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1. Introduction

The statistical consideration of models containing
measurement errors began as early as 1877. See
Fuller (1987, p. 30). Most of the past work has been
done on the univariate linear model with constant
error variances. More recently, work has been done
on multivariate, non-linear, and non—constant error
variance models. We will consider a methods of
moments estimator for the parameters of a
univariate linear model with heteroskedastic error
variances.

The general univariate linear measurement error

model is
(1.1)

» Xy is

a 1 x k vector of explanatory variables, fisak x 1
vector of unknown coefficients, and q R isthe equation

yt = xtﬁ+ qt yt=1,2,...,n,

where y t is the dependent observation at time t

error. The usual goal is to estimate f. We assume
that we are unable to observe 5, = (yt, xt) directly.

Instead, we observe Zt =(Y b Xt)’ such that

Yt =Y, + Wy
Xt =x + ut, t=1,2,..,n, (1.2)
where a = (wt,ut) are random measurement errors.
We further assume that
x B Exx 0 0 0
0 0 o 0 0
¢ ~ NI aq
Wt 0 0 0 T wwtt Ewutt
| "t ] 0 110 O Zuwss Zuust]
) (1.3)
where
% wwtt Zwutt
aatt = | ,t=1,...n,
uwtt uutt

are known for each t. This is the heteroskedastic
measurement error model with normal distribution
assumptions.
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Ifthe ¥

are known, anatural estimatoris

aatt
~ _1 ~
B= xx xy (1.4)
where
a _1 §
Mxx=Il t=1(xtx 2"uutt)
and
S _1 §
Mxyzn t=1(xth_2uwtt)'

Fuller (1987, Section 3.1) showed that

1 2.~
2 2B-p-n,,
where
- -1o-1. 2 —1
V,_.=n M G M
BB~
S _1 E , . ~ -
t= 1(xtxt Tyvtt + Euvttzvutt)’
~ _ Y al p’
9 ovtt = %qq T Twwtt "2 Buwis T B yueeP (1.5)
uvtt Euwtt - Euuttﬂ ?
and

~

5 = %Y. -x B
Qq  t=1 t ot

7 (1,BE L (1,-B)]

The estimator ﬁ is a consistent estimator and
relatively easy to compute. However, it is sometimes
possible to construct an asymptotically superior

estimator using B as a preliminary estimator.
Hasabelnaby (1987) investigated the weighted
estimator,

PR ! -1
p=[2

=1 vvit

(XX E )

=]

o | ,
te ,"vvtt(xth

x -% (1.6)

uwtt)
where o ., an estimator of the variance of
vvtt

v, =4, +wt—utﬂ, is defined in (1.5). Hasabelnaby



showed that,
Vg “(B-pN,

where
{’ﬂﬁ =n’ M)_cn[t21~V\1rtt(x1,'.xt
+ a;\lrttéuvttzvutt)] lAd;:rx’
and
X t)gla;lltt(x;xt Xt

The use of T ot

the covariance matrix of the limiting distribution
associated with x{; Vi There is also a contribution of

as a weight minimizes the part of

the variance of u tv ¢ to the covariance matrix. The

set of weights minimizing the variance of the limiting
distribution depends on the unknown x,. Since a
consistent estimator of the x, does not exist, a best
set of weights can not be constructed without
additional assumptions.

Under certain assumptions, it is possible to
construct an estimator of B that is generally better
than (1.6) and better than (1.4). The remainder of
this paper will discuss a method of moments
estimator based on a two-stage generalized least
squares estimator of Ezz developed by Fuller (1990).

2. Estimation of the Covariance Matrix

Consider the model

Zt-—l ta, t=1,.. (2.1)

where Zt is a p—dlmensmnal row vector of observed

values, g, is a p-dimensional row vector of true

t

3

measurement errors,and n > p.
Assume that

values, is a p-dimensional row vector of

al 04,(0 zaatt ,t=1,..,n
(2.2)
where & is knownforallt. Let
aatt
EZZtt - 2 + za.att’
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Assume that EZ 7t is nonsingular for all t. Define
-1 E =, ~
m,, = (n-1) t_,=1(Zt-Z) (Zt—Z),
14
zaa.. =n t= 1Eaatt !
and
7=n"317. (2.3)
t=1 t

Fuller (1989) considered the following preliminary
estimator of Ezz,

zzz'__mZZ_z

Fuller also modified (2.4) to ensure that ):"'zz

(2.4)

aa..’
is
positive semidefinite. For simplicity, we will initially

assume that estimator (2.4) is positive semidefinite.
Under model (2.1) -(2.2) it can be shown that

E(EZZ) = EZZ

Define

ZZtt—E +X aatt” (2.5)
This estimator is an unbiased prehminary estimator
of By

Let M be any p x p matrix. Let vec M denote the

p2 column vector obtained by listing the columns of
M one beneath the other in a single column. Let
vech M denote the p(p+1)/2 column vector obtained
by listing the elements in each column that are on or
below the diagonal. In addition, let Qp be the

p2 xp(p+1)/2 matrix such that
vecM = vaech M.

See, for example, Fuller (1987, Appendix 4A) for
discussion of vec, vech, and the matrix (I’p.

Fuller considered the second round estimators
given by

n .
“y
# ‘[t{:lwzzu] 2sza g (26)
"—1 -1
vechm =n(n-1) (_1 mmtt)
ay, “
« VL vealz R @R @)



n A""'l n .
vech zawa.._(t§1 mmtt) tzlvmmttv“h T att?
2.8)
A___l ,
Vinmtt = /28 (WZZtt zz'ct)i’ (2.9)

- 1, .2 1
Wy =0 (n—l)EZZtt+n m,, . (2.10)

The \;V

774t 27€ preliminary estimators of X

ZZtt

~

. . -1 .
The inclusion of the n m,, term in WZZtt

produces a more stable estimator for ¥, Hence,

ZZtt
j is an estimated generalized least squares estimator
of p. Also, under the normality assumption (2.2),
— 1
Vinmie = /22, (Ezzn zzu)‘l’
isthe inverse of the covariance matrix of

vech((2, - )’ (2,-#)],

and (2.9) is an estimatorof V_ ! . See Fuller (1987,
mmtt

p- 386). Thus

¥ = xn -X
2z aza..
is the estimated generallzed least squares estimator

of Ezz For simplicity we again initially assume that

(2.11)

(2.11) is positive semidefinite.

The estimator vech izz is asymptotically normal.

Theorem 1. Assume

(1) Zt =3, +a, t=1,...,n,

s/ sl [ O
) Lf]“‘“d [OHOZZE ]
t ! aatt- )’
t=1,..,n,
(3) Eaattisknownfora.llt,
(4) thetruevalue, @  isin the interior of

70
0= {&Ezz( 0) is positive semidefinite},

(5) there exists an convex, open set 1 C © with
0_intheinterior such that

0
det[X (0)]2c>0VtandV 0€ Q,

Z7Ztt

6 [ EE

77t t( 0 )] is uniformly bounded,

n
(M limn—1 ¥ V—_1

& Vinmit = VI,’ where
n—ao

\—II is positive definite,

. 1 —1
(8) Ill_l’::n gvmmtt mmtt mmtt

where GVV
— - 4 -
Gmmtt - Var{vech[(Zt F’) (zt ”’)]}’
9 2z A have uniformly bounded 4+ § moments.

Then

GVV’

is positive definite and

nl/zvech(fl -5 )-—I-'——»N(O,I‘)
2z 2%

where
-1

=V GVV I

Proof. Omitted. n]
Corollary 1.1 Let the assumptions of Theorem 1

hold and, in addition, assume the Z g to be normally

distributed. Then

Proof. Omitted. n|
3. Estimation of Regression Parameters

Consider the following model.
v, =Byt =B +a,
Zt=lt+a.t,t=1,..,n, (3.1)
where Z; = (Yt,X;)’ and z; = (yt,x;)’ . Assume

5/ pl |2 0
3 d aattd | 10T ol

(3.2)

where

p= [ﬂ0+ "xﬂ1:|,

I‘X
3 (/3
Ezz =1 vyy yx|,
c X
Xy Xxx

Tyy = BiExPr %aq’
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and
o'xyzz xxﬂl'
In addition, assume that Exx is positive definite.
Note that
5 le =z‘1zxxﬂ =8.
XX Xy XX 1 1

Thus, a reasonable estimator of ﬂl is

~ ~_1~
ﬁl = Exxaxy’ (3.3)
where % and o are the corresponding
xx X

submatrices of the estimated generalized least

squares estimator ﬁzz defined in (2.11).

Theorem 2. Let model (3.1) - (3.2) and the
assumptions of Theorem 1 hold. Also assume that

zxx is positive definite. Then
1/2,~ L
where
-~ ~__1~
ﬂl - z:xxaxy
-1 -1
I' ,.=X (b/®A)® I'd’(bB®A’)XE
A =[0,1 _],
(p-1)xp [ p-1]
and

—_rt a1’

Proof. Omitted. o

Thus for large samples, ;’1 is approximately

normally distributed. Thislarge sample result can be
used to construct confidence intervals and

hypothesis tests for ﬂl using Bl'

4. Comparison of Theoretical Variances

Hasabelnaby’s estimator (1.6) is generally better
than estimator (1.4) when there are heterogeneous
error variances. It is of interest to compare our

2-stage method-of-moments estimator B, defined in

(3.3), with Hasabelnaby’s estimator #. In this
section we compare the variances of the limiting
distributions of estimators (1.6) and (3.3) under a
specific model. Both estimators are consistent.
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Assume that Zt = (Yt’ Xt)', t = 1,2,..,n, are

observed. Furthermore assume that the observations
came from the model, a special case of (3.1) - (3.2),

Zt=’t+at’
and
7/
/ p—
a, 0},{ 0 Eaatt ,t=1,...,n

whereo  =0.2,6. =1l,ando_ =1.
qq 1 XX

Assume that one half of the observations have

Ea.a.tt'. = 400 = 2:aa.ll
| 0 .10 ] !
and the other half of tl_le obseryations have
Loatt = 100 ey 222
0 40| 2%

It follows from the assumptions that the Zt are

normally distributed. Under this model

oyy = axxﬂf + aqq =1.2
and
Xy Uxxﬂl =1
80
z = 1.2 1] -
11
Hence, for half of the observations,
(1.6 1 ]
Yozt ™ '
[ 1 1.1]
and, for the other half of the observations,
(1.3 1 ]
Boa = ‘
| 1 1.4]
Asaresult,
[ 1.0474-1.9044 0.8657 |
—1 | _1.9044 4.7784-2.7701 |,
mmll
| 0.8657-2.7701 2.2161 |
and i
[ 1.4575-2.0821 0.7436
V——1 = | -2.0821 4.1939-1.9334
mm22
0.7436-1.9334 1.2567

Let the a.ssum;;tions of Theorem 2 hold.
Corollary 1.1,

By



where
V.=limn 2 V'R —1
I t=1 mmtt’
n-w
For our model,
= —1 —1
V=3V im11 1 Vimeo)

1.2525-1.9933 0.8046
-1.9933 4.4862-2.3517 |.

0.8064-2.3517 1.7364
By Theorem 2, the variance of the limiting

distribution of n '/ %( B,-B,)is

Ps== o (b'®A)2,I%; (bOA),

BB
where
A=][0,1], b=[1,-1]’,
and
100
010.
2,=1010
001
Therefore,
[01-1]] 3.9656 2.7539 1.8922 0
I‘B,B_ 2.7539 2.6811 2.3551 1
1.8922 2.3551 2.8887 | | -1
=0.860.
Recall that
Tyvit ™ aqq + Twwtt 26 1%uwtt + ﬂfauutt'

Therefore for one half of the observations,
O tt = 0.20+0.40-0+1-(0.10)=0.70

and for the other half of the observations,

0 =0-20+0.10-0+1-(0.40)=0.70.

Hence, the T ott TC equal for all observations. In
this case, the weighted estimator (1.6) is equivalent
to the unweighted estimator (1.4).

The variance of the limiting distribution of

2?5, -,)is

.. -1
rﬂﬂ {U axx [ 5(auull uu22)0vv
+ '5("uv11 uv22)]}’
where
Tuvtt = Cuwtt auuttﬁl = "% utt’

for our model. Hence,

I‘“ p —{ 70(1) + (1)[.5(.10 + .40).70 + .5(.01 +.16)]}
—{ 70 + [(.25).70 + .085]}
=0.960.

Therefore, the relative efficiency of estimator Bl to

Hasabelnaby’s estimator 231 is

re(Zal,Zal) = (0.860)"(0.960)
=1.12.

Results from Monte Carlo simulations with this
model and these parameters show that for samples as
small as size 20, the 2-stage method-of-moments

estimator 'Bl is more efficient than Hasabelnaby’s

estimator ’bl' Different choices of za.a.ll and Eaa22

give different relative efficiencies.

This material is based upon work supported under
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