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i. INTRODUCTION 

There exists a considerable body of research on 

small area estimation using cross-sectional survey 

data in conjunction with supplementary data 

obtained from census and administrative sources. A 

good collection of papers on this topic can be 

found in Platek, Rao, S~rndal and Singh (1987). 

The basic idea underlying all small area methods is 

to borrow strength from other areas via a model 

containing auxiliary variables from the 

supplementary data. Recently time series methods 

are being employed for repeated surveys to develop 

improved estimators for small areas; see Choudhry 

and Rao (1989) and Pfeffermann and Butch (1990). 

It is interesting to note that after the initiative 

of Scott and Smith (1974) on the application of 

time series methods to survey data, there has been 

only lately a resurgence of interest in developing 

suitable estimates of agsregates from complex 

surveys repeated at regular time intervals; see 

e.g. Bell and Hilmer (1987), Binder and Dick 

(1989), Tiller (1989), and Pfeffermann (1991). 

In this paper we consider some natural 

generalizations of the Fay Herriot (FH) estimator 

for small areas when a time series of direct small 
area estimates is available. The important work of 

Fay and Herriot (1979) shows how direct estimators 
can be smoothed by cross-sectional modelling of 

small area totals. The resulting estimators are 

composite estimators (i.e. convex combinations of 

direct and model-based synthetic estimators) and 

are also empirical best linear unbiased predictors 

(EBLUPs). With the use of structural models, we 

derive time series EBLUPs which combine both cross- 

sectional and time series data. The main purpose 

of this paper is to compare time series EBLUPs with 

cross-sectional estimators such as post-stratified 

domain, synthetic, FH and sample size dependent 

estimators. 

An empirical study based on Monte Carlo 

simulations from real time series data obtained 

from Statistics Canada's biannual farm surveys was 

conducted to investigate potential gains in 

efficiency with time series EBLUPs. The main 

findings of the study are 

(i) There can be substantial gains in efficiency 

with time series EBLUPs over cross-sectional 

estimators. 

(ii) Within the class of time series methods 

considered in this paper, introduction of serial 

dependence in the random small area effects is 

found to be considerably more beneficial than 

dependence of the parameters of the synthetic 

component of the cross-sectional EBLUP (i.e. FH 

estimator). 

(iii) Within the class of cross-sectional methods, 

the performance of FH estimator is best overall 

followed by that of sample size dependent 

estimator. 

(iv) Althoush any smoothed version of the direct 

small area estimator is expected to be biased, the 

time series EBLUPs exhibit less bias in magnitude 

than other methods includin5 FH estimator. 

Section 2 contains a version of various cross- 

sectional methods for small area estimation. Time 

series EBLUPs are described in Section 3 and the 

details and results of the Monte Carlo comparative 

study are given in Section 4. Finally, some 

directions for future work are mentioned in the 

Section 5. 

2. METHODS BASED ON CROSS-SECTIONAL DATA 

In this section, we assume that information is 

available only for a particular point in time t, 

t=l ..... T. Let 8 t denote the vector of small area 

population totals 0ke, k=l .... K, at time t. Here we 

define briefly some well known small area 

estimators under the assumption that the underlying 

sampling design is stratified simple random; for 

more details, see Rao (1986). S~rndal and 

Hidiroglou (1987) and Pfeffermann and Burck (1991) 

also contain a good survey of various small area 

estimators. 

2.1 Method 1 (Expansion estimator) 

This method of estimation is defined by 

glkt : Eb (NhJni, t) ~-,S,,~ Y ~ '  ( 2 . 1 )  

where a t  t ime  t ,  Yhs~ i s  t he  j t h  o b s e r v a t i o n  i n  t he  
h s t r a t u m ,  s ~  deno tes  the  se t  o f  n ~  sample u n i t s  
falling in the kth small area in the hth stratum 

and nht, Nh~ denote respectively the sample and 

population sizes for the hth stratum. The above 

estimator is generally unreliable because the 
random sample size nhk ~ is likely to be small in 

expectation and could have high variability. 

Conditional on the realized sample size nbk ~, glk~ is 

biased. However, unconditionally, it is unbiased 

for eke. 

2.2 Method 2 (Post-stratified domain estimator) 

We will refer to this estimator also as the 

direct small area estimator. Suppose the 

population size Nhk t is known for each (h,k, t). The 

efficiency of estimator glk~ could be improved by 

post-stratification. Suppose small areas them- 

selves constitute post-strata within strat~nn h. We 

have 

However, this estimator also may not be 

sufficiently reliable because of the possibility of 

nhkt's being small in expectation. If nbk ~ = 0, the 

above estimator is not defined. In practice, some 

ad hoc value such as 0 is often chosen for ~h,~ when 

nhk ~ = 0. In the empirical study presented in this 

paper, we have set y~ as (Xh*~/Xh~) ~h~ whenever 

nhk ~ = 0, where X is a suitable covariable. 

The estimator g2h~ is both conditionally and 

unconditionally unbiased. 

2.3 Method 3 (Synthetic estimator) 

It is possible rio define a more efficienfi 

estimator by assuming a model which allows for 

"borrowing strength" from other small areas. This 

gives rise to synthetic estimators. For instance, 

suppose different small area totals are connected 

via the auxiliary variable Xk~ by a linear model as 

Ok~ = ~it + ~2~ Xkt, k=l .... K, (2.3a) 
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or in matrix notation 

@~ = F~ ~c, 

where F e = (F,e, F~¢ ..... Fr~)', F e = (i, Xre)'. 
consider a model for the direct small 

estimators g~'s as 

( 2 . 3 b )  

Now 
area 

( 2 . 4 )  

where g= e = ( ~ :  ..... ~)', £~= (e,~ .... ere)', ek~'s are 
uncorrelated as k varies with mean 0 and variance 

Vk= • 

Denoting by ~c the weighted least squares (WLS) 
estimate of ~, we obtain the regression-synthetic 

estimator of 8~e under the assumed model as 

g~ = Fc ~e' (2.5) 

The above estimator could be heavily biased unless 

the model (2.3) is satisfied reasonably well. 

2.4 Method 4 (EBLUP - empirical best linear 

unbiased predictor) 

Using the empirical Bayes approach of Fay and 

Herriot (1979) or the more general best linear 
unbiased predictor (BLUP) approach, see e.g. 

Battese, Harter, and Fuller (1988), and Pfeffermann 

and Barnard (1991), the bias of the synthetic 

estimator can be reduced considerably by using a 
composite estimator. This is obtained as a convex 

combination of g~e and a somewhat modified ~e. For 
this purpose, it is assumed that 

8~ = F~ ~e + ~e, (2.6) 

where a~e s are uncorrelated random small area 

effects with mean 0 and variance w~e. Thus we have 

a somewhat modified model for g~t as 

ga¢= F~ ~¢+ a=+ ee. (2.7) 

Here @~ is also assumed to be uncorrelated with e~. 
Let g~ denote the modified synthetic estimator of 

9~ under (2.7). The BLUP of 9~ under the model 
defined by (2.6) and (2.7) is 

(2.8) 

where 

A~ = (vZ' + ~;')" v[' = ~,Ui', 

Z-h~ = (vZ ~ * w[*) -~ W[ ~ = V~ U[*, (2.9) 

U e = V~ + W e , V~ = diag(v~e .... v~), 

w e = diag(w~ ..... w~). 

The expression (2.8) follows from the general 

results on linear models with random effects, see 

e.g., Rao (1973, p. 267 and Harville (1976). The 

BLUP or BLUE of F c ~ is g~*~ and BLUP of 

a c is Ac(i~2c - _g~'c) • It may be of interest to note 
that the formula for BLUP does not change 
regardless of known or unknown ~,. However, its 

MSE does change as expected due to estimation of 
~,. It can be shown that, 

~sB(~,~- e~ I~ known) - w~ u;  ~ v~ 
(2.10) 

. v ~ - v ~ u ~ v r ,  

and 

= MSE{ (A: + W~ UZ ~(I-A~)) _~ 

- Ve UZ ~ (I-At)  a= ) 
(2.11) 

where A t = Ft(F~U~IF~) "I F e' U~ I. The MSE matrix of 

(2.11) can be easily obtained from MSEs OF e, and 
a,. 

When V~ and W e are replaced by their estimates, 

the estimator ~4r is termed EBLUP. Note that the 

model (2.6) is more realistic than (2.3), and 

therefore, the performance of ~4r is expected to be 

quite favourable. The estimator ~4r approaches 

~ when vk~'s get small, i.e. when nhk e's become 

large. However, it remains biased in general, 

conditional on 9,. 

2.5 Method 5 (Sample Size dependent estimator) 

An alternative composite estimator which can 

considerably attenuate bias of the synthetic 

estimator ~ as compared to the EBLUP ~ is given 

by the sample size dependent estimator of Drew, 

Singh, and Choudhry (1982). It is defined as 

~sr-Ar ~{~ + (l-At) ~,~, (2.12) 

where A t = diag(8~t ..... 6kt), 

~kt ~h /~c/l ~h Nnk~ otherwise (2.13) 

~hkt being nbkt(Nh~/nhe) , and the parameter l is 
chosen in an ad hoc manner as a way of controlling 

the contribution of the synthetic component. In 

practice, i is generally chosen as I, 1.5 or 2. 

The above estimator takes account of the realized 

sample size nhkt'S and if these are deemed to be 

sufficiently large according to the condition in 

(2.13), then it does not rely on the synthetic 

estimator. This property is somewhat similar to 

that of ~4~ • However, the condition in (2.13) 

could be satisfied even if some or all n~t's are 

small, and then unlike ~r , the above estimator 

fails to borrow strength from other small areas 
even though ~2e is unreliable. 

3. METHODS BASED ON POOLED CROSS-SECTIONAL AND 

TIME SERIES DATA 

Suppose information is available for several time 

points, t=l...T, in the form of direct small area 

estimators ~2r and also the small area population 

totals for the auxiliary variable. We will now 

introduce some estimators which generalize the Fay- 

Herriot estimator ~r in different ways by taking 

account of the serial dependence of the direct 

estimates {~t : ~-I...~. Recall that for the 

Fay-Herriot estimator, the model for 9~ has two 

components, namely, the trend component F~ r and 

the area component @c • The estimator ~r borrows 

strengh over areas for each t and is given by the 

sum of two components, each being BLUP (BLUE) for 

the corresponding random (fixed) effect, i.e., 

~c" Fr ~+ ~. (3.1) 

Methods based on time series data could, however, 

borrow strength over time as well. There are 

several ways one could build serial dependence in 

the series {~t}. We introduce three estimators 

~t, ~c and~t corresponding to three interesting 

scenarios which are motivated from specific 

structural models for serial dependence. 

3.1 Method 6 (Time Series EBLUP-I) 

In this case, the structural time series model 
for the direct small area estimates{~: t=l,..T) 

is specified by the following state space model. 

456 



Let a~ denote (~, a~)' and H~ denote (F~, I). 

Observation Equation 

~ : o~ + ~,. 

0 c -  = F~  ~ c  + ac~ ~" H,~ o~ c ~  

( 3 . 2 a )  

Transition Equation 

q~ = G~.,÷ ~ ( 3 . 2 b )  

where / [ ' /  Ge = 0 ' -{~ = ~c , ( 3 . 2 c )  

along with the usual assumptions about random 

errors, i.e., e~ (~ are all mutually uncorrelated,(~ 

is uncorrelated with a~. for s< t, and that 

~ " (0, Ve), (e ~ (0, F T) where Pc=block diag (B~, We). 
The covariance matrices Ve, B e, and W e are generally 

diagonal. If ~ evolves according to a random 

walk, then G~ ~) =-/. The second diagonal submatrix 

of G~ is zero because a t's are assumed to be 
serially independent. 

The estimator ~z is BLUP of 8~ given all the 

direct estimates up to time T. To find _g~z, first 

we will find BLUP ~ of at, from which BLUP of 
8 z can be simply obtained as H~ ~r. Since a~'s are 

connected over time according to the transition 

equation, it is possible, albeit cumbersome, to ~et 

~-r directly from the theory of linear models with 

random effects for the complete data . However, it 

could be convenient to compute it recursively using 

Kalmar Filter (KF). The recursion algorithim for 

obtaining ~I, is given as follows. 

A time t-l, let (:3~_~ and P~-i denote respectively 

the BLUP of a~ and it MSE i.e., 

~-i.-~-~-i- (0, P~-i.) (3.3) 

Therefore, the BLUP ~l~-i of a~ and its MSEP~I~_ , 
based on ~-i observations is given by (in view of 

the relation 3.2b), 

-~i~-~ = ~ ~-~, ~ i ~ - ~  = a~ ;~_~ a~ + o~ ( 3 . 4 )  

Now, combining data at t, i.e., g=~ with a-=l~.i, 

one can get BLUP ~= and its MSE as 

~ " ~ i ~ - ~  + ( 3 . 5 a )  
P~I~_~ H~' (n=P=l~_ ~ H~' + V=) -~ (ga~- H= ~i<_,) 

and 

MSE ( ~ c - a ~ ) = Pc = Pcl=-i - ( 3.5b ) 

P~l~-i H~ (H~ P~l~-i S~ + V~)'* H~ P~l~-i 

In the usual KF terminology, (3.4) and (3.5) 

specify respectively the prior and posterior 

distributions of a~ once the data at time t becomes 

available. Note that here distributions are 

specified only up to first two moments which is of 

course sufficient for linear Bays estimation. The 

results (3.5a) and (3.5b) respectively give the 

posterior mean and variance of a~ given data up to 
time t. 

The above recursive algorithm or KF can be 

started at the initial time t=l by noting that 

~ and P, are given by (2.8) and (2. Ii) 

respectively, i.e. the corresponding expressions 

for FH estimator at time t=l. The recursion is 

continued until t=T to obtain ~z and the MSE 

matrix Pr. This, in turn, yields BLUP of 0 z ast=l 

and its MSE as H z PzHz'. 

We will now illustrate method of moments for 

estimating model parameters in the special case 

when there is only one auxiliary variable Xbe , i.e. 

F~ = (Fie .... F~)' Fk~ = (I, Xke)', ~e = (~le, ~2~)',w,~ = z2 
and when ~ follows a random walk i.e. G~ I) =I. Let 

B e = diag(7~, 7~) • Now, unknown parameters "17~, 71 
can be estimated by the method of moments as 

follows. The parameter T i is obtained as the 
solution of 

E ; . .  ~., (g~, , , - / , ,< ~<) ' / (v , ,<  + ,,,,<<) : r ( k - ~ )  ( 3 . 6 )  

If there is no positive solution, we set z 2 as zero. 

Here ~, denotes the WLS estimate of ~e based on 

only the cross-sectional data at t. This is 

analogous rio the method used in Fay and Herriot 

(1979) for cross-sectional data. An estimate of T~ 

can be obtained by solving (for i=i,2) 

where d]2 ~ is the (i, i) fih element of 

(F~-I -i (F~ U~ I F e) -i UL-I Fe.l) -~ + 

When the above estimators of model parameters are 

substituted in the expression for H T~_r we get the 
time series EBLUP-I estimator _g6r at time T. 

3.2 Method 7 (Time Series EBLUP-II) 

The equations for state space model for this case 

are similar rio 3.2(a) and (b) except that the 

transition matrix G e and the covariance mafirixFa 
are different. We have two cases. 

3.2.1 Case 1 First suppose ~'s fixed and time- 

invariant but a~'s are serially dependent. Then 
the matrices G~ and F~ are given by 

0 G~ 2) ' P~ = block diag (0, Qt) (3.8) 

For a given choice of Q~, the KF can be run as 

in method 6 with the initial values ~, and P, at 

t=l obtained from the FH estimator at t=l. If @~ 

is assumed to evolve according rio a random walk, 

then G~ 2) =I. Moreover, if Qc is taken as vii, then 

the only unknown parameter v 2 can be estimated from 

an equation similar to (3.6). We will denote by 

_gT~ the EBLUP obtained in this case when the 

parameter estimate is substituted. Also we will 

denote by g~ the estimator in the special case when 

the common value of ~ is assumed known. 

3.2.2 Case 2 Here we assume that ~ 's are fixed 

but different for different time points. The area 

effects a~ evolve over time as before. The 

matrices Gc andF e are 

0 a~ 2) ' Fe = block diag{mI, Qe} (3.9) 

where m is a large integer. The expression of 

~-z and PT obtained from the KF in this case 
approximately give the correct formulas as m-~. 

The time series EBLUP in this case will be denoted 
by g~. 

3.3 Method 8 (Time Series EBLUP-II) 

As was the case with method 7, the equations for 

the state space model are similar rio 3.2(a) and (b) 

except that the two matrices G~ and r e are different. 
We have 

G~ = 0 G~ ~) ' Pc = block diag {B~, Qe}, (3.10) 
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If ~ and ~'s follow the random walk-process, then 

both G~ I) and G~ 2) are identity matrices. Moreover, 

as before, if B= = diag{y~, ¥~} and O~ = v21, then the 

model parameters v 2, y~, y~ can be estimated in an 

analogous manner by the method of moments. The 

resulting EBLUP of 0 r will be denoted by g,~. 

4. MONTE CARLO STUDY 

The cross-sectional and time series methods were 

compared empirically by means of a Monte Carlo 

simulation from a real time series obtained from 

Statistics Canada's biannual farm surveys, namely, 

the National Farm Survey (in June) and the January 

Farm Survey. Due to the redesign after the census 

of Agriculture in 1986, the survey data for the six 

time points starting with the summer of 1988 were 

employed to create a population for simulation 

purposes. To this, data from the census year 1986 

was also added. Thus information at one more time 

point was available although this resulted in a 3- 

point gap in the series. The parameter of interest 

was taken as the total number of cattle and calves 

for each crop district. For simplicity, 

independent stratified random samples were drawn 

for each occasion from the pseudo-population 

although the farm surveys use rotating panels over 

time. The auxiliary variable used in the model was 

the ratio-adjusted census '86 value of the total 

cattle and calves for each small area. 

4.1 Desisn of the simulation experiment 

First we need to construct a pseudo-population 

from the survey data over six time points (June'88, 

Jan'89 ..... Jan'91). It was decided to avoid 

variability due to changes in the underlying 

population over time by retaining only those farms 
which responded to all the six occasions. 

The total count of farm units was found to be 

1160 which represented a total of over 40,000 farms 

as a result of appropriate sampling design 

weighting. For the pseudo-population, we 

replicated the 1160 farm units proportional to 

their sampling weight so that the total size N of 

the population was brought down to a manageable 

number of 10362 for micro-computer simulation. 

The pseudo-population of 10362 units was 

stratified into four take-some and one take-all 

strata using Census'86 count data on cattle and 

calves as the stratification variable. The total 

sample size was 1036 (about I0% sampling rate) and 

the size of the take all stratum was Ii. A total 

of 5000 simulations were performed. For each 

simulation, samples were drawn independently for 

each time point using a stratified simple random 

sampling without replacement. The 5000 simulations 

were conducted in 2500 sets of 2 simulations where 

each set corresponds to a different vector of 

realized sample sizes in the twelve small areas 

within each stratum. This was required to compute 

certain conditional evaluation measures as 

described in the next subsection, see also S~rndal 

and Hidiroglou (1989). 

4.2 Evaluation Measures 

Suppose m simulations are performed in which 

m I sets of different vectors of realized sample 

sizes in domains (h,k) are replicated m 2 times. 

The following measures can be used for comparing 

performance of different estimators at time T. Let 

i vary from 1 to m i and j from 1 to n h. 

(i) Absolute Relative Bias 

ARBk= I( m-1 ~ E(est)ljk- (tlue)k) I (tiue)~l (4-I) 
, j 

The average of ARB k over areas k will be denoted 

by ~[~. 

(ii) Root Mean Square Conditional Relative Bias 

_ (truek)) 2 1 (tluek) 2 _ B}~I2 
(4 .2a )  

B :  , , ,- '  

- (~(est)j iskl m2)2]/(truek )2 
(4.2b) 

The correction term B adjusts for the bias in 

the first term. The average of RMSCRB k over areask 
will be denoted by RMSCRB.. 

(iii) Mean Absolute Relative Error 

MA~ :m-~ Z jZ I (~ t ) , ,~ - ( t rue>~ I /  (true)~. (4.3) 

and  ~ d e n o t e s  t h e  a v e r a g e  o f  MARE k o v e r  a r e a s .  

(iv) Root Mean Squre Error 

RMSEi={m'* ~ ( (est)ljk- (tlue)k)2) I/2 (4.4) 

and RMSE as before denotes the average over areas. 

(v) Relative Root Mean Square Error 

RRMSEk = RMSE k / (true)k. (4.5) 

Again, we can define RRMSE as before. 

4.3 Estimators used in the Comparative Study 

There were thirteen estimators included in the 

study, namely, MI-M8 corresponding to g,~ to .gg~, 

M3a - M5a, M7a corresponding g~z to gSz and gSr when 

is assumed known, and finally MTb corresponding 

_g~r, - see section 3 for the definition of the 

estimators. We used a simple linear regression 

model for the synthetic component with the 

auxiliary variable defined as 

xk~ = (0~/81) 8kl ( 4 . 8 )  

where 6ki, 81 respectively denote the population 

totals for small area k and the province at t=l, 

i.e. at Census' 86. The estimator 8~ denotes the 

post-stratified estimator of 8~ from the farm survey 

at time t at the province level. Thus, Xk~ is 

simply a ratio-adjusted synthetic variable. The 

variances of error components in the regression 

model were assumed to be constant over areas. For 

time series models, it was assumed that the serial 

dependence was generated by a random walk. The 

above type of model assumptions have been 

successfully used in many applications and the main 

reason for our choice was considerations of 

simplicity. It was hoped, however, that the chosen 

models might be adequate for our purpose and might 

illustrate the desired differential gains with 

different types of models. 

Since the Census'86 data was included in the time 

series, the direct estimate g21 corresponds to 

Census'86 and therefore the survey error _~I would be 

identically 0. Moreover, from the definition of 

xkt, it follows that a reasonable choice of(~1, ~2) 

would be (0,I) which implies that a i must be O. 

Thus the covariance matrices B~ and W~ at t=l are 

null and therefore, the distribution ofa~ at t=l 

would not require estimation as was suggested in 
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section 3. The above modification in the initial 

distribution of £~ is natural in view of the extra 

information available from the census. Moreover, 

since the direct estimates ~2~ were not available 

for t=2,3,4; equations for estimating various 

model parameters were modified accordingly. For 
methods M3a - M5aandMTa, the value of ~ for t~2 

was fixed at (0,I) i.e. the same value 

corresponding rio t=l. 

4.4 Empirical Results 

The main results are shown in Figures 1 to 4. 

Figure 1 shows plots of the five evaluation 

measures averaged over small areas relative to theFH 

(M4) value. There is a clear pattern in the 

behaviour of various measures across different 

estimators. The direct estimator M2 does very well 

with respect to ~and RMSCRB. The time series 

methods M7 (also~f7a; MTb) andM8 perform somewhat 

worse than M2 with regard to bias, but overall they 

perform best. The FH estimator M4 (M4a) , sample 

size dependent estimator M5 (and MSa) and the first 

time series method M6 are almost at par. Both the 

expansion estimator M1 and the synthetic estimator 

M3 (and M3a) have very large conditional biases. 

We have not shown the Monte Carlo standard errors 

in the figures but they are all found to be quite 

negligible. Figures 2 to 4 show plots of RMSE k for 
small areas divided into three size groups, namely 

low, medium and high, based on the ranking of their 

true population totals at time T. 

The main conclusions are listed in Section 1 and 

will not be repeated here. 

5. CONCLUDING REMARKS 

It was seen by means of a simulation study that 

small area estimation methods obtained by combining 

both cross-sectional and time series data could 

substantially improve performance of estimators 

based only on cross-sectional data. The models for 

the study were chosen on general considerations. 

However, in practice, suitable diagnostics similar 

to those employed in Pfeffermann and Barnard (1991) 

should be performed before any model-based method 

can be recommended. It should also be noted that 

the small area estimators can be modified to make 

them robust to misspecification of the underlying 

model; see e.g. the constraints used in Fay and 

Herriot (1979)and an alternative approach suggested 

by Pfeffermann and Burck (1990). Further extension 

of the methods presented in this paper to the more 

realistic case of correlated sampling errors is 

currently being investigated. 
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