 .7209  
0 .5200  0 .6679  
0 .2851  0 .3749  
0.3097 0.3829 

0.5771 

0 .5031  

0 .2732  

0 . 2 9 0 3  

0.1482 

0.1547 

0.3605 

0.2634 

0.i007 

0.i011 

0.2070 

0.1513 

0. 6804 

0.5970 

0.3485 I 
0.3682 

o 1575 1 
0.1619 

0.3186 

0.2695 

0.1161 

0.1135 i 
0 .1928  
0.1618 
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