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A B S T R A C T  Th e  Census  Bureau  publ ishes  the resul ts  

of several surveys in t abu l a r  form. However, occasional ly 

it is necessary  to suppress  cer ta in  i tems,  i.e., table  cells, of 

in format ion  in order  to p ro tec t  unique  or easily identif iable 

survey responden t s .  Because  of the add i t iv i ty  of the ta- 

bles, one must  select complementary suppressions for such 

tables in order  to p reven t  secur i ty  breach.  The  purpose  of 

this p a p e r  is to descr ibe  l inear  p rog ramming  s t ra tegies  for 

de te rmin ing  the c o mp l emen ta ry  suppressions.  

I N T R O D U C T I O N  
The Census Bureau publishes the results of 

several surveys in tabular form. However, occa- 
sionally it is necessary to suppress certain items, 
i.e., table cells, of information in order to protect 
unique or easily identifiable survey respondents. 
For example, suppose the table lists the average 
yearly income of each chemical manufacturer in 
the state of Delaware. Then, in order to maintain 
the anonymity of the DuPont chemical company, 
we would have to withhold its average income; 
the DuPont company is by far the most dominant 
chemical company in Delaware, hence its average 
income is not comparable to any other chemical 
manufacturers in that state. 

Most of the Census Bureau's tables are addi- 
tive, i.e., the last entry of each row or column is 
the sum of the other entries in that row or column. 
Because of this additivity, each row or column with 
a suppression must contain at least one other sup- 
pressed entry. For example, consider Table I in 
the appendix and suppose some entry, ai, j  say ,  is 

to be suppressed. Then 

j - 1  n - 1  

ai , j  = ai,n -- ~_~ ai ,k - ~_~ ai,k 
k=l  k = j + l  

i - 1  rn-1 

-- am , j  -- Z a k ,j -- Z a k , j .  
k= l  k = i + l  

Hence, we must protect the primary suppressed 
cells - i.e., table cells corresponding to unique or 

easily identifiable respondents, with complemen- 
tary suppressions- i.e., table cells which protect 
the primary suppressed cells. The purpose of this 
paper is to describe linear programming strategies 
for determining the complementary suppressions. 

The usefulness of the suppression scheme will 
depend on how much information remains in the 
tables after the complementary suppressions have 
been determined. For some users, usefulness will 
depend on how many entries of the table remain 
after suppression; whereas, for others, usefulness 
will depend on the total value of the entries of 
the table that remain after suppression. We will 
consider primarily the latter situation as the first 
situation can often be interpreted as a special case 
of the second. 

We describe below a strategy for obtaining a 
solution of the tabular cell suppression problem 
using network flow methodology. We also describe 
a method for restructuring the problem to handle 
negative flows. And finally, we consider various 
methods to correct for over suppression. 

T A B L E S  A N D  N E T W O R K S  
Consider Table I in the appendix which, for 

argument's sake, depicts (n-  1) products produced 
in ( m -  1) counties. Notice that each such table 
can be represented in network form as indicated in 
Network I. The ai,j represent the cost of shipping 
one unit of a commodity across the respective arc. 

Thus each two dimensional table has a natu- 
ral network representation. Suppose now that ta- 
ble entry ai,j is an initial suppression, i:e., it. is 
considered too sensitive to be released. Then any 
closed path in the network containing entry ai,j 
forms a protection for ai,j in the sense that if none 
of the table entries corresponding to arcs on the 
cycle are released, then entry ai, j  cannot be de- 
termined; for example, suppose table entry a1,1 is 
an initial suppression. Then the closed path con- 
taining arcs al,1, al,n, a2.n, a2,1 provides adequate 
protection for the initial suppression a1,1 since its 
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value cannot be determined from the resulting un- 
suppressed terms in the corresponding row or col- 
umn. 

Our objective is to place each initial suppres- 
sion in a table in a closed path while at the same 
time minimizing the sum of the complementary 

• ~S suppressions; i e., the sum of the ai,j correspond- 
ing to arcs on the closed path which are not initial 
suppressions. 

Consider Table I I -  (a) and its corresponding 
network. We have used asterisks to indicate ini- 
tial suppressions. To find the complementary sup- 
pressions, we use a min imum cost flow algorithm. 
Thus, suppose each arc has capacity o n e -  i.e., 
only one unit can be shipped across each arc, and 
that  the flow may occur in either direction. Also, 
since we wish to minimize the sum of the comple- 

~S mentary suppressions we let the ai,j represent 
the cost of shipping one unit across the arc cor- 
responding to aid. However, the cost of shipping 
one unit across an arc corresponding to a initially 
suppressed cell is set to zero; this encourages the 
algorithm to choose such cells. Let G and D rep- 
resent the endpoints of the initial suppressed arc 
labeled 95. The problem is to find the least cost 
of shipping one unit through arc GD and back to 
node G again. The route which minimizes the sum 
of tile complementary cells is indicated in Network 
I I - ( b ) .  

We must now consider the problem of finding 
the minimum cost of shipping one unit from node 
D, through arc DC, and either back to node D or 
to any node on the previously determined route 
GDBAG.  See Table I I -  (c) and Network I I -  (c) 
for the solution. We have labled table ceils cor- 
responding to traversed arcs which are not initial 
suppressions by the letter 'c' for complementary 
suppression. Clearly all initial suppressions now 
have a complementary suppression; however, the 
table has now been over suppressed - it would have 
been cheaper to suppress only the 1000 in the col- 
umn marginal.  

This example demonstrates how over suppres- 
sion may occur if the costs in the network are 
based solely on the table entries. At, junction D, 
the algori thm chooses the arc labled 53 over the 
arc labled 42 because 53 + 716 < 1000. Indeed, 
at each junction the s tandard minimum cost flow 
algorithms choose the arc which is on the least ex- 
pensive route from that  junction to the destination 
- in this case node G. This example demonstrates 
the fundamental  drawback of s tandard flow algo- 
r i thms to solve the tabular  suppression problem; 
i.e.. they work on only one initial suppression at a 

time• From observing Network I I -  (d), one may 
ask if it is not reasonable to consider some scheme 
which tries to suppress adjacent initial suppres- 
sions in the same flow cycle. 

The above example points out the need for 
more creative cost assignment schemes when using 
network programming to solve the tabular  suppre- 
sion problem. One suggestion is to assign each 
initially suppressed arc a value so low that  the al- 
gori thm is almost forced to choose that  arc. For 
example, suppose in the above example we assign 
the value -1716 to each of the initially suppressed 
arcs. Since-1716 + 1000 < 53 + 716 we obtain 
the opt imum solution to our problem. See Table 
I I - ( d )  and Network I I - ( d ) .  

Forcing the linear program to choose an ini- 
tially suppressed arc makes sense for the follow- 
ing reason. If the program chooses an arc that  
is not an initial suppression over one that  is, then 
nothing is gained because ul t imately the algorithm 
must return to the bypassed arc in order to close 
off that  initial suppression. And since the pro- 
gram must eventually determine a flow across the 
initial suppression, it often makes sense to do so 
at the first opportunity.  One may ask if instead 
of 1000 we had a much larger number across arc 
CA, wouldn' t  we just be forcing another form of 
over suppression? No, since arc CA would be com- 
pared with all other paths from C to A. For ex- 
ample, consider Table I I I - ( a ) ,  Table I I I - ( b )  and 
Network I I I -  (b). This solution is optimal. 

Of course the above method is not guaranteed 
to obtain the opt imum solution for all tables. In- 
deed, to obtain the optimal solution requires an in- 
teger programming method which is quite costly. 
Nevertheless, as demonstrated by the simple ex- 
ample above, the technique of adding negative val- 
ues to the initial suppressions coupled with vari- 
ous cleanup routines to remove over suppressions 
often works better than the linear programming 
approaches that  assign non-negative values to arcs 
corresponding to initial suppressions. 

Labeling of Initial Suppressions 
Consider Tables IV and V. By choosing .a num- 

ber, alpha say, small enough and assigning it to 
the arcs labeled *50-  that  is, the initial suppres- 
s ions-  we obtain an opt inmm solution for Table 
IV. The opt imum is obtained by making the two 
arcs labled 28 complementary. However, using the 
same value for alpha in the network corresponding 
to Table V, our program arrived at the same flow 
pat tern for Table V, a solulion which is clearly not 
optimal. The opt imum for Table V is obtained by 
making the four tens and two sevens complemen- 
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tary. 
Upon replacing alpha with a greater negative 

value, beta say, we obtained the reverse situation; 
i.e., the opt imum solution for Table V and an ap- 
proximate solution for Table IV with the flow pat- 
tern corresponding to the opt imum solution for 
Table V. Eventually, we were able to find a num- 
ber, gamma say, between alpha and beta which 
resulted in obtaining the optimal solution for both 
tables. This suggests that  it might be possible to 
perform some initial analysis on the tables to de- 
termine a best value for the initial suppressions. 
We are reluctant to give actual values for alpha, 
beta and gamma because the program is still in 
development and the values for this example tend 
to change with each modification. Nevertheless, 
at the time of this writing, alpha = -30, beta = -5 
and gamma = -27. 

W h a t  a b o u t  N e g a t i v e  cycles?  
By allowing the costs of arcs representing ini- 

tial suppressions to be negative, we may encounter 
the situation in which the distance routine in the 
network flow algorithm encounters a negative cy- 
cle; i.e., a closed path in which the sum of the cost 
of its arcs is negative. Once such a cycle is en- 
countered, we consider each of its arcs suppressed 
and re-assign them the value zero. In so doing we 
make the cost of any path containing any arcs of 
the cycle equal to the sum of the arcs external to 
the cycle. This essentially restructures the net- 
work by making the cycle equivalent to a single 
node. 

Preventing Over Suppression 
There are a number of methods of correcting 

for over suppression. We have found the most 
useful, and unfortunately the most costly, to be 
one which is done before any complementary sup- 
pressions have been sellected. Consider Network 
I I I -  (b). Suppose alpha is the negative value 
to be assigned to the initial suppressions. Then 
the two shortest disjoint paths from node G to F 
are GDCF and GEBF. Thus, for the suppression 
problem, any closed path containing nodes G and 
F should not not contain arc GF. By finding the 
two shortest disjoint paths from G to F, we have 
obtained a cycle containing G and F which does 
not use the direct path GF; i.e., path GDCFBEG. 
Thus arc GF should not be a part of any optimum 
suppression cycle. This implies that we should as- 
sign the capacity of arc G F to be zero. 

By examining the networks we see that  the 
above procedure should be considered for each row 
against each column, each row against the marginal 

total and each column against the marginal total. 
That  is, it is only necessary to perform the proce- 
dure between nodes that  share a common arc. 

As mentioned earlier, the above procedure could 
be quite costly for very large tables. However, 
with the advent of inexpensive parallel processing 
computers, this could easily be overcome with a 
procedure to handle all rows against all columns 
at once. 

Conclusion 
As we have demonstrated, linear programming 

techniques can be used to obtain solutions to the 
two dimensional tabular suppression problem. How- 
ever, these methods do not guarantee that  the so- 
lution will be optimal. We have discussed two 
techniques of refinment which, at least in some 
cases, will provide better solutions. In the first 
method, we try to force the network algorithm to 
choose a path which contains as many initial sup- 
pressions as possible. This method involves as- 
signing negative values to the costs of the initial 
suppressions. What  we have not discussed how- 
ever, is just how to assign those negative values, 
i.e., how small should these numbers be. Our dis- 
cussion earlier, involving Tables IV and V suggests 
that  some research must be done to determine a 
best value for the initial suppressions. We believe 
this best value is a function of the number of the 
initial suppressions and the distribution of the ini- 
tial suppressions over the network. 

The second method of refinment involves re- 
moving arcs from the network that  should not be 
included in good solutions. In doing so, we force 
the algorithm to choose from a better set of pos- 
sible solutions. 
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prd( i )  = product  i 

C(]) = county  i 

prd(1)  

C(1) a [ l , 1 ]  

C(2) a[2, 1] 

C ( m - l )  

to ta l  

T ABLE I 

prd(2)  prd(n-1 ) 

a[1,2] a[ 1 ,n-1]  

a[2,2] a [2 ,n -1 ]  

a [m-1 ,1 ]  a [m-1 ,2 ]  a[m-1 ,n-1]  

a[m, 1] a[m,2] a [ m , n - I ]  

t o ta l  

a[ 1,n] 

a[2,n] 

a [m- 1,n] 

a[m,n] 

m+n- i 

a[m, 1 

m,n -1 ]  

NETWORK I 

m a [ l , l ]  1 

m+l  

m+n-2  

a[ 1,2 

,2] 

m - 1 , 1 ]  

a [ m - l , n - 1 ]  

a[m,n] 

m - i  

~[ 1,n] 

m - l , n ]  

No te  f o r1  = 1 to ( m -  1), a[ i ,n] = arc( i ,O),  

fo r  j = 1 t o ( n -  1), a [m, j ]  = a r c ( m * n - l , m + j - 1 ) ,  

f o r j  = 1 t o ( m - 1 ) a n d k  = 1 t o ( n -  1), a [ j , k ] =  a r c ( j , m - l + k )  - 

a[m,n] = a rc (O,m÷n-1)  

TABLE II - (a) NET WORK II - (a) 

53 

306 

357 

* 4 2  

248 

710 

716 1000 

* g 5  

554  

1067 

1716 

B ,5,-3 D 

C F 

1716  
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NETWORK II - (b) 

B 53 D 

G 

NETWORK II - (C) 

B 53 D 

C 710~ F i 

, 1716  ...- 
, I V  

TABLE II - (c) 

c 53 *42 

c 306 c 248 

357 710 

c 716 1000 

*95 

554 

1067 

"1716 

NETWORK II - (d) 

B 53 D 

716 ~ 3 0 6  j ~ ~ . 9 5 "  

C 1771106. , F ._ll 

TABLE II - (d) 

53 *42 

306 248 

357 710 

716 c 1000 

*95 

554 

1067 

"1716 
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53 

357 

416 

TABLE Ill - (a) 

*42  

248 

1010 

1300 

*95 

254 

1367 
,i 

"1716 

NETWORK I I I -  (b) 

B 53 O 

1300 

C 1010 F 

1 7 t 6 , *  

53 

C 6 

357 

C 416 

TABLE III - (b) 

*42  

C 248 

1010 

1300 

*95  

254 

1367 

" 1 7 1 6  

TABLE IV 

"50 10 "OO 28 

'0 10 '00 100 

100 100 !0 10 

28 ' 00  10 *50 

=-0 188 188 220 ~ 

188 

P ,  I-,~ _,_0 

220 

188 

816 

TABLE V 

*50 10 100 28 

10 7 100 100 

100 100 7 10 

28 100 10 *50 

188 217 217 188 

188 

217 

217 

188 

810 
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