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1. INTRODUCTION 

The aim of the paper is to discuss a likelihood- 

based approach to survey sampling when nonresponse 

is present. Consider a finite population consisting of N 

units where N is known. The units are labelled 1 . . . . .  

N, and Yi is the value of a univariate variable of 

interest for unit i. A sample s (a subset of { 1 . . . .  ,N} ) 

of size n is chosen according to some sampling design 

p(s I y), a probability distribution over all subsets of 

{ 1 . . . . .  N}. We shall assume that p(s l y) = p(s) ,  

i.e. the probability of choosing s does not depend on 

y. The aim is to make inference about y = 

(Y 1 ...... YN), usually in the form of a function of y. In 

this paper we are concerned with estimating the total 

t=Ey i . We regard y as a realized value of a random 

vector Y with distribution characterized by unkown 

parameters 0. Such modelling of the population is in 

principle no different from the usual type of modelling 

we regularly do in statistical analysis. Under a 

population model inference about t becomes a 

prediction problem about the unobserved part of t. 

The sampling design is ignorable according to the 

likelihood principle. Hence, all analysis is done 

conditional on the actual s chosen 

In practically all sample surveys one has to 

expect that some units in the survey do not respond, 

i.e., we have nonresponse in the survey. The non- 

response will usuallly be at least 5-10%, and it is not 

uncommon with a nonresponse of 30-40%. In order to 

perform a realistic and relevant statistical analysis it is 

therefore necessary to include into the population 

model a model of the process that leads to non- 

response. To describe the response pattern we define 

the response variables R i = 1 if unit i responds and 0 

otherwise. 

(Yi,Ri) are assumed to be i.i.d, for i =1 . . . .  ,N,and 

the Yi's are discrete with possible values 0,1,2 ..... 

The common distribution is denoted by f0(y) = P0(Yi 

= y), and the conditional distribution of R i given Yi = 

Yi is f~(rilYi). In general, f(.) and f(.I-) denote the 

distribution and conditional distribution of the enclosed 

variables. Let la(0) and c~2(0) denote mean and 

variance for Yi" We shall consider surveys where call- 

backs are made to the nonrespondents, and the non- 

response model suggested by Thomsen and Siring 

(1983) is studied in Section 4. 

The response sample is s r = {i ~ s" r i = 1 }, and 

n r is the size of s r .The observed Yi - values in s are 

denoted by Yr = (Yi: i ~ s & r i = 1). The problem is 

to make inference about the total t which is a realized 

value of T = y. Yi + Z 1 + Z 2 , where 
i ~ s r  

Z1 = ~ Yi andZ 2=  y~ Yi.  Since ~ Yiis  
i ~  s-st i ~  s i ~  Sr 

observed, estimating t can be regarded as the problem 

of predicting the value z of Z = Z 1 + Z 2 . To predict z 

we shall use a predictive likelihood approach and the 

mean imputation method. 

Section 2 reviews the the general concept of 

predictive likelihood and shows how predictors and 

prediction intervals can be constructed from a predictive 

likelihood. Section 3 describes the mean imputation 

method for estimating the total t. Section 4 considers 

surveys where callbacks are made to nonrespondents. 

The mean imputation method and the marginal profile 

predictive likelihoods for Yi' i ~ s r, are considered 

Section 5 considers a fertility study in Norway 

from 1977 with n = 5047 women. After 3 calls the 

mean number of live births in the response sample ( of 

size 3438) equals 1.662. By fitting the data with a 

mixed Poisson model the mean imputation method 

gives the estimate 1.550 of t/N, while the mean 

predictor based on the marginal predictive likelihoods 

gives the estimate 1.526. From registers it is found 

that for the whole sample s the mean is 1.50. Hence, 
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the likelihood method and the imputation method 

reduce the bias by 84.0 % and 6 9 . 1 % ,  respectively. 

2. PREDICTIVE LIKELIHOOD 

The main aim of the paper is to apply the 

likelihood approach to the prediction of the unobserved 

part z of the total t. This section gives a short 

description of likelihood prediction generally. For a 

more complete exposition we refer to BjCrnstad (1990). 

Let Y = y be the data. The problem is to predict the 

unobserved or future value z of a random variable Z, 

usually by a predictor and a prediction interval. (Y,Z) 

has a density or discrete probability function f0(y,z). 

The joint likelihood for the two unknown quantities z 

and 0 is defined to be/y(Z,0) - f0(y,z). The aim is to 

develop a likelihood for z, L(z I y), by eliminating 0 

from ly. Any such likelihood is called a predictive 

likelihood. 

Different ways of eliminating 0 give rise to 

different L. One way is by maximizing/y(Z,0) with 

respect to 0, giving us the so-called profile predictive 

likelihood: Lp(z l y) = max0f0(y,z ). 

Lp typically works well when 0 has low 

dimension. If 0 consists of many parameters Lp will 

usually be misleadingly precise and needs to be 

modified. Such modifications have been suggested by 

Buffer (1986 rejoinder, 1989) and are also considered in 

BjCrnstad (1990). 

Any L considered is assumed to be normalized as a 

probability distribution in z. The mean of L is called 

the predictive expectation, Ep(Z), and is a natural pred- 

ictor for z. L(z I y) gives us an idea of how likely diff- 

erent z-values are in light of the data, and can be used 

to construct prediction intervals for z. An interval Iy = 

(ay,by) is a (1-o0 predictive interval based on L if 

j~yb~'L( z I y)dz = 1 - R. If L is unimodal the shortest (1- 

cz) predictive interval is of the form Iy = {z" L(z I y) > 

c}. 

3. IMPUTATION 

A general and common method for estimating t = 

Zy i when we have nonresponse is by imputation of the 
^ 

missing values in the nonresponse group. Let t be a 
^ 

predictor for t based on a complete sample s, t = 

^ ^ 
yi + z2, where z2 is a predictor for z 2 = Y i ,  

ies i~ s 

based on Ys = (Yi : i e s) .  In case of nonresponse we 
A 

must modify t since only Yr is available. One 
^ 

general way of adjusting t is to impute the missing 

values in s-s r with values Yi* based on the observed 

part of s. Let now Yc(S) denote the constructed 

complete y-sample, i.e.: Yc(S) = (Yci : Yci = Yi for i e 

Sr & Yci = Yi* for i e S-Sr). 
h ^ 

The imputation predictor tx is then given by t 

based on Yc(S). I.e., 
A A 

t I =  ~ yi + ~ yi* +Z2c 
ie Sr ie S-Sr 

A 

where zz: is z2 based on Yc(S). The imputation 
A 

predictor for z = ~ yi equals zi = y~ yi* + z2e. 
i~ Sr i~ S-Sr 

There are different methods of imputation that are 

used in practice.( See Little and Rubin (1987, ch. 4.5) 

for a review. ) We consider a method used by Greenlees 

et al. (1982) that is natural under a population model. 

The expected value of Yi for i ~ s-s r is 

E0,v(Yi I ri = 0). Let 0,~ be maximum likelihood 

estimates (mle) of 0 ,~ .  The mean imputed value for Yi 
A 

is then Yi* = E0,~(Yi I ri = 0) .  

4. A NONRESPONSE MODEL FOR SURVEYS 

WITH CALLBACKS 

We shall look at a nonresponse model appropriate 

when callbacks are made in an interview survey. 

Callbacks are necessary in order to reduce the 

sensitivity of the statistical analysis to nonignorable 

nonresponse. Revisiting nonrespondents reduces the 

amount of nonresponse and at the same time provides 

information about the nonresponse group, making it 

possible to check and possibly adjust the model for 

the response mechanism. 

Let k denote the maximum number of revisits. 

The model we shall consider has been proposed by 

Thomsen and Siring (1983). For every attempt to 

make an interview there are three possible outcomes: 

(I) response 

(II) no response, but it is decided to make a 

callback 

(III) no response and classified as nonresponse 

(refusal). 
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For unit i with y = Yi it is assumed that P(I) = py 

depends on y and P(III) = f. For callbacks it is 

assumed that a larger effort is made to get in contact 

with group (II), such that at the second attempt or 

later, P(I) = Aypy with Ay > 1 expected. P(III) is 

assumed to equal f on all visits. 

For each unit i e s define, for j=l  . . . . .  k, 

Rij = 1 if unit i responds on visit j 

0 otherwise.  

The random vectors (Ril .... ,Rik ) ,i = 1 ..... N are 

assumed to be independent. 

P(Rij = llY i = y) 

= py if j=l  

= (1-py-f)(1-Aypy-f)J'2Aypy if 2<_j<k. 

(Yi,Ri) are independent and P(R i = 1 I Y i = y ) = 
k 

py + ~ (1-py-f)(1-Aypy-f))-2Aypy . The response mech- 
j=2 

anism (RM) is ignorable if and only if Ay,py are 

independent of y. The data consists of (Yr,rs) where 

r s = (ril ..... rik ) , i ~ s. 

We shall consider a stratified model for the RM by 

assuming that Yi rarely takes values > m for some m .  

Define then m+ 1 strata where, for j = 0 . . . . .  m-1, stra- 

tum j = {i" Y i = J }, and stratum m = {i" Y i > m}. It 

is assumed that py and Ay are constant within each 

stratum. Hence, py = Pm and Ay = A m if y > m, and 

the RM parameters are ~g = ( f, (P0 . . . .  Pm),(A0 . . . . .  

Am)). 

Imputa t ion .  We shall first consider the mean 

imputation method described in section 3. Let, for 

i=0 ..... m og j=l  ..... k ,  vij = #(responses in post- 

stratum i at visit no. j ) .  With the Yi's i.i.d., the 
A 

imputation predictor is based on t = Nys, and given by 
^ 

t I = n ~ - ( ~  y i +  ~ y i* )  
~ sr i~ s - Sr 

where ,  with gy i0(0 ,~)=  E0,~(Yi I ri = 0), Yi* = 

layi0(0,~).  Here (0,~) are mle and 

gYI0 = Y-, yP(Yi=y I Ri=0 ) = ~ yfO(y)P(Ri = 0 ly) 
y=l y=l P(Ri = 0) 

k 
m-1 f0(y)(1- py- ~ (1-py-f)(1-Aypy-f)J2Aypy) 

= ~ y .  j=2 4- 

y=l 

o o  

{ ~  3de(y) } 
y=m 

P(Ri= 0) 
k 

(1-  p m -  Y_, ( l -pm-f ) ( l -Ampm-f ) J -2Ampm)  
j=2 

P(Ri= 0) 
.(1) 

Here, 
m-1 k 

P(Ri = 0) = ~ fo(y)(1- py- ~ (1-py-f)(1-Aypy-f)J-2Aypy) 
y=0 j=2 

o o  k 

+ { Z f0(y) } (1- pro- Y_., (1-pm-f)(1-Ampm-f)J-2Ampm). 
y=m j=2 

Let Srj = {i e Sr • rij = 1}.(0,~) maximizes the 

likelihood l(0,~')= f0,~g(Yr,rs)= 
k 

l-I l I  P(Yi=yi n Rij=l) I-I P(Ri=0) 
j=l ie Srj ie s-sr 

1 T I  

{ H  f0(yi)} [P(Ri=0)]n-nr  H pyVyl 

i~ Sr y=0 
k rn . . 

I-I I I  [(1-py-f)(1-AyPy-f)J2AyPy] VyJ. 
j=2 y=0 

(2) 

An easier imputation method ( and typically a 

good approximation of Yi* = IaYI0(0'W) for large 

nr,n ) can be derived by expresssing E0,v(Yi I ri = 0) in 

the following way: 

E(Yi I ri = 0) = E(Yi) - P(Ri=I)E(YilRi=I) . 
P(Ri=0) 

Now, P(R i = 1) can be estimated by nr/n, and 

E(YilRi=I) by yr .  An estimate of E(Yi I ri = 0) is 

therefore given by 

Yi* = 

A 

n r - -  ^ _ 
t.t(0)---~- y~ _ nkt(0) -n~ y r 

m 

n-nr n-nr 
n 

(3) 

Based on (3) • 
N 

tI=N---(~ yi+ ~ yi*)= 
1 1  x~ sr i~ s - sr 

A _ _  A 

N__.(nr~" r + (n_nr)nla(0) -nr  Yr ) = N ~ ( 0 )  . 
n n-nr 

(4) 

Predictive likelihood. A direct predictive like- 

lihood for z is based on f0,~(Yr,rs,Z) which is 

extremely complex. In order to derive a likelihood 

based predictor we need, however, only to consider 

marginal likelihoods for each Yi' i ~ s-s r , and each 

Yi' i ~ s. These likelihoods are based on f0,~(Yr,rs,Yi) 

for each i ~ s r. We shall derive the profile predictive 

likelihood for each Yi, i ~ s r. Let Lpl  be the like- 

lihood for yq, q ~ s-s r , and Lp2 for yq, q ~ s. Then 
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Lpl(Yq I Yr,rs) = max0,vf0,v(Yr,rs,Yq) = 

max0,v[ {I-[ f0(yi)} [P(Ri=0)]n-nr-lfi pyVyl 
i~sr y=0 

k rn . . 
1-'I l-I  [(1-py-f)(1-AyPy-ff-2AyPy]Vyj}f0(Yq)X 
j=2 y=0 

k 
{ 1 -  pyq- ~ (1-pyq-f)(1-Ayqpyq-f~-2Ayqpyq} ] .  

j=2 

Lp2(Yq I Yr,rs) = max0,vf0,v(Yr,rs,Y q) = 

i n  

max0,~V[(.I-[ f0(yi)} [P(Ri=0)]n-nrI" I pyVyl 
1E Sr y=0 

k In 
I ' I  l"I [(I'py-f)(1-AyPy-f)J-2AyPy]VyJf0(Yq)]" 
j=2 y=O 

Lpl and Lp2 must be derived numerically for each 

possible value of yq, and then normalized. As an app- 

roximation we shall assume that the likelihood of 

values of yq > m+l equals zero, compute Lpl (Yq I 

Yr,rs) and Lp2(Y q I Yr,rs) for yq = 0,1 . . . . .  m and 

normalize such that 
I n  I n  

Lpl( y I y~,r~) = ~ Lp2( y I y~,rs) = 1. 
y =0 y =0 

Let Ep 1 and Ep2 be the mean of these normalized 

Lpl and Lp2, respectively. Since Z = Z 1 + Z 2 = 

Yi + ~ Yi, a predictor for Z based on these 
ie  S-Sr i~ s 
marginal predictive likelihoods is 

Ep(Z) = (n-nr)Epl + (N-n)Ep2. (5) 

We have used the notation Ep(Z) to indicate that 

this predictive mean of Z was not derived from a 

normalized predictive likelihood for Z. 

5. AN EXAMPLE - THE NORWEGIAN FERTILITY 

SURVEY 

In 1977 a fertility survey was performed in 

Norway (see also Thomsen and Siring (1983)). A 

sample of n = 5047 women between the ages of 18 and 

44 was selected. N = 695909. A maximum of 8 calls 

were made. We shall use the data from the first 3 calls. 

The variable of interest is the number of live births for 

each woman in the survey. We choose m = 6 .  The 

table below gives the number of responses in each 

stratum on each call. 

Table 1. Number of responses in each call. 

Call 

Stratum 1 2 3 all calls 

0 311 387 188 886 

1 258 248 134 640 

2 497 410 158 1065 

3 261 199 88 548 

4 107 79 30 216 

5 37 15 9 61 

6 12 7 3 22 

Total 1483 1345 610 nr= 3438 

The observed sample mean is y r = 1.662. From 

registers it is found that, for the whole sample s, y~ = 

1.50 .Evidently the nonresponse was largest among 

women with few or no children. Thomsen and Siting 

(1983) use a moment-type estimation method for y~, 

( without assuming a population model ) that gives 
A 

the estimate y~ = 1.593. This can be regarded as a 

distribution-free estimate of g(0). 

We expect that the probability of response in 

stratum 1 to be at least not significantly lower than for 

stratum 0. By looking at the data it therefore seems 

clear that a pure Poisson model is not appropriate. We 

consider instead a mixed Poiison model given by 

f0(y) e ~'ye-xl ~Ye&2 = + (l-e) 2 . 
y! y! 

We find that the maximum likelihood estimates are 

e = .0413, ~,1 = 0, )~2 = 1.5990, and = .0475. 

The other maximum likelihood estimates are in table 

2. 

Table 2. Maximum likelihood estimates of A i and 

Pi" 
A A 

Stratum Ai pi 

0 1.809 .262 

1 1.079 .167 

2 1.482 .392 

3 1.362 .388 

4 1.350 .410 

5 .781 .437 

6 1.069 .425 

The mle imputation method gives Yi* = ~YI0 (0'~) - 
A 

1.311 with t~Xl = 1.550. Hence the imputation method 
m 

reduces the bias in yr by 6 9 . 1 % .  The simplified 
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approach (4) gives ti/N = It(0) = 1~,1 + (1 -1~)~ ,2  = 

1.533. 
The marginal predictive likelihood approach 

gives the following normalized Lpl and Lp2" 

Table 3. Normalized marginal predictive likelihoods 

Y Lpl(ylYr,r s) Lp2(ylYr,r s) 

0 .1874 .2354 

1 .5607 .3102 

2 .1243 .2478 

3 .0779 .1321 
4 .0294 .0529 

5 .0162 .0170 

6 .0041 .0046 

Epj 1.2662 1.5261 

From (5), a likelihood predictor of z is E~(Z) = (n- 

nr)Epl + (N-n)Ep2 = 1,056,361.8. This gives the 

following predictor of t/N: t*/N = [nrY r + F_~(Z)]/N = 
m 

1.526, reducing the bias in yr by 84.0%. 

The low estimate of Pl indicates that even the 

mixed Poisson model for Y may not be appropriate. 

Another possible model that can be tried is a trtmcated 

Poisson model. Still, we are able to reduce the bias due 
to nonresponse by a substantial margin even with the 

mixed model. 
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