
Some Considerations in the Use of Linear
Networks to Suppress Tabular Data

Errol Rowe*
Bureau of the Census, Washington, D.C. 20233

A B S T R A C T Th e Census Bureau publ ishes the resul ts

of several surveys in t abu l a r form. However, occasional ly

it is necessary to suppress cer ta in i tems, i.e., table cells, of

in format ion in order to p ro tec t unique or easily identif iable

survey responden t s . Because of the add i t iv i ty of the ta-

bles, one must select complementary suppressions for such

tables in order to p reven t secur i ty breach. The purpose of

this p a p e r is to descr ibe l inear p rog ramming s t ra tegies for

de te rmin ing the c o mp l emen ta ry suppressions.

I N T R O D U C T I O N
The Census Bureau publishes the results of

several surveys in tabular form. However, occa-
sionally it is necessary to suppress certain items,
i.e., table cells, of information in order to protect
unique or easily identifiable survey respondents.
For example, suppose the table lists the average
yearly income of each chemical manufacturer in
the state of Delaware. Then, in order to maintain
the anonymity of the DuPont chemical company,
we would have to withhold its average income;
the DuPont company is by far the most dominant
chemical company in Delaware, hence its average
income is not comparable to any other chemical
manufacturers in that state.

Most of the Census Bureau's tables are addi-
tive, i.e., the last entry of each row or column is
the sum of the other entries in that row or column.
Because of this additivity, each row or column with
a suppression must contain at least one other sup-
pressed entry. For example, consider Table I in
the appendix and suppose some entry, ai, j say , is

to be suppressed. Then

j - 1 n - 1

ai , j = ai,n -- ~_~ ai ,k - ~_~ ai,k
k=l k = j + l

i - 1 rn-1

-- am , j -- Z a k ,j -- Z a k , j .
k= l k = i + l

Hence, we must protect the primary suppressed
cells - i.e., table cells corresponding to unique or

easily identifiable respondents, with complemen-
tary suppressions- i.e., table cells which protect
the primary suppressed cells. The purpose of this
paper is to describe linear programming strategies
for determining the complementary suppressions.

The usefulness of the suppression scheme will
depend on how much information remains in the
tables after the complementary suppressions have
been determined. For some users, usefulness will
depend on how many entries of the table remain
after suppression; whereas, for others, usefulness
will depend on the total value of the entries of
the table that remain after suppression. We will
consider primarily the latter situation as the first
situation can often be interpreted as a special case
of the second.

We describe below a strategy for obtaining a
solution of the tabular cell suppression problem
using network flow methodology. We also describe
a method for restructuring the problem to handle
negative flows. And finally, we consider various
methods to correct for over suppression.

T A B L E S A N D N E T W O R K S
Consider Table I in the appendix which, for

argument's sake, depicts (n- 1) products produced
in (m - 1) counties. Notice that each such table
can be represented in network form as indicated in
Network I. The ai,j represent the cost of shipping
one unit of a commodity across the respective arc.

Thus each two dimensional table has a natu-
ral network representation. Suppose now that ta-
ble entry ai,j is an initial suppression, i:e., it. is
considered too sensitive to be released. Then any
closed path in the network containing entry ai,j
forms a protection for ai,j in the sense that if none
of the table entries corresponding to arcs on the
cycle are released, then entry ai, j cannot be de-
termined; for example, suppose table entry a1,1 is
an initial suppression. Then the closed path con-
taining arcs al,1, al,n, a2.n, a2,1 provides adequate
protection for the initial suppression a1,1 since its

357

value cannot be determined from the resulting un-
suppressed terms in the corresponding row or col-
umn.

Our objective is to place each initial suppres-
sion in a table in a closed path while at the same
time minimizing the sum of the complementary

• ~S suppressions; i e., the sum of the ai,j correspond-
ing to arcs on the closed path which are not initial
suppressions.

Consider Table I I - (a) and its corresponding
network. We have used asterisks to indicate ini-
tial suppressions. To find the complementary sup-
pressions, we use a min imum cost flow algorithm.
Thus, suppose each arc has capacity o n e - i.e.,
only one unit can be shipped across each arc, and
that the flow may occur in either direction. Also,
since we wish to minimize the sum of the comple-

~S mentary suppressions we let the ai,j represent
the cost of shipping one unit across the arc cor-
responding to aid. However, the cost of shipping
one unit across an arc corresponding to a initially
suppressed cell is set to zero; this encourages the
algorithm to choose such cells. Let G and D rep-
resent the endpoints of the initial suppressed arc
labeled 95. The problem is to find the least cost
of shipping one unit through arc GD and back to
node G again. The route which minimizes the sum
of tile complementary cells is indicated in Network
I I - (b) .

We must now consider the problem of finding
the minimum cost of shipping one unit from node
D, through arc DC, and either back to node D or
to any node on the previously determined route
GDBAG. See Table I I - (c) and Network I I - (c)
for the solution. We have labled table ceils cor-
responding to traversed arcs which are not initial
suppressions by the letter 'c' for complementary
suppression. Clearly all initial suppressions now
have a complementary suppression; however, the
table has now been over suppressed - it would have
been cheaper to suppress only the 1000 in the col-
umn marginal.

This example demonstrates how over suppres-
sion may occur if the costs in the network are
based solely on the table entries. At, junction D,
the algori thm chooses the arc labled 53 over the
arc labled 42 because 53 + 716 < 1000. Indeed,
at each junction the s tandard minimum cost flow
algorithms choose the arc which is on the least ex-
pensive route from that junction to the destination
- in this case node G. This example demonstrates
the fundamental drawback of s tandard flow algo-
r i thms to solve the tabular suppression problem;
i.e.. they work on only one initial suppression at a

time• From observing Network I I - (d), one may
ask if it is not reasonable to consider some scheme
which tries to suppress adjacent initial suppres-
sions in the same flow cycle.

The above example points out the need for
more creative cost assignment schemes when using
network programming to solve the tabular suppre-
sion problem. One suggestion is to assign each
initially suppressed arc a value so low that the al-
gori thm is almost forced to choose that arc. For
example, suppose in the above example we assign
the value -1716 to each of the initially suppressed
arcs. Since-1716 + 1000 < 53 + 716 we obtain
the opt imum solution to our problem. See Table
I I - (d) and Network I I - (d) .

Forcing the linear program to choose an ini-
tially suppressed arc makes sense for the follow-
ing reason. If the program chooses an arc that
is not an initial suppression over one that is, then
nothing is gained because ul t imately the algorithm
must return to the bypassed arc in order to close
off that initial suppression. And since the pro-
gram must eventually determine a flow across the
initial suppression, it often makes sense to do so
at the first opportunity. One may ask if instead
of 1000 we had a much larger number across arc
CA, wouldn' t we just be forcing another form of
over suppression? No, since arc CA would be com-
pared with all other paths from C to A. For ex-
ample, consider Table I I I - (a) , Table I I I - (b) and
Network I I I - (b). This solution is optimal.

Of course the above method is not guaranteed
to obtain the opt imum solution for all tables. In-
deed, to obtain the optimal solution requires an in-
teger programming method which is quite costly.
Nevertheless, as demonstrated by the simple ex-
ample above, the technique of adding negative val-
ues to the initial suppressions coupled with vari-
ous cleanup routines to remove over suppressions
often works better than the linear programming
approaches that assign non-negative values to arcs
corresponding to initial suppressions.

Labeling of Initial Suppressions
Consider Tables IV and V. By choosing .a num-

ber, alpha say, small enough and assigning it to
the arcs labeled *50- that is, the initial suppres-
s ions- we obtain an opt inmm solution for Table
IV. The opt imum is obtained by making the two
arcs labled 28 complementary. However, using the
same value for alpha in the network corresponding
to Table V, our program arrived at the same flow
pat tern for Table V, a solulion which is clearly not
optimal. The opt imum for Table V is obtained by
making the four tens and two sevens complemen-

358

tary.
Upon replacing alpha with a greater negative

value, beta say, we obtained the reverse situation;
i.e., the opt imum solution for Table V and an ap-
proximate solution for Table IV with the flow pat-
tern corresponding to the opt imum solution for
Table V. Eventually, we were able to find a num-
ber, gamma say, between alpha and beta which
resulted in obtaining the optimal solution for both
tables. This suggests that it might be possible to
perform some initial analysis on the tables to de-
termine a best value for the initial suppressions.
We are reluctant to give actual values for alpha,
beta and gamma because the program is still in
development and the values for this example tend
to change with each modification. Nevertheless,
at the time of this writing, alpha = -30, beta = -5
and gamma = -27.

W h a t a b o u t N e g a t i v e cycles?
By allowing the costs of arcs representing ini-

tial suppressions to be negative, we may encounter
the situation in which the distance routine in the
network flow algorithm encounters a negative cy-
cle; i.e., a closed path in which the sum of the cost
of its arcs is negative. Once such a cycle is en-
countered, we consider each of its arcs suppressed
and re-assign them the value zero. In so doing we
make the cost of any path containing any arcs of
the cycle equal to the sum of the arcs external to
the cycle. This essentially restructures the net-
work by making the cycle equivalent to a single
node.

Preventing Over Suppression
There are a number of methods of correcting

for over suppression. We have found the most
useful, and unfortunately the most costly, to be
one which is done before any complementary sup-
pressions have been sellected. Consider Network
I I I - (b). Suppose alpha is the negative value
to be assigned to the initial suppressions. Then
the two shortest disjoint paths from node G to F
are GDCF and GEBF. Thus, for the suppression
problem, any closed path containing nodes G and
F should not not contain arc GF. By finding the
two shortest disjoint paths from G to F, we have
obtained a cycle containing G and F which does
not use the direct path GF; i.e., path GDCFBEG.
Thus arc GF should not be a part of any optimum
suppression cycle. This implies that we should as-
sign the capacity of arc G F to be zero.

By examining the networks we see that the
above procedure should be considered for each row
against each column, each row against the marginal

total and each column against the marginal total.
That is, it is only necessary to perform the proce-
dure between nodes that share a common arc.

As mentioned earlier, the above procedure could
be quite costly for very large tables. However,
with the advent of inexpensive parallel processing
computers, this could easily be overcome with a
procedure to handle all rows against all columns
at once.

Conclusion
As we have demonstrated, linear programming

techniques can be used to obtain solutions to the
two dimensional tabular suppression problem. How-
ever, these methods do not guarantee that the so-
lution will be optimal. We have discussed two
techniques of refinment which, at least in some
cases, will provide better solutions. In the first
method, we try to force the network algorithm to
choose a path which contains as many initial sup-
pressions as possible. This method involves as-
signing negative values to the costs of the initial
suppressions. What we have not discussed how-
ever, is just how to assign those negative values,
i.e., how small should these numbers be. Our dis-
cussion earlier, involving Tables IV and V suggests
that some research must be done to determine a
best value for the initial suppressions. We believe
this best value is a function of the number of the
initial suppressions and the distribution of the ini-
tial suppressions over the network.

The second method of refinment involves re-
moving arcs from the network that should not be
included in good solutions. In doing so, we force
the algorithm to choose from a better set of pos-
sible solutions.

R e f e r e n c e s
Cox, L.H. (1980), "Suppression Methodology

and Statistical Disclosure Control," Journal of the
American Statistical Association, 75,377-385.

Luenberger, D.G. (1984), Linear and NonLin-
ear Programming, Second Edition, Reading: Addison-
Wesley.

Sullivan, C.M. and Zayatz, L. "A Network Flow
Disclosure Avoidance System Applied to the Cen-
sus of Agriculture", American Statistical Associa-
tion, 1991 Proceedings.

*This paper reports tile general results of re-
search undertaken by the Census Bureau staff. The
views expressed are attr ibutable to the author and
do not necessarily reflect those of the Census Bu-
reau.

359

prd(i) = product i

C(]) = county i

prd(1)

C(1) a [l , 1]

C(2) a[2, 1]

C (m - l)

to ta l

T ABLE I

prd(2) prd(n-1)

a[1,2] a[1 ,n-1]

a[2,2] a [2 ,n -1]

a [m-1 ,1] a [m-1 ,2] a[m-1 ,n-1]

a[m, 1] a[m,2] a [m , n - I]

t o ta l

a[1,n]

a[2,n]

a [m- 1,n]

a[m,n]

m+n- i

a[m, 1

m,n -1]

NETWORK I

m a [l , l] 1

m+l

m+n-2

a[1,2

,2]

m - 1 , 1]

a [m - l , n - 1]

a[m,n]

m - i

~[1,n]

m - l , n]

No te f o r1 = 1 to (m - 1), a[i ,n] = arc(i ,O),

fo r j = 1 t o (n - 1), a [m, j] = a r c (m * n - l , m + j - 1) ,

f o r j = 1 t o (m - 1) a n d k = 1 t o (n - 1), a [j , k] = a r c (j , m - l + k) -

a[m,n] = a rc (O,m÷n-1)

TABLE II - (a) NET WORK II - (a)

53

306

357

* 4 2

248

710

716 1000

* g 5

554

1067

1716

B ,5,-3 D

C F

1716

360

NETWORK II - (b)

B 53 D

G

NETWORK II - (C)

B 53 D

C 710~ F i

, 1716 ...-
, I V

TABLE II - (c)

c 53 *42

c 306 c 248

357 710

c 716 1000

*95

554

1067

"1716

NETWORK II - (d)

B 53 D

716 ~ 3 0 6 j ~ ~ . 9 5 "

C 1771106. , F ._ll

TABLE II - (d)

53 *42

306 248

357 710

716 c 1000

*95

554

1067

"1716

361

53

357

416

TABLE Ill - (a)

*42

248

1010

1300

*95

254

1367
,i

"1716

NETWORK I I I - (b)

B 53 O

1300

C 1010 F

1 7 t 6 , *

53

C 6

357

C 416

TABLE III - (b)

*42

C 248

1010

1300

*95

254

1367

" 1 7 1 6

TABLE IV

"50 10 "OO 28

'0 10 '00 100

100 100 !0 10

28 ' 00 10 *50

=-0 188 188 220 ~

188

P , I-,~ _,_0

220

188

816

TABLE V

*50 10 100 28

10 7 100 100

100 100 7 10

28 100 10 *50

188 217 217 188

188

217

217

188

810

362

