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1. INTRODUCTION 

Finding a su i tab le  c l us te r i ng  a lgor i thm has 
long been a problem when processing remotely  
sensed d ig i t a l  data from sa te l l i t e s  for crop area 
estimation. In the PEDITOR software system used by 
the Nat ional  A g r i c u l t u r a l  S t a t i s t i c s  Serv ice 
(NASS), the data p resented  to a c l u s t e r i n g  
a l go r i t hm  are u s u a l l y  assumed to represent  a 
single crop or ground cover type. This assumption 
is j u s t i f i e d  since NASS has always had a large 
amount of ground in format ion avai lable from the 
enumerative surveys used to do area est imat ion 
w i thout  remotely sensed data. The add i t i on  of 
s a t e l l i t e  data is intended to improve the qua l i t y  
of the est imates by prov id ing addit ional inputs 
into a regression estimator [ i ] .  The data, usual ly 
from Landsat or SPOT s a t e l l i t e s ,  cons is t  of a 
number of p ixe ls  (p i c tu re  elements). Each pixel 
represents an area on the ground and has several 
channels, each represent ing  a scaled value of 
re f lec tance in a p a r t i c u l a r  spectral  band. The 
scaling is between 0 and 255 so that each channel 
takes one byte of storage. Typical  numbers of 
channels are seven for the Landsat Thematic Mapper 
(TM) and three for the French SPOT multi spectral 
scanner. Multitemporal data are often used to help 
distinguish crops that may have similar spectral 
c h a r a c t e r i s t i c s  in a s ing le  scene. The 
multitemporal data consist of two scenes over the 
same area but from d i f f e r e n t  dates, thus 
containing twice as much data as the single 
(unitemporal) scene. In order to reduce the 
computational burden, a subset of the available 
channels is of ten selected and used for 
processing. 

The spectral  cha rac te r i s t i c s  of a given crop 
or cover type are known as i t s  s ignature .  The 
s ignature  is a f fec ted  by var ious fac to rs  both 
internal and external to the crop in question. The 
internal factors re late to the crop's species and 
var ie ty ,  as well as i t s  stage of development at 
the time a s a t e l l i t e  image is taken. The external 
factors refer  to atmospheric condit ions present at 
the overpass  t i m e s ,  as we l l  as subsequent  
processing operat ions done on the data before 
del ivery to the user. 

* The authors thank James Mergerson for helpful 

comments and suggestions. 

The task of a cluster ing algorithm is to 
generate clusters representing distinct categories 
in the data, but also representing the entire data 
set. The approach of having each data set 
represent a specific crop or cover type is known 
as supervised clustering. 

Two c l us te r i ng  a lgor i thms,  known as ISODATA 
[2] and CLASSY [3] ,  have been studied.  Each is 
well known, but has been subject to some ch.anges 
made loca l l y .  The main basis for comparison is the 
qua l i t y  of estimates obtained from the same data 
through c luster ing with both programs. Clustering 
e f f e c t i v e n e s s  was eva lua ted  v ia  s t a t i s t i c a l  
measures computed by programs in PEDITOR [4,5] ,  
the sof tware system used fo r  a l l  computat ions 
described here. 

F i r s t ,  the two a lgor i thms as implemented at 
NASS wi l l  be described, followed by the resul ts of 
the comparison. 

2. CLUSTERING METHODOLOGY 

ISODATA and CLASSY both at tempt  to f ind  a 
c o l l e c t i o n  of c lus te rs  that  represent the input 
data set. A c luster  is represented by a mean value 
vector and a variance-covariance matr ix.  The means 
and covar iances fo r  a l l  c l u s t e r s  are used to 
perform a maximum l ike l ihood c l ass i f i ca t i on  over a 
large area, t y p i c a l l y  an ent i re  s a t e l l i t e  scene. 
The resu l t s  of the c l a s s i f i c a t i o n  are used as 
inputs to a regression est imator  to obtain the 
crop area estimates. 

With both a l go r i t hms ,  the user can ad jus t  
various parameters that govern the c lus ter ing.  A 
short i n i t i a l i z a t i o n  step is followed by a series 
of i t e r a t i o n s ,  each having two steps. The f i r s t  
step involves s p l i t t i n g  and merging of c lusters,  
while the second consists of a series of smaller 
i te ra t ions  that do c luster  adjustments. The ent i re  
procedure stops i f  no more s p l i t s  or merges are 
poss ib le ,  or i f  some c r i t e r i o n  i nvo l v i ng  user 
specif ied parameters is sa t i s f ied .  

The CLASSY a l g o r i t h m  was d e v e l o p e d  
s p e c i f i c a l l y  fo r  use w i th  spec t ra l  data from 
s a t e l l i t e s .  I t  is based on the assumption of a 
m u l t i v a r i a t e  normal mixture model for the data. 
The program attempts to est imate the number of 
components of the m i x t u re  v ia  a sequence of 
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hypothesis tes ts  using a l i ke l i hood  ra t i o  
cr i ter ion.  The parameters of each component are 
estimated using the i t e r a t i v e  f ixed point 
equations that result from a maximum likelihood 
formulat ion.  By contrast ,  ISODATA makes no 
assumptions about the distribution of the data. 

In ISODATA, the user selects an i n i t i a l  and 
minimum number of c l u s t e r s .  During the 
in i t ia l izat ion step, the entire data set is viewed 
as a hypercube. The in i t ia l  mean value vectors of 
the clusters are taken at evenly spaced intervals 
along the diagonal of this hypercube. During the 
cluster adjustment step that follows, each pixel 
is assigned to the cluster nearest to i t  in terms 
of ordinary Euclidean distance. The cluster mean 
value vectors'and variance-covariance matrices are 
recomputed from those p ixels assigned to the 
cluster. This procedure continues until a measure 
of convergence, the percentage of pixels that do 
not change c lusters  between two i terat ions,  
exceeds a threshold value. The threshold is 
selected by the user and usually fal ls between 98 
and i00 percent. The ISODATA algorithm exits when 
either no more splits or merges are possible, the 
minimum number of clusters specified by the user 
has been reached, or the optional maximum number 
of iterations has been reached. 

Spl i t t ing is only attempted on clusters for 
which a dispersion measure, the largest eigenvalue 
of the variance-covariance matrix, is larger than 
a threshold. The two clusters to be formed by the 
s p l i t  are i n i t i a l i z e d  using the ISODATA 
in i t ia l izat ion step, but only for pixels assigned 
to the cluster to be spl i t .  The cluster adjustment 
is then performed on those same pixels, for the 
two new c lusters  only. Once convergence is 
a t ta ined,  the new c lus te rs  are tested for 
v a l i d i t y .  The s p l i t  is retained only i f  the 
dispersion measures of the two new clusters are 
less than that of the original cluster by a user 
specified ra t io ,  and i f  the number of pixels 
assigned to each new cluster is larger than a 
specified minimum value. I f  the spl i t  is retained, 
the original cluster is discarded in favor of the 
new ones. Merging occurs when the Swain-Fu 
distance [6], a measure of separation between 
clusters, is less than a threshold. The merge is a 
s t ra ight forward union of the two c lus te rs ,  
weighted by the number of pixels in each. 

CLASSY is more complex than ISODATA in many 
ways. A key feature of CLASSY is that, unlike 
ISODATA, no pixel is completely assigned to any 
cluster. Instead, there is a probability generated 
for each pixel belonging to each cluster, known as 
the weight of the pixel relative to the cluster. 
Each cluster also has a weight, defined to be the 
mean of the weights of all pixels relative to that 

cluster. The in i t ia l izat ion step of CLASSY simply 
computes a single cluster based on the entire data 
set, setting all pixel weights relative to that 
cluster to I, and therefore the cluster weight 
also to 1. Unless there is very l i t t l e  var iabi l i ty  
in the data, new clusters should be generated by 
splits over the next few iterations. The cluster 
adjustment step consists of a series of maximum 
likelihood iterations in which the weights as well 
as the mean value vectors and variance-covariance 
matrices are adjusted. The test of convergence is 
maximum percentage of change in cluster weights 
according to a parameter set by the user, usually 
between two and five percent. The entire CLASSY 
algorithm ex i ts  i f  no s p l i t s  or merges are 
possible, or i f  the number of large iterations 
exceeds a value set by the user. 

When clusters are spl i t ,  the original cluster 
is not necessarily discarded. Instead, a tree of 
clusters is formed in which the spl i t  clusters are 
the children of the original cluster. The tree may 
be pruned during a merge, as wil l  be seen. As the 
tree grows and shrinks with s p l i t  and merge 
decisions, the number of ch i ld ren for  any 
particular cluster may become larger than two, so 
the tree is not a binary tree. However, i f  a 
particular cluster has only one child, that child 
will be deleted during a periodic tree cleanup. 

Clusters are e l i g i b l e  for  s p l i t t i n g  i f  the 
skew or kurtosis values of the variance-covariance 
mat r i ces  exceed a t h r e s h o l d .  Only end node 
clusters are e l i g i b l e  for s p l i t t i n g .  The i n i t i a l  
mean value vec to rs  and v a r i a n c e - c o v a r i a n c e  
matrices for the sp l i t  c lusters are obtained in a 
manner s im i la r  to the s p l i t  routine in ISODATA, 
but using those pixels having the largest weights 
for the c luster being sp l i t .  Cluster adjustment is 
then per fo rmed v ia  the maximum l i k e l i h o o d  
i terat ions,  again using only those pixels with the 
largest weights for the or ig inal  c luster .  

Merging takes place on c lus te rs  based on a 
s i m i l a r i t y  value der ived from the mean value 
vectors, variance-covariance matrices, and cluster 
weights. I t  occurs when th is s i m i l a r i t y  value is 
higher than a threshold. Since i t  is possible for 
a pa r t i cu l a r  c lus te r  to have a s im i l a r i t y  value 
higher than the threshold with more than one other 
c lus te r ,  the s i m i l a r i t y  values of a l l  pairs of 
c lus ters  exceeding the threshold are sorted and 
processed in descending order, being careful not 
to process any cluster more than once. The effect 
of the merge varies depending upon the re la t ive 
positions of the two clusters in the tree, leading 
to c luster  delet ion or actual merging. The merge 
is a straightforward combination of the mean value 
vectors and variance-covariance matrices, weighted 
by the i r  c luster weights. 
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CLASSY has been rewritten to better f i t  into 
the PEDITOR environment. In addition, two major 
changes have been made from the earl ier version. 
The f i r s t  is that all pixels are processed in all 
iterations, rather than the random sample used in 
the old version. The second is that the cluster 
spl i t  routine has been changed, making i t  similar 
to the one used in I SODATA. 

3. INPUT DATA 

The two clustering algorithms were compared 
using Landsat Thematic Mapper (TM) data from 1988 
for regions of western Iowa and eastern Arkansas. 
The crops of in terest  in Iowa were corn and 
soybeans, while in Arkansas they were cotton, 
r i c e ,  and soybeans. The Iowa data were 
unitemporal, with a sa te l l i t e  overpass date of 
July 25. The Arkansas data were multitemporal, 
with overpass dates of May 17 and August 5. For 
Iowa, a l l  seven TM channels were used. For 
Arkansas, channels 2 through 5 from both the early 
and late season scenes were used, resulting in an 
eight dimensional data set. 

The f o l l o w i n g  is  a b r i e f  d e s c r i p t i o n  of  how 
the input data fo r  the c l us te r i ng  algor i thms were 
ob ta ined .  Each s p r i n g ,  NASS conducts the June 
A g r i c u l t u r a l  Survey (JAS),  a n a t i o n a l  sample 
survey tha t  uses both an area frame and a l i s t  
frame. The area frame part  of  the survey involves 
a s t r a t i f i c a t i o n  of  each s t a t e ' s  area in to  land 
cover c lasses.  Wi th in  each stratum, the land is 
f u r t h e r  subd iv ided i n t o  sampling un i ts  known as 
segments, u s u a l l y  one square mi le .  Enumerators 
v i s i t  a random sample o f  segments from each 
s t ra tum and c o l l e c t  data on crops p lan ted  in 
spec i f i c  f i e l d s ,  as wel l  as l oca t ion  of features 
such as roads, woods, and water. 

For this study, the sate l l i te  scenes covering 
the Iowa and Arkansas regions were registered to a 
map base so that pixels corresponding in location 
to the JAS f ie lds could be ident i f ied.  Pixels 
whose ground data contained more than one cover 
type were removed and the remaining pixels were 
placed in special f i les,  called packed f i les. All 
covers containing fewer than five percent of the 
total number of pixels in the area covered by the 
sample segments were combined into a single packed 
f i l e .  A cl ipping algorithm based on principal 
components [7] was used to remove outl ier pixels. 
The most prevalent cover types in the Iowa region 
were corn (45% of the sample area), soybeans 
(31%), and permanent pasture (7%). The main covers 
in the Arkansas region were soybeans (32%), rice 
(17%), id le cropland (16%), woods (13%), and 
cotton (I0%). 

4. PERFORMANCE MEASURES 

The tes t  runs done fo r  each cover using I SODATA 
and CLASSY were compared using three in te rna l  and 
four  ex te rna l  c l u s t e r i n g  c r i t e r i a .  The in te rna l  
c r i t e r i a  were among the best from a large number 
studied by M i l l i g a n  and Cooper [8 ,9 ] ,  using Monte- 
Carlo methods. They measure an a lgo r i t hm 's  a b i l i t y  
to m in im i ze  w i t h i n - c l u s t e r  v a r i a b i l i t y  w h i l e  
m a x i m i z i n g  s e p a r a t i o n  between c l u s t e r s .  The 
in te rna l  measures are as fo l lows :  

1. Cal inski-Harabasz index" 

C.H. = 

C 

(m-c) ~ [mil~i-~l 2] 
i = l  

c ~ i  I 2] 
( c - i )  Z z i j - z i  I 

i=1 j = l  

2. BIW index" 

B/W : [db/fb ] / [dw/fw ] 

3. P o i n t - b i s e r i a l  c o r r e l a t i o n  c o e f f i c i e n t "  

P B : [db-d w] [ f w f b / f d 2 ] I / 2 / s  
• " d 

where" 

m = number of p ixe ls  in data set 
c = number of  c lus te rs  formed 
m i = number of  p i xe ls  in c l us te r  i ( i = l  . . . .  c) 

= vector of spectra l  values fo r  c l us te r  z i j  
i ,  p ixe l  j ( j = l  . . . . .  m i )  

zi = mean vector of  p i xe ls  in c l us te r  i 
z = mean vector  of  a l l  p i xe ls  in data set 
d b = sum of pai rwise between-c luster  

distances between p ixe ls  
d w = sum of  pai rwise w i t h i n - c l u s t e r  distances 

between p ixe l  s 
fb = number of  between-c luster  p ixel  pai rs 
fw = number of  w i t h i n - c l u s t e r  p ixe l  pai rs 
fd = to ta l  number of  p ixe l  pa i rs  (= m(m-l ) /2)  
s d = standard dev ia t ion  of a l l  pa i rwise 

distances 

The p a i r w i s e  d i s t a n c e s  r e f e r r e d  to  are 
E u c l i d e a n  d i s t a n c e s .  The t h r e e  c r i t e r i a  are 
p o s i t i v e  measures of  c l u s t e r i n g  e f f e c t i v e n e s s .  
C.H. is an adjusted r a t i o  between sums of squared 
distances,  analogous to an F - s t a t i s t i c .  B/W is the 
r a t i o  between the mean be tween-c lus te r  and mean 
w i t h i n - c l u s t e r  p a i r w i s e  d i s t a n c e s .  The p o i n t -  
b i s e r i a l  c o e f f i c i e n t  is a measure of  c o r r e l a t i o n  
between the set  o f  p a i r w i s e  d i s t a n c e s  and a 
v a r i a b l e  t ak ing  the values 0 or i according to 
whether  or not two p i x e l s  are from the same 
c lus te r .  
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The external performance measures are related 
to operations done on the data after clustering, 
namely classification and regression estimation. 
Following each set of clustering runs, all pixels 
within the sample segments were classified to a 
cover. The categories and discriminant functions 
formed via c l u s t e r i n g  were used by the 
classif ication program. Prior probabilities for 
the categories, computed from information on 
relative acreage of the covers in the region of 
interest, were used to adjust the discriminant 
functions. 

Two measures, percent correct and commission 
e r r o r  ( C . E . ) ,  are d i r e c t  i n d i c a t o r s  of 
classif ication accuracy. Percent correct is the 
percent of pixels reported for a given cover type 
that were classified to that cover. Commission 
error is the percent of those pixels classified to 
a cover that were reported to a different cover. 
Another index commonly used is overall percent 
correct, the percent of all pixels in the data set 
classified to their reported cover type. 

Within the sample area for specified strata, 
the NASS crop area estimation procedure uses 
regression methodology to relate classified pixel 
counts to the ground reference data. For this 
study, only one stratum per state was used. The 
counts of pixels within each sample segment 
classified to a given cover were regressed against 
the corresponding acreage values from the JAS 
enumeration. A f i r s t  order regression model was 
used, generating standard least squares parameter 
estimates. 

In operational remote sensing, the regression 
equations wi th in  s t rata are used to compute large 
scale (region level )  crop area estimates, based on 
c l a s s i f i c a t i o n  of  a l l  p i x e l s  in the scenes 
covering the region. Proration is used to estimate 
crop acreages in areas where i t  is not feasible to 
use remote ly  sensed data (e .g .  c loud covered 
areas). The large scale regression estimates can 
be compared wi th the d i r ec t  expansion estimates 
computed using only JAS survey data. 

The key c r i t e r i o n  used by NASS to evaluate 
remote sens i ng  e s t i m a t i o n  accuracy  is  the 
regression coe f f i c ien t  of determination: 

n 
[ Z ( x j - x ) ( y j  -~)]2 

R 2 = j= l  
n n 

(xj_~)2 Z (yj_~)2 

j= l  j= l  

where: 

n = number of segments 
xj = number of p ixels c lass i f i ed  to crop in 

segment j 
y j = reported acres of crop in segment j 

= mean pixels per segment c lass i f i ed  to 
crop 

= mean acres per segment reported to crop 

R 2 measures the goodness of f i t  of the regression 
equa t i on .  I t  is  c l o s e l y  r e l a t e d  to r e l a t i v e  
e f f i c iency  (R.E.), the ra t io  between the variances 
of the d i rec t  expansion and regression estimates. 

5. RESULTS 

For the Iowa data set, the crops of interest 
were corn and soybeans. The other two cover types 
used for clustering were permanent pasture and 
'other' (al l  remaining covers combined). For 
Arkansas, the crops of interest were cotton, rice, 
and soybeans, and the additional covers were idle 
cropland, woods, and 'other'. Although performance 
measures were computed for all of these covers, 
estimation efficiency for the crops of interest is 
most important to NASS. 

The two clustering programs were run on the 
same data sets, with the input parameters used 
being the default values. These defaults had been 
chosen previously after extensive testing showed 
that they gave the best performance among all sets 
of values tested. The sample sizes were 28 
segments for Iowa and 22 for Arkansas. 

Table 1 gives the computed values of seven 
c luster ing measures for  each cover type tested. I t  
is seen that  ISODATA produced c lus te r i ngs  wi th  
higher values of the three internal  c r i t e r i a  for 
a l l  covers in each s ta te .  This i nd i ca tes  that  
ISODATA was more e f f e c t i v e  than CLASSY in 
producing compact, well defined c lusters .  

The main basis f o r  s e l e c t i n g  a c l u s t e r i n g  
a lgor i thm is the q u a l i t y  of the r esu l t i ng  area 
e s t i m a t e s ,  as measured by the  r e g r e s s i o n  
coe f f i c i en t  of determinat ion. Table i shows that 
in lowa, ISODATA generated a higher value of R 2 
than CLASSY fo r  corn,  permanent pasture ,  and 
' o t h e r ' ,  but a lower va lue f o r  soybeans. In 
Arkansas, R 2 was higher with ISODATA than CLASSY 
for  f i ve  of the s ix  cover types,  w i th  ' o the r '  
being the exception. 

To assess  w h e t h e r  I SODATA p r o d u c e d  a 
s i g n i f i c a n t l y  be t te r  regression f i t  than CLASSY, 
F- tests  for  equa l i t y  of residual  variances were 
performed on a l l  cover types for  both states. The 
r e s i d u a l s  were assumed to be independen t ,  
i d e n t i c a l l y  d i s t r i b u t e d ,  and normal wi th mean 
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zero. The tes ts  were one-sided with the 
a l te rna t i ve  being that the variance of the 
regression residuals was smaller,for ISODATA than 
for CLASSY. The test stat ist ic F is equal to the 
ratio between the sums of squared residuals for 
ISODATA and CLA, SSY, respectively. Table 2 gives 
the value of F , degrees of freedom (same for 
numerator and denominator), and approximate p- 
value for each cover type. From the p-values, i t  
is seen that at the 10 percent level, ISODATA 
resulted in a s ign i f i can t l y  smaller residual 
variance than CLASSY for two covers in Iowa (corn 
and 'o ther ' ) ,  and two in Arkansas (cotton and 
soybeans). This represents three of the five crops 
of interest in the two states. 

Tables 1 and 3 g ive  the c l a s s i f i c a t i o n  
accuracy measures for the two data sets. Percent 
correct  was higher with ISODATA than CLASSY for 
al l  four covers in lowa and f ive of the six covers 
in Arkansas. The commission error was lower with 
I SODATA except for one l owa cover and one Arkansas 
cover. ISODATA showed a higher overal l  percent 
correct than CLASSY in both states. 

6. DISCUSSION 

The results showed that I SODATA produced more 
compact, wel l -def ined clusters than CLASSY, 
leading to overall better c lass i f i ca t ion  and 
estimation accuracy. However, the disparity in 
performance was not that great. The fact that, in 
a few cases, CLASSY gave higher values of certain 
performance measures than ISODATA is evidence that 
the algorithm may s t i l l  be useful. 

The cur rent  study represents a pre l iminary 
assessment of the performance of CLASSY, fol lowing 
the complete reworking of the algorithm. Further 
research could lead to refinements that  would 
improve the c lus te r ing  e f f i c i ency .  ISODATA has 
been evaluated more thoroughly and is less l i ke l y  
to be modified in the near future. 

The resul ts presented here led to a decision 
to use only ISODATA in the near future. A longer 
term c lus te r ing  strategy for future operational 
programs w i l l  be developed based on f u r t h e r  
research on the two algorithms. Possible areas for 
future inves t iga t ion  include the e f fec t  of the 
pixel  data d i s t r i b u t i o n  on performance of the 
algorithms, the degree of improvement achieved by 
using multitemporal instead of unitemporal data, 
and the e f fec t  of data sampling on c lus te r ing  
effectiveness. 
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Table 1: Clustering Performance Measures 

IOWA 
Cover 
Corn 

Method No. Cats. C.H. B/W 
ISODATA 16 7,355.5 2.75 
CLASSY 17 1,341.1 1.71 

Soybeans I SODATA 11 9,819.3 
CLASSY 15 2,888.2 

Perm. Pasture ISODATA 3 2,360.0 
CLASSY 14 562.9 

Other ISODATA 5 6,489.0 
CLASSY 21 1,006.9 

ARKANSAS 
Cover 
Cotton 

Method No. Cats. C.H. 
ISODATA 4 3,866.4 
CLASSY 9 739.4 

Rice ISODATA 7 12,904.7 
CLASSY 18 2,500.5 

Soybeans I SODATA 10 10,738.2 
CLASSY 15 4,680.8 

Idle Cropland I SODATA 6 5,565.4 
CLASSY 10 2,355.2 

Woods ISODATA 7 7,502.4 
CLASSY 18 1,915.0 

Other ISODATA 5 4,484.9 
CLASSY 19 1,484.2 

Table 2: Results of F-tests on Regression Residuals 

State 
Iowa 

3.00 
1.89 

Arkansas 

1.83 
1.35 

2.28 
2.06 

B/W 
2.06 
1.18 

3.17 
i .58 

2.68 
1.80 

2.22 
1.54 

4.25 
2.20 

2.36 
i .94 

Cover ~ d_~f p-value 
corn .570 24 .09 
soybeans 1.266 24 >.5 
permanent pasture .881 24 .4 
other .388 24 .013 

cotton .472 20 
rice .970 20 
soybeans .549 20 
idle cropland .809 20 
woods .952 20 
other 1.329 20 

Table 3: Overall Percent Correct 

Method Overall % Correct 
ISODATA 73.74 
CLASSY 70.06 

State 
Iowa 

ISODATA 75.02 
CLASSY 69.09 

Arkansas 

P.B. 
.324 
.203 

.415 

.274 

.515 

.162 

.477 

.237 

P.B. 

.517 

.106 

.540 

.226 

.506 

.351 

.518 

.291 

.688 

.197 

.718 

.266 

.05 
.5 

.095 
.4 
.5 

>.5 

R 2 m 

.915 

.851 

.908 

.927 

.729 

.692 

.879 
• 688 

R 2 

.989 

.977 

.937 

.935 

.844 

.716 

.776 

.723 

.749 

.737 

.443 

.581 

R.E. 

10.83 
6.18 

9.99 
12.64 

3.39 
2.99 

7.60 
2.95 

R.E. 

84.52 
39.94 

14.46 
14.02 

5.80 
3.18 

4.04 
3.27 

3.61 
3.44 

1.62 
2.16 

% Corr. 
85.03 
82.62 

82.93 
76.60 

49.99 
40.62 

51.70 
50.58 

% Corr. 
87.75 
82.26 

87.96 
82.28 

81.29 
66.23 

67.02 
58.39 

76.87 
72.06 

36.95 
56.85 

%C.E. 
20.80 
25.45 

20.23 
17.53 

53.84 
57.45 

36.11 
44.72 

%C.E. 
11.75 
21.10 

15.12 
22.33 

22.61 
29.16 

39.43 
44.50 

23.58 
25.22 

44.90 
44.35 
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