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1. INTRODUCTION 
In this paper, we examine stratified sampling for 

inventories when at least two variables are available 
for stratification. The goal of the sampling plan is to 
estimate the total_value of the inventory, Y, or the 
population mean, Y. A population's elements are to 
be apportioned into H strata. 

Let's assume that the variables Z 1 >0 and Z 2 >0 
are available for stratification. It is well known that 
when only one variable is available for stratification, 
the Dalenius-Hodges cum Jf  rule (D-H) provides 
nearly optimal stratum boundaries (Cochran, 1977). 
The D-H method chooses boundary points such that 
equal intervals are created on the cum ,/f scale 
(Dalenius and Hodges, 1959). Here, f is the density 
function for the stratification variable. Both Thomsen 
(1977) and Kish and Anderson (1978) use the cum Jf  
method separately on the density functions of Z 1 and 
Z 2 to create a bivariate D-H stratification. 

Often an underlying linear model is assumed for 
Yi" The following model 

Yi = flo + fll Xli + f12 X2i + ei, (1) 
is used by Anderson (1976) and Thomsen (1977) to 
develop properties of bivariate D-H stratification, 
where X 1 and X 2 are also the stratification variables, 
E(ei) = 0, Var (ei) = t r i  2 = C (a constant), and 
Cov(ei,ej) = 0 for i 4= j. A more general model, 

Yi = flo + fll Xli + /32 Xzi + ei, (2) 
is used by Roshwalb and Wright (1991), where X 1 and 
X 2 are two predictor variables of Yi, E(ei) = 0, Cov(ei, 
ej) = 0 for i 4: j, and the variance is non-constant with 

= o 2 exp 2(ct I + ct 2 Z2i ). (3) Var (ei) = tTi 2 Zli 
The later study uses the model in (2) and in 
particular, the model for the residual variance in (3) 
to construct stratum boundaries. This method is an 
extension of model-based stratified sampling (MBSS) 
discussed in Wright (1983). The variables, Z 1 and Z2, 
are used in the stratification through the model in (3), 
but they are not necessarily related to the predictor 
variables X 1 and X 2 in equation (2). 

Statistical sampling, as used in inventory 
valuation, has two different audiences in the 
accounting-auditing environment. The first group are 
auditors from within the firm (internal auditors) 
whose task is to value the inventory. Their goal is to 
provide an efficient and economical estimate of the 
inventory worth for financial reporting purposes using 
methods acceptable to the second group, the external 
auditors. An external auditor is hired to evaluate 

whether the firm's stated assets and liabilities are 
accurate as stated. This may mean the external 
auditor actually samples the firms assets or just 
verifies whether procedures used by the internal 
auditor conform to the external auditor's standards. 
Although each group may consider the problem from 
a slightly different point-of-view, we assume that both 
groups share the same goal: to have a precise estimate 
of the firm's total value or total error. 

One can study many different sampling methods 
in the context of this problem, since information is 
readily available for design and analysis. It is not 
unusual for a firm to track information on each item 
such as current dollar balances (book values), 
cumulative sales, forecasts of future demand, 
transaction activity, etc. With the exception of 
Roshwalb and Wright's (1991) study, all other auditing 
studies have restricted their examination to using book 
value as the sole stratification variable. Neter and 
Loebbecke (1975) examine the performance of the 
mean per unit, difference and regression estimators 
under simple random, Dalenius-Hodges stratified, and 
probability proportional to size sampling. ' T h e y  
conclude that stratified difference or stratified 
regression estimation is an appropriate choice for this 
problem. Roshwalb, Wright and Godfrey (1987) 
consider only stratified difference estimation focusing 
their study on the efficiency D-H and MBSS on book 
value alone. Their results suggest that small to 
modest improvements in efficiency can be consistently 
found by using MBSS instead of D-H stratification. 
In Roshwalb and Wright (1990, volume is introduced 
as another stratification. Again, only the stratified 
difference estimator is studied using the following 
stratified design: MBSS based on book value alone, D- 
H based on book value alone, MBSS based on volume 
alone, D-H based on volume alone and the bivariate 
MBSS based on book value and volume designs. The 
results in this study suggest that significant 
improvements in efficiency can be found by using 
bivariate MBSS stratification. 

In our study, we compare the efficiency of 
bivariate D-H stratification to the bivariate MBSS 
stratification. The univariate methods are included for 
comparison. As in Roshwalb, Wright and Godfrey 
(1987) and Roshwalb and Wright (1991), we consider 
only the stratified difference estimator. In Section 2, 
we discuss the stratification methods in greater detail. 
In Section 3, we provide a justification for the use of 
the difference estimator, and we provide an empirical 
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comparison of the sample designs efficiencies for 
three actual inventory populations. Section 4 provides 
some discussion and conclusions. 

2. STRATIFICATION METHODS 
Without loss of generality, we consider only the 

goal of estimating the population total Y using a 
stratified design with H strata. In Section 1, we stated 
that previous studies of inventory valuation tend to 
suggest using the stratified dif_ference estimator, 

Yst = Eh Nh dh + Z x i (4) 
with variance 

Var (Yst) = Zh Nh 2 (1-  nh/Nh) Sh2/nh . (5) 
The notation for the inventory problem is: Yi is the 
actual value (audit value) for unit i; x i is the book 
value (perpetually maintained) for unit i; d i = Yi - xi 
is the difference for unit i; N h is stratum size_ for 
stratum h; n h is sample size for stratum h; d h = 
(1/nh) Z d i i_s the sample mean of the differences for 
stratum h; D h = (1/Nh) Z d i is the pol~ulation mean 
of the differences for stratum h; and Sh ~ = (N h - 1) -1 

(d i - Dh) 2 is the sampling variance for stratum h. 
For the difference estimator, the model in (2) 

has the book value for X 1 and assumes fll = I and ~2 
= 0 for any other predictor variable. If ~1 is not I or 
~2 is not 0, then the regression or ratio estimator is 
more appropriate. The form of the difference 
estimator in (4) and its variance in (5) hold for any 
stratified design. 

The bivariate D-H stratified design uses the D-H 
rule on each stratification variable to create a cellular 
division of the population as depicted in Figure 1. 
The total number of strata is H = H 1 x H 2. H 1 is the 
number of stratum boundaries determined using cum 
,/f rule on X 1 and H 2 is the number of stratum 
boundaries determined using the cure J f  rule on X 2. 
As pointed out in Kish and Anderson (1978), the 
number of strata can be very large for even small 
values of H 1 and small values of H 2. However, 4 or 
5 strata boundaries on each dimension may be 
sufficient to provide substantial gains in efficiency, 
since most of the gains are seen in first several strata 
for univariate stratification. 

Anderson (1976) proposes another method of 
stratification using the predicted values of y from an 
estimate of the model in (1). In this approach, the 
cell structure of the bivariate D-H approach is 
abandoned, and the regression model collapses the 
two variables into one. They fred that this can be an 
effective method of stratification, but they are hesitant 
to endorse the method due to the data requirements 
and interpretability of the strata. Thomsen (1977) 
also uses the model in (1) to analyze the effects of the 
stratification variables in bivariate D-H stratification. 

In this study, bivariate D-H stratification improves the 
efficiency of sample design using the model in (1) as 
a basis for comparison. Both of these analyses 
assume that each stratification variable predicts the 
target variable, however, a stratifier may not always 
predict the levels of a target variable. As we will see 
in the next section, the volume stratifier does not 
predict the levels of the target variable. Volume does 
predict levels of variability in the target variable. This 
observation is consistent with Bethel's (1989) analysis 
that an optimal stratifier for a univariate design does 
not necessarily have to predict the level of the target 
variable as long as it predicts the variability of the 
target variable. For this reason, we do not further 
consider these methods. 

In one way, the MBSS approach is similar to the 
regression method. The bivariate multiplicative model 
for the residual standard deviation, equation (2), 
collapses the two stratification variables into one 
stratification variable. In MBSS, the stratum 
boundaries are determined by creating a list of a i in 
ascending order, dividing the population into strata 
such that the within-strata sum of the gr i are equal 
among strata. Under this approach, certain strata will 
have items with low expected variability and other 
strata will have items with high expected variability. 

The efficiency of the sampling plan is determined 
by the sample allocation. Optimal (or Neyman) 
allocation apportions the sample with respect to the 
within-stratum standard deviations and yields the most 
efficient estimators (Cochran, 1977). This requires 
that each stratum Sh, or a good estimate for it, be 
known at the planning stage. Bethel (1989) reports 
that in an univariate environment, D-H stratification 
with optimal allocation approaches a lower variance 
bound def'med by Godambe and Joshi (1965), i.e., 
asymptotically approaches an optimality criterion. 
Also, the MBSS design with optimal allocation in the 
same environment can be shown to attain the same 
lower bound. In the bivariate environment, it can be 
shown that univariate designs will not reach the lower 
variance bound, but the bivariate D-H and MBSS 
designs will. 

In practice, the S u are not known, and estimates 
for the S n may not be available, therefore, optimal 
allocation is not possible. Instead of optimal 
allocation for bivariate D-H, Thomsen (1977) 
considers equal allocation, and Kish and Anderson 
(1978) considers proportional allocation. Wright 
(1983) suggests equal allocation for MBSS. For 
univariate designs, Bethel (1989) and Wright (1983) 
show that D-H stratification with proportional 
allocation does not approach the optimality criterion 
of the variance lower bound unless the residual 
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variances are constant; they also show that MBSS 
stratification with equal allocation does approach the 
variance lower bound. D-H stratification with equal 
allocation only approaches the variance lower bound 
when unrealistic conditions are placed on the 
distribution of the stratification variable. Bethel's 
analysis can be extended to bivariate methods with 
similar results. 

3. EMPIRICAL RESULTS 
The inventory problem is a good area to study 

issues in f'mite population sampling methods. The 
population sizes tend to be moderate (on the order 
1000 to 10,000 elements), and a great deal of 
information is maintained by the firms even for the 
complete population. For this study, three inventories 
are available with complete information on the book 
values, audit values and volume for each member of 
the population. A population member of an inventory 
is def'med as an item category, for example, one item 
category may be the stock of one brand of 100-watt 
fight bulbs and another category may be the stock of 
another brand 75-watt light bulbs. Each category is 
carried separately in the inventory records, and an 
end-of-period tally would report that the inventory has 
$20 of 75-watt light bulbs and $45 of 100-watt light 
bulbs left in stock. Each is considered a different 
item i with a value X i. For the remainder of the 
paper, we'll refer to X 1 as the book value, X 2 as the 
volume, and Y as the audit value. 

Figures 2, 3 and 4 suggest the difference model 
and the form of the residual variance. Figure 2 shows 
the relationship between the Audit and Book values. 
The relationship adheres to a 45 degree line with only 
slight and apparently random deviations. This implies 
book value is a strong predictor for the audit value 
and that the appropriate/3 is 1. Figure 3 shows the 
relationship between audit value and volume. 
Although some increasing relationship appears to exist 
between audit value and volume, it is very weak. 
Figure 4 shows the relationship between the difference 
between audit value and book value, d i and the log of 
the stratification variable, either book value or 
volume. Figure 4 indicates that, once the relationship 
between audit and book is explained, volume does not 
predict the level of the audit. However, the fan 
shaped spread between the differences and the log of 
the book or volume in Figure 4 indicates that 
heteroscedasticity in the differences exists and it is a 
function of book value or volume. This analysis 
implies that we should try the log of the book value 
for Z 1 and the log of the volume for Z 2. As stated 
earlier, we'll assume the difference model with/31 = 
1 and 132 = 0, i.e., equation (2) becomes 

Yi = iSo + Xli + el" (6) 
Estimates for the heteroscedastic linear model in (6) 
and (3) are reported in Roshwalb and Wright (1991). 
The parameter estimates for a 1 and c~ 2 have a 
maximum asymptotic standard errors of .06, which 
indicates that a bivariate model is reasonable. These 
results imply univariate sample designs, as well as 
bivariate D-H stratified designs with equal or 
proportional allocation, should not asymptotically 
achieve the variance lower bound. A bivariate MBSS 
stratified plan should asymptotically achieve the 
variance lower bound, and when the stratum variances 
are available, bivariate D-H stratified plans with 
optimal allocation and bivariate MBSS plans with 
optimal allocation should asymptotically achieve the 
variance lower bound. 

Bethel's analysis uses the asymptotic variance 
lower bound as a basis for comparison, however, the 
lower bound is derived from the interrelationship 
between the sampling plan and the expected variance 
under the model (see Wright, 1983 for discussion). If 
the model's residual variance is misspecified, we are 
uncertain of the estimator's variance lower bound. 
We chose to examine each sampling plan under the 
classical sampling measure of efficiency. This analysis 
does not rely on the model specification for assessing 
the stratification's effectiveness. On the other hand, 
if the model is an accurate representation of our data, 
the sampling results should conform to those 
discussed in the previous section. 

To examine the effect of the different design 
schemes, we determine the variance ratio for the 
H = 20 stratified difference estimator using univariate 
D-H, univariate MBSS, bivariate D-H and bivariate 
MBSS designs. The efficiency of the stratified plan 
versus a simple random sampling plan is the variance 
ratio of the stratified estimator over the unstratified 
estimator, VR = Varst (Y) / War (Y). The definition 
of Varst (Y) remains the same as in (5). A small VR 
indicates that the stratification greatly reduced the 
estimator's variances, a VR greater than one indicates 
that the stratification increased the estimator's 
variance. 

In the study, the stratum variances are available 
for planning, and optimum allocation is possible. 
Using optimum allocation, the efficiency of the sample 
design is solely a result of the stratifications 
effectiveness. Our paper promotes that by 
incorporating more information into the stratification, 
a greater reduction in the variance is possible. The 
VRs for the different methods using optimal 
allocation are presented in Table 1. A bivariate 
design should reduce the variance more than a 
univariate design. Only in one instance did a 
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univariate design have a smaller VR than a bivariate 
design, the MBSS based volume alone for INV3 has 
a smaller VR than the VRs for the bivariate D-H 
designs. In this case, the model in the MBSS method 
provides enough additional information to yield a 
smaller VR than using two variables in a bivariate D- 
H plan. However, the VR for the bivariate MBSS 
design is lower than the MBSS design based on 
volume alone. In all cases, the bivariate MBSS 
designs VRs are less than those for the bivariate D-H 
designs. In some cases, the differences are small and 
in other case the differences are more substantial. 

Optimum allocation is not feasible when the 
stratum variances are unknown or estimates are 
unavailable at the planning stage. Equal allocation is 
suggested by Wright (1983) for MBSS and Thomsen 
(1977) for bivariate D-H. Proportional allocation is 
suggested by Kish and Anderson (1978) for bivariate 
D-H. From the minimum variance argument, we 
expect that the VRs to increase for the bivariate D-H 
designs with equal allocation and proportional 
allocation. Wright (1983) indicates that the VRs for 
should increase slightly for the MBSS plans with equal 
allocation, however, these designs still asymptotically 
achieve the variance lower bound when the model 
holds. 

Table 2 presents the results for MBSS and D-H 
designs with equal allocation. As expected each 
design has greater variance ratios than their 
counterpart with optimal allocation. The increase in 
the variance ratios are not substantial for some of the 
bivariate designs with equal allocation, see INV2 and 
INV3, which indicates the bivariate designs are 
effectively stratifying the population. Although not 
reported, the VRs for proportional allocation 
increased substantially for each inventory. 

4. DISCUSSION 
Bivariate MBSS and bivariate D-H stratification 

schemes are examined in this paper. The stratified 
difference estimator is chosen to observe the effects of 
stratification because: 1) The difference estimator is 
appropriate for the inventory valuation problem. 2) 
Unlike the ratio or regression estimators, the 
difference estimator is unbiased, and its variance has 
an exact and known form. 3) If a mean expansion, 
ratio, or regression estimator is appropriate for the 
problem, the effects of the stratification schemes are 
best observed by using that estimator. In the case of 
the ratio or regression estimator, the estimators are 
not unbiased and the variance is not exact, but the 
estimators would be asymptotically unbiased. 

Stratification reduces the variance of an 
estimator by creating homogeneous subgroups of the 

population. Intuitively, when more relevant 
information is included in developing the strata, the 
subgroups should be more homogeneous. This may 
be accomplished by adding another stratification 
variable into the design or by including more structure 
through a model. 

In our three inventory populations, the bivariate 
stratified designs were generally found to be more 
efficient than univariate designs. Bivariate MBSS 
stratified designs were always more efficient than any 
of the bivariate D-H stratified designs for that 
inventory. Minimum variance stratification theory 
suggests that each bivariate method discussed here is 
asymptotically as efficient as the others. Since the 
bivariate D-H method creates divisions first on each 
stratification variable and then combines these discrete 
divisions into the cellular bivariate design, the strata 
are not as refined as in the model-based approach 
which creates the divisions by using a continuum from 
the multiplicative model. Also, the bivariate D-H 
method should become more efficient as the total 
number of strata is increased. The results seem to 
suggest that the rate of convergence to the variance 
lower bound seems faster for the bivariate MBSS 
method than the bivariate D-H method. 

Planning a MBSS design is not a simple process, 
the form of the model needs to be specified and 
reasonable values for the models parameters need to 
be ascertained. This may mean some statistical 
modelling using prior periods data or data from a 
pilot sample. For the extra effort, the MBSS method 
appears to provide more efficient estimators, better 
control of the number of strata, and less likelihood of 
empty or small strata. If one desires 20 strata, the 
MBSS method provides 20 strata. In the bivariate D- 
H method, the total number of strata is often less 
than the desired number of strata due to empty or 
small strata (Kish and Anderson, 1978). In an 
univariate D-H design, a small or empty stratum is 
collapsed into its neighbor stratum, but in the 
bivariate D-H approach, it is unclear how to handle 
this situation since there are more than one neighbor. 

Another methodological issue exists. For the 
univariate D-H method, very large elements are often 
set aside and measured with certainty. For bivariate 
D-H, some units may be set aside on one dimension 
but not in the other dimension. There are no 
guidelines on how to handle this situation, we include 
these units in a certainty stratum. Under this 
approach, it is possible to have a large number of 
items fall in the certainty stratum. The MBSS 
method, whether univariate or bivariate, simply 
identifies which members should be set aside. 

A criticism of some stratification methods is 
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whether or not the strata have interpretable 
def'mitions. For the inventory problem, the bivariate 
D-H strata are def'med by the size of the book values 
and the size of the volume. The bivariate MBSS 
method creates strata based on the size of the 
expected residual variance which is modelled by the 
size of the book value and the size of the volume. A 
high expected residual variance is a function of a high 
book value and high volume, a low expected residual 
variance is a function of a low book value or low 
volume, and an expected residual variance in the 
middle is a function of all other possible 
combinations. 

To conclude, the results of this study indicate 
that bivariate stratification will produce better sample 
designs. The MBSS approach appears to better 
synthesize the information from two stratification 
variables and appears to have fewer methodological 
problems. 
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Table I: Design effects for univariate and bivariate MBSS and D-H stratified plans using optimal allocation 
(20 strata total) 

Model-based Stratified Datenius- Hodges 

Book Volume Book Book Vo lume Book and Volume 
Population Alone Alone and Volume Alone Alone 10x2 5x4 4x5 2x10 

INVI 0.304 0.394 0.282 0.369 0.418 0.290 0.287 0.295 0.345 
INV2 0.271 0.285 0.249 0.336 0.309 0.288 0.284 0.285 0.284 
INV3 0.223 O. 166 O. 126 0.252 O. 174 O. 184 O. 181 O. 181 O. 183 

Table 2: Design effects for univariate and bivariate MBSS and D-H stratified plans using equal 
(20 strata total) 

Model-based Strati fied Datenius-Hodges 

Book Volume Book Book Volume Book and Volume 
Pop. Alone Alone and Volume Alone Alone 10x2 5x4 4x5 2x10 

INVI 0.332 0.500 0.317 0.410 0.479 
INV2 0.537 0.375 0.338 0.652 0.423 
INV3 0.413 0.195 0.159 0.424 0.199 

0.456 0.538 0.615 0.516 
0.321 0.315 0.315 0.313 
O. 198 O. 198 O. 199 0.206 
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Difference versus log of Stratification 
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Fig ure 3: 
Scatterplot of A u d i t  versus Vo lume 
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