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Abstract 
Given binary data from a two stage cluster sample, 

we present a method to carry out Bayesian predictive 
inference for a finite population proportion. Our 
probabilistic specification should be useful for many 
surveys of this type, and yields simple analytical 
expressions for the prior and posterior mean and 
variance. Within cluster k, we assume that the Yki 

are a random sample from the Bernoulli distribution 
with probability 8 k. Conditional on ~ and r, 

81,...,~ N are a random sample from a beta distribution. 

Finally, ~ has a discrete distribution with specified 
probabilities. We use data from the National Health 
Interview Survey to illustrate the methodology and to 
show how to choose values for the parameters in the 
prior distribution. 

1. Introduction 
Given binary data from a two stage cluster sample, 

one may wish to use Bayesian methods to make 
inference about a finite population proportion, P. To 
do so, we use a probabihstic specification that is an 
extension of one proposed by Albert and Gupta (1983; 
Section 3.1), and that should be useful in many 
situations where two stage cluster sampling is 
employed. This probabilistic specification may be 
viewed as a discrete analogue of the model for two stage 
duster sampling with normal data described by Scott 
and Smith (1969). 

It is assumed throughout that n clusters are 
sampled from the N dusters in the population. 
Denote by M k and m k the known number of units 

and sample size in duster k (0 < m k < Mk). Letting 

Yki denote the Bernoulli random variable 

corresponding to the i th unit in cluster k, it is 
assumed that {Yki : i  = 1,...,Mk} are independent 

with 

Pr(Yki = 1[ 0k)= 0 k. (I.I) 

M k 

Letting Ml~ = ~ Yki' Ak = Ml~/Mk and 
i = l  

N 

= Mk/ ~ Mk, we wish to make inference about 

k = l  

N N N 

P = Y. M i / X  Mk= X ~'k'~k • (~.2) 
k=l  k= l  k = l  

In small area estimation one may also make inference 
about the individual A k. 

For the prior distribution, given fl and r, we take 
81,...,8 N to be distributed independently with beta 

density function 

pCOl~,~)=CBC~,~-~))-~6Z-~(~-o)~-~ 

where (b){ )}-I. For /~ BIa'b) = l"(alr' l"(a+b 
t a r : O < a  l < a  2 < . .  < a N . <  r}, 

(1.3) 

Pr(~ = ar)- Wr (1.4) 

K 

where _ ~ ~r = 1. It is assumed throughout that T 

r = l  
and the c# r are fixed quantities; methods for assigning 

values are discussed in Section 3. 
Albert and Gupta (1083), considering only the 

special case, ar = r, R = r - I > 0 and ~a r (r-l)-I 

used (1.3) and (1.4)tomodel similarity among the 
probabili t ies in an N x 2  contingency table. 
Lehoczky and Schervish (1987) considered empirical 
Bayes predictive inference for quantities such as P in 
(1.2). For a two stage sample they would use only (1.3) 
and estimate ~ and r using the marginal distribution 
of the observed Yki"  We share with Lehoczky and 

Schervish their concern about understated variability 
when one uses empirical Bayes methods. By careful 
choice of {a r, al r : r  = 1,...,R}, (1.3) and (1.4) provide a 

flexible, marginal (mixture) prior distribution for 
o = ( o~,..., o N); i.~., 

p'(8[ r) = 

R 

Wr{B(ar,r-a:) }-Nk= I 
r=l 

ar-1 r -a r -1  
o k (1-o k) , (~.s) 

and is the basis for a fully Bayes analysis. The mixture 
of natural conjugate priors (1.5) is a very convenient 
class of priors; see Dalai and Hall (1983). 

There are other Bayesian methods used to model 
similarity among the probabilities 0 k. Leonard (1972) 

used the logit transformation on the 0 k and assumed 

that the logits are a random sample from a normal 
distribution. Novick, Lewis and Jackson (1973) used 
arc-sine transformations on the Sk and adjusted 

sample proportions, but again assumed normality of 
these transformed proportions. The essence of these 
approximations is the possibility of applying the general 
Bayesian normal linear model theory of Lindley and 
Smith (1972). The method proposed here uses a flexible 
prior distribution, is easily implemented and avoids the 
uncertain approximations in the Leonard and Novick, 
et. al. approaches. 
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Using (1.5) we show in Section 2 that the exact 
posterior moments of P have sensible forms and are 
easily calculated. Using data from the National Health 
Interview Survey (NHIS) we show in Section 3 how to 
choose r in (1.3) and {(ar,~r) : r = l,...,R} in (1.4), 

and illustrate predictive inference. Section 4 
summarizes our approach and suggests extensions. 

In larger surveys one might apply this methodology 
by first assigning all second stage units to a set of 
mutually exclusive and exhaustive domains. For each 
domain one would then allocate the first stage units in 
the population to a set of mutually exclusive and 
ex~anstive strata in a way that there is exchangeability 
among the "first stage" parameters within each 
stratum. One would then apply the probabilistic 
specification in (I.1), (1.3) and (1.4) within each 
domain X stratum, and obtain national (or 
sub--national) estimates by summing the estimated 
totals obtained for each domain x stratum. Let Y 
denote the NHIS binary variable where Y = 1 if, and 
only if, the person has seen a doctor at least once during 
the past year. Then the domains may be defined by 
characteristics such as an individual's age, sex and race. 
If counties are the first stage units, the strata may be 
defined by socio--economic variables measured at the 
county level such as per capita income, education level, 
and number of doctors per 1,000 population. 

2. Inference 
2.1 Prior Moments of P 

Letting M'. = (Mi,...,Mi~)' and .~ = (~I,...,~N)', 

it is dear from (1.1) that given 8, the M~ have 

independent binomial distributions" 

P(Mil Ok) = M ok (~ - ok) (2.t) 

k = ~,~,...,N. Using (~.s), 

R N 

p(M'l r )  = ~ ~r H - 
k=l  r=l  

l Mk [ Mi J [  Mk-Mi  };(2.2) 

where for any nonnegative real numbers 

g,h,g<.h,[bg]h denotes 

r(h + 1){r(g + ~ ) r ( h - g  + ~)}-~. If the a r are 

integers, the marginal prior distribution of M" in (2.2) 

is a weighted average of negative hypergeometric 
distributions. 

Let 

R 

z(#/',-I ~) = ~i = ~ ~'r~r~1' ~=(~/.,.I ~) = ~2 =d 
r=l 

z{~C~-~)/~(~+z)l ~} = ~/3" 
With A k = MI~/M k, it is easily seen that 

E(Akl r) = '/I 

and 

7/2% IT-"1 q - Mkl]7/3 
cov(nk,n tl r) = 

(2.3) 

;k=l 

Now, corr(A k, All r) = 

{1+(~t+Mk t1(,73/,721}-I/2 
{~+(~1+M~1)(,ya/~2)} -I/2 (2.3a) 

a monotone increasing function of r. 
Finally, from (2.3), E(P[r) = 7/I and 

N N N 

k=l l=l k=l 
N 

where Pk = Mk/ ~ Ml, k - 1,2,...,N. 
t[=1 

2.2 Posterior Moments of P 
Let ml~ denote the number of sampled units in 

duster k havin.g the desired characteristic, 
(mi,...,mn]' , and m = (ml,...,mn)', the vector .m' 

of sample sizes. Using (i.I), (1.3) and (1.4) the 
posterior distribution of 0 given m, m' and r is 

given by 

p(.eI~. ,.~',~) = 

R N 

a~r kII l{B(ar+Ikmk' r-ar+Ik(mk-ml~))}-I " 
r = l  

a_+I, m;_-I r - a  +I  (m - m ' ) - I  
a ~  ~ ~ r k k k (2.4) 

where 

= P~(~=arl .m,.~',~)= 

% 1I r -1 I m k+ ar-1 k(s  

[~R ~r n [ar..~._2 I~k+~'-2 I-~I -I (zs) 

r = 1,2,...,R, and I k = 1 if cluster k is in the sample 

(k~s) and I k = 0, otherwise. 
. - I  m'(k=l,...,N) are Given m,m." and 9, M~ k k 

independent binomial random variables (see (I.1)). 
using (2.4), 
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p({Ml~-Ikml~" k = 1,...,N}lm, .m', r) = 

~ ~:~ I [M~-~m~ 

Mk-Mk-- I  k(mk-ml~)]] 

As expected, (2.6) lies in the same class as (2.2). 
Using (~.~), 

R 
M 

ECZ/rl.m,.m',r) = ,: = ~ ~ arC:, 
r = l  

R 

r = l  

and 

E { # ( ~ - # ) / : i  ~+ ~)I ~ , ~ '  ,~} = 

R 
~ : (~+~)-~ ~ ~:(~-~:~-~). (~.~) 

r : l  
Note that the 77 i are updates of the r~ i defined above 

(2.3). Defining 

~k:I{O~+(~/~')}{~+(~/~"k)}-1;; k ~ s  , 

k e s  

it cam be shown that 

E(A k I m,m' ,  r) = A k 
ml~ ~] + (~ -- ~)~ (~.S) 

and 

co~(awatlm,m',r)= 

I ( ~ - ~ k )  ~ ~ +(~-~k)(~-~+Mk~);'~,; k : l 

where for k e s 

(2.9) 

"2 
Yk = 

R 

~(ar+mk)(r+mk"(ar+mk))/(r+mk) (T÷mk +I); 
r--I 

and for k ~ s  u =~/3.  
In (2.8) E(Aklm,m ' , r )  has a sensible form: it is a 

weighted average of the sample proportion from cluster 

k and r/l, the posterior expected value of 7/1. (Recall 

from (2.3) that E (Akl r  ) = 7/1. ) Since 7/1 is a function 

of m' ,  there is a "borrowing of strength". However, if 

m k = Mk, A k = 1 and no borrowing is required since 

all information is obtained about A k. Conversely, if 

m k = 0, A k = 0 and E ( A k l m , m ' , r  ) = r/1 with 

cluster k contributing nothing to 7/1. 

In (2.8), since A k is a monotone decreasing function 

of r, there is more borrowing as r increases. This is 
to be expected since large r reflects a belief that the 
proportions of individuals possessing the characteristic 
of interest are similar over the dusters; by (2.3a) 
corr(Ak, All r) is a monotone increasing function of r. 

In particular, l i ra  A k = mk/Mk, the sampling fraction 

in cluster k. Thus, if l i ra 7/1 exists, 
T ' - * ~  

T " *  ¢m T " *  ¢m 

the w r are all equal and a r = r, 

see Albert and Gupta (1983). 
Note that (2.8) and (2.9) have the same forms as 

formulas (2) and (3) in Scott and Smith (1969). 

Defining ~ = 1 -  ~ #kAk , the posterior mean of 

kes 
P is 

A 

E(PIm,m' , r )  = ~r/1 + (1 - ~)~' (2.10) 

-1 

posterior mean of P is a weighted average of 7/1, the 

posterior expected value of the prior mean of P, and 
M 

P, a weighted average of the sample proportions within 
each duster. 

Finally, the posterior variance of P can be shown to 
be given by 

N N 
4 

k=l  l = l  
N 

k=l  

3. Application to National Health 
Interview Survey Data 

To illustrate the methodology described in Section 2, 
we consider the NHIS binary variable where Y = 1 if, 
and only if, the individual has seen a doctor at least 
once during the past year. The first stage sampling 
units are counties while the second stage units are 
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individuals. As described in Section 1, we assign each 
county to a stratum and each individual to a domain, 
and assume that (1.1), (1.3) and (1.4) hold within each 
domain x stratum. National or sub-national 
estimates are obtained by summing the estimated totals 
from each domain x stratum. For this illustration, we 
make inference about P, the proportion of individuals 
who have made at least one doctor visit, for females 20 
or older and males 70 or older, and one stratum 
consisting of counties identified as a duster by a cluster 
analysis using the three variables PCPOV, MDPOP 
and PCINC. Here, PCPOV is the percent of the 
population below the poverty level, MDPOP is the 
number of physicians per 1,000 population and PCINC 
is per capita income. We simplify the analysis by 
treating as ou..~r population the sampled individuals in 

the 74 counties in the 1987 NHIS who are members of 
the domain x stratum just described. Ou__.£ sample has 

20 (of the 74) counties, and 1172 individuals, selected as 
a proportional sample of individuals from each of the 
sampled counties. The second and third columns of 

Table 1 have the values of m k and A k = ml~/m k for 

the 20 counties. 
There are very small changes over time in the values 

of the A k. Thus, we used estimates of the A k from 

the 1985/1986 NHIS for the 74 counties to assign values 
to the Wr in (1.4). Defining b r = a r / r  , we classified 

the 74 estimated Ak'S into nine intervals with 

m/dpoints b 1 = 0.63, b 2 = 0.67, b 3 = 0.73, b 4 = 0.76, 

b 5 = 0.79, b 6 = 0.81, b 7 = 0.84, b 8 = 0.87 and 

b 9 = 0.89: w r is the proportion of counties in the 

1985/1986 NHIS with estimated A k in the interval 

with midpoint b r. We took a r as the rounded value of 

b rr. Before selecting a single value for r, we 

considered a range of values for 1". Approximating A k 

* (dmk)}-t ' * by A k = {I + we took 0.10 < A k < 0.80. 

Replacing m k by its median value, 36, we have 

9 _<. r _< 324. Rounding, we considered r = 10, 20, 
30,50, 100, 200 and 400. It is dear from the results in 
Table 2 that the prior and posterior expected values of 
P are affected minimally by the choice of r. While the 
value of I" has a greater effect on the corresponding 
standard errors (SE's), the erect is small over large 
ranges of r. Since we believe that the past data used to 
determine the aJ r are almost as good as the current 

data, we take r = 30 which is slightly smatler than the 
median of the observed m k. To provide a contrast we 

also consider in the ensuing analysis a much larger value 
of r i.e. r=200. 

We first consider the data based prior distribution 
for ~ / r  described in the preceding paragraph, and 
presented in the first two columns o f  Table 3a. Since 
there "are small changes over time, it is not surprising 
that there are only small differences between the pnor 
and posterior expected values of P, the proportion of 
individuals having at least one doctor visit (Table 2a). 
Changing the value of r has little effect on these 
expected values. The posterior standard errors of P 
are small, ranging from 23% to 37°£ of the value of the 
prior standard error of P(Table 2 a ) .  We obtained 
results similar to those in Table 2 b y  doubling and 
halving the sample sizes (ink) in Table 1. From Table 

Table I. Sample size, sample proportion and posterior 
means of population proportion for each of twenty 
counties; r = 30, 200. 

E ( A k [ m ,  m ' , v )  

County m k ik r=3 0 7"= 2 00 

i 119 .8319 .8259 .8176 

2 63 .9048 .8716 .8320 

3 33 .8485 .8263 .8146 

4 97 .8557 .8430 .8243 

5 31 .8065 .8042 .8087 

6 21 .8095 .8050 .8091 

7 78 .8974 .8709 .8338 

8 30 .7667 .7843 .8035 

9 48 .7708 .7828 .8016 

10 126 .8095 .8081 .8092 

11 17 .8824 .8310 .8148 

12 79 .8228 .8170 .8129 

13 58 .8966 .8643 .8287 

14 19 .8947 .8379 .8165 

15 151 .8411 .8346 .8228 

16 31 .7097 .7550 .7957 

17 17 .5294 .7033 .7871 

18 36 .6667 .7281 .7873 

19 98 .6327 .6723 .7510 

20 20 .7000 .7611 .7991 

,,b 

NOTE: Ak=m~/m k 

by (2.8). 

and E(Aklm,.m' ,r) is given 

3a, it is clear that our prior distribution of ~ / r  is quite 
diffuse. However, even for a relatively small value of r 
(e.g., r = 30) the posterior distribution of ~ / r  has 
substantially less variability. 

In some applications, estimates of the individual Ak 

are needed. It is dear from Table 1 that use of 

E(Aklm, m ' ,  r) rather than A k will be beneficial if 

there are ostensibly outlying values such as the one for 
county 17. In other cases the small, but non-negligible 
shrinkage (e.g., for counties 14, 18, 20 with r = 30) 
seems sensible in view of our prior knowledge of 
homogeneity of the counties within each stratum. 

We have also considered the effect on inference about 
P of assigning a prior distribution for f l / r  that is 
badly misspecified. (Compare the misspecified prior 
distribution in the first two columns of Table 3b with 
the data based prior distribution in Table 3a.) For each 

value of r, the posterior distribution of r / r ,  ~r' 

corresponding to the misspecified prior distribution 
$ 

(Table 3b) is much closer to ~r corresponding to the 

data-based prior distribution (Table 3a) than the 
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Table 2. Prior (single prime) and posterior (double 

prime) moments of P, the proportion of individuals 

hadng at least one doctor visit. 

r E'(P) SE'(P) E"(P) SE"(P) 

a. Data based prior distribution 

I0 . 8 0 7 0  .0655 .8012 .0243 

20 .8092 .0552 .7996 .0226 

30 .8085 .0542 .8032 .0188 

I00 . 8 1 1 7  .0545 .8071 .0138 

200 .8086 .0533 .8093 .0122 

b. Misspecified pdor distribution 

I0 . 7 1 9 5  .0753 .7916 .0364 

20 . 7 1 3 4  .0716 .7814 .0292 

30 . 7 1 5 4  .0677 .7929 .0220 

I00 .7159 .0665 .7981 .0159 

200 .7149 .0642 .8026 .0141 

c. Uniform odor distribution 

I0 .7778 .0947 .7998 .0274 

20 .7778 .0839 .7964 .0247 

30 . 7 7 7 8  .0844 .8006 .0192 

I00 .7789 .0849 .8039 .0145 

200 .7761 .0836 .8066 .0129 

misspecifled odor distribution of "3/r, ca r (Table 3b), is 

to the data-based odor distribution (Table 3a). [For 
example, ~ t h  r -- 30 compaze (a) the third columns 
of Tables 3a and 3b with (b) the second columns of 
Table 3a and 3b.]. 

For each value of r and for the misspecified prior 
distribution, the prior expected value of' P is about 
0.71 ~ d  the posterior expected value of' P is about 
0.79 (Table 2b). Thus, even with a prior distribution 
for 3/r that is badly misspedfied, the posterior 
distribution of P has approximately the correct 
location. Moreover, note in both Table 2a and 2b that 
the effect on E"(P) of changing r is negligible. 

Finally, in the absence of significant prior 
information, one might assign to 3/r the uniform prior 
distribution given in the first two columns of Table 3c. 
Comparing the data based and uniform prior 
distributions, the values of the prior expected value of 
P, E'(P),  are similar for each r (Tables 2a, 2c). 
Consequently, it is not surprising that for each r the 
values of the posterior expected value of P, E"(P), are 
dose for these two prior distributions. Moreover, as 
expected, SE'(P) is larger for the uniform than for the 
misspecified prior distribution while SE"(P) is smaller 
for the uniform than for the misspecified prior 
distribution (Tables 2b, 2c). The posterior SE's for 
the data based and uniform prior distributions ('Tables 

Table 3. Prior and posterior distributions of 

~/r:. Pr(3/r  = br); r = 30, 200. 

r 

b r w r r=30 r=200 

a- Data based prior distribution 

• 63 .0141 .0000 .0000 

• 67 .0282 .0000 .0000 

• 73 .0845 .0020 .0000 

.76 .0986 .0730 .0034 

• 79 .1127 .2757 .1673 

• 81 .2113 .5169 .7282 

• 84 .2394 .1317 .1011 

• 87 .1690 .0007 .0000 

• 89 .0423 .0000 .0000 

b. Misspecified prior distribution 

• 63 .1220 .0003 .0000 

• 67 .3659 .0009 .0000 

• 73 .2439 .0196 .0000 

• 76 .1220 .3126 .0248 

• 79 .0488 .4131 .4235 

• 81 .0244 .2066 .4915 

• 84 .0244 .0465 .0602 

• 87 .0244 .0004 .0000 

• 89 .0244 .0001 .0000 

c. Uniform prior distribution 

• 63 .1111 .0001 .0000 

.67 .iiii .0001 .0000 

• 73 .IIII .0037 .0000 

• 76 .IIIi .1192 .0064 

• 79 .1111 .3938 .2756 

• 81 . i i i i  .3938 .6396 

• 84 .1111 .0885 .0783 

.87 .1111 .0007 .0000 

.89 .1111 .0001 .0000 

~ = 

$ 

NOTE: b r = s r / r  , ~r is given by (1.4) and Wr by (2.5). 

2a, 2c) axe surprisingly close. Finally, for each "r, the 
posterior distribution of ~/~" corresponding to the 
uniform prior distribution is closer to the one 
corresponding to the data based prior than to the 
misspecified prior (Table 3). 

161 



4. Summary. and Ext.ensions 
.L The probabilistic specification in (I.i), (1.3) and 
(1.4) provides the basis for Bayesian predictive 
inference for a finite population proportion when there 
is binary data from a two stage duster sample. 
Formulas (1.3) and (1.4) provide a flexible prior 
distribution, and permit a fully Bayes analysis. This 
obviates the need to use empirical Bayes methods which 
axe often unsatisfactory because of understated 
variability. While our methodology is directed to 
small-to-moderate sized surveys, we suggest in Section 
I how one may try to extend these procedures for use in 
larger surveys. 

One may extend the probabilistic specification in 
(I.i), (1.3) and (1.4) to accommodate some three-stage 
sample surveys. For example, let Yjki denote the 

Bernoulli random variable with 

Pr(Yj3 d = 11 gjk ) = 01- k, 

= d  the Yj i(i = k - -  1,...,ij, j -  1,...,J) 
assumed to be independent. Given flj and r, we take 

_ _Oil"'"OJK j to be distributed independently with 

density giyen by (1.3). 
For /~j ~ {ar:O < a 1 < ... < a R < r}, 

Pr(~j = a r I { carj}) = ~arj 

R 

where ~, C#ri = I, and the /~j axe assumed to be 
i@ 

r=l 
independent. Finally, .~l,...,~j are assumed to be a 

random sample from the Dirichlet distribution with 
parameter a. Here ~j = (~alj,...,wRj). 

While one cannot obtain analytical expressions for 
the posterior moments of the finite population 
proportion, P, sampling-based methods such as the 
Gibbs sampler (see, for example, Gelfand and Smith 
(1990)) can be used to carry out Bayesian predictive 
inference for P. 
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