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I .  I n t r o d u c t i o n  

The statistical consideration of models containing 
measurement errors began as early as 1877. See 
Fuller (1987, p. 30). Most of the past work has been 
done on the univariate linear model with constant 
error variances. More recently, work has been done 
on multivariate,  non-linear, and non-constant error 
variance models. We will consider a methods of 
moments estimator for the parameters of a 
univariate linear model with heteroskedastic error 
variances. 

The general univariate linear measurement error 
model is 

yt - xtfl% qt ,  t - l ,2 , . . . ,n ,  (1.1) 

where Yt is the dependent observation at time t, x t is 

a 1 x k vector of explanatory variables, fl is a k x 1 
vector of unknown coefficients, and qt is the equation 

error. The usual goal is to estimate ft. We assume 
that  we are unable to observe s t - (Yt' xt) directly. 

Instead, we observe Z t - (Yt' Xt)'  such that 

Yt - Yt "{" wt' 

- t=l ,2, . . ,n ,  (1 2) X t x t + ut, 

where a t - . .(wt,utJ are random measurement errors. 
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, t- l,...,n, 

are known for each t. This is the heteroskedastic 
measurement error model with normal distribution 
assumptions. 

If the P. 
aat t  

where 

and 

are known, a natural  estimator is 

x x  x y  

xx - n- l t~  1 (X t Xt - Zuut t )  

~Ixy - n-lt~ i (x t Yt - Suwtt)" 

(1.4) 

Fuller (1987, Section 3.1) showed that  

{,~~/2(~- a) ~ N(0, I), 
where 
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and 
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y ~  - n-ll~I-1 (I l~I-1 
XX XX' 

- l t ~  ~ - _ G - - n  l (X' tXtavvtt  + P-uvttP-vutt ), 

+ awwtt - 2 f l /Euwt t  + fl '  Euuttfl,  (1.5) 

Iluvtt - l~uwtt - Iluuttfl, 

n ~ 
N _ 

aqq t~1[(n-k)-l(Yt-Xtfl)2 

-i , 

- n  (1, )r .aatt  (1, ) ] .  
~ 

The estimator fl is a consistent estimator and 
relatively easy to compute. However, it is sometimes 
possible to construct an asymptotically superior 

~ 

estimator using fl as a preliminary estimator. 
Hasabelnaby (1987) investigated the weighted 
estimator, 

f l -  [t}] lav: tt (X ~ X t - r.uutt)] -1 

x t~l~V t t (X~Yt-P .uwt t )  (1.6) 

where avvtt '  an estimator of the variance of 

v t - - q t  + w t - u t f l  , is defined in (1.5). Hasabelnaby 
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showed that,  

where 

" - 1 /  ~ (0, I), 2(h-  . 

^ 
Yfl~-- -21~-1 [ ~  ~-1 # 

n x~rx t= 1 vv t t (XtXt  

+ ~v-vltt~uvtt~.vutt )] M-I XgrX ~ 

and 

n 1 
- (x lx  t xxx t -  1 vvtt - Euutt)" 

The use of ~-1 avvt t  as a weight minimizes the part of 

the covariance matrix of the limiting distribution 
# associated with x t v t. There is also a contribution of 
# the variance of u t v t to the covariance matrix. The 

set of weights minimizing the variance of the limiting 
distribution depends on the unknown x t. Since a 

consistent estimator of the x t does not exist, a best 

set of weights can not be constructed without 
additional assumptions. 

Under certain assumptions, it is possible to 
construct an estimator of fl that  is generally better 
than (1.6) and better than (1.4). The remainder of 
this paper will discuss a method of moments 
estimator based on a two-stage generalized least 
squares estimator of E developed by Fuller (1990). 

Z Z  

2. Estimation o f  t h e  C o v a r i a n c e  Matrix 

Consider the model 

Z t - ' t  ÷ a t '  t -  1,...,n (2.1) 

where Z t is a p-dimensional row vector of observed 

values, s t is a p-dimensional row vector of true 

values, a t is a p-dimensional row vector of 

measurement errors, and n > p. 
Assume that  I[:][,z0 ]1 

a~ NI , 0 Eaatt  

where Eaatt  is known for all t. Let 

EZZtt E + . - -  zz Eaatt 

, t = 1 , . . . , n  

(2.2) 

Assume that EZZtt is nonsingular for all t. Define 

1 n 
m z z  -- (n- l ) -  t= ~ l(Z" - Z) ' ~  (Z t -Z),  

1 n 
E = n -  ~ .  

a~.. t :  1 aatt  ' 
and 

- - l t ~  = Z - n  (2.3) lZt • 
Fuller (1989) considered the following preliminary 
estimator of 

Z Z  ~ 

~2 - - E  ( 2 . 4 )  zz mZZ aa.." 

Fuller also modified (2.4) to ensure that  ~] is 
zz 

positive semidefinite. For simplicity, we will initially 
assume that estimator (2.4) is positive semidefinite. 

Under model (2.1)- (2.2)it can be shown that  

) - r .  
ZZ ZZ" 

Define 

~ ' Z Z t t -  Ezz + Eaatt"  (2.5) 

This estimator is an unbiased preliminary estimator 

° fEzz t t "  

Let M be any p x p matrix. Let vec M denote the 
2 

p column vector obtained by listing the columns of 
M one beneath the other in a single column. Let 
vech M denote the p ( p + l ) / 2  column vector obtained 
by listing the elements in each column that  are on or 
below the diagonal. In addition, let @ be the 

P 
2 

p x p ( p + l ) / 2 m a t r i x s u c h  that  
vec M - @ vech M. 

P 
See, for example, Fuller (1987, Appendix 4A) for 
discussion of vec, vech, and the matrix @ . 

P 
Fuller considered the second round estimators 

given by 

n ^--1 -1 n "--1 
- It ~= 1Wzztt] t2~- 1Wzzt tZ t  / 1 (2.6) 

~^-- I -I 
vechm -- n(n-1)-l( t  = .. 1Vmmtt ) 

n ^~i 
x ~ V vech[(Z - ~ ) ' ( Z  -~)] 
t:l mmtt t t ' 

(2.w) 
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vech E 
aT&.. 

n ^V__I ) -1~  " - - 1  
= (t ~ P'aatt = 1 mmtt t = 1Vm ttvech , 

(2.8) 

~--I 
mmtt (Wzzt t@Wzzt t )@p,  (2.9) -1/2% ^-1 ^-1 

^ = - ^ -1 

WZZtt n l(n-1)l~ZZtt+n mZZ. 

The ~?ZZtt are preliminary estimators of P'ZZtt" 

- 1  " 
The inclusion of the n mZZ term in WZZtt 

-1  
produces a more stable estimator for P'ZZtt" Hence, 

is an estimated generalized least squares estimator 
of ~ Also, under the normality assumption (2.2), 

- - I  _l/2@/n( --1 ® --1 
Vmmtt 1- ~ZZtt P'ZZtt)@p 

is the inverse of the covariance matrix of 
vech[(Zt-p) ' (Zt-p)],  

--1 
and (2.9)is an estimator of Vmmtt. See Fuller (1987, 

p. 386). Thus 

S =m -S (2.11) 
ZZ .. a~a.. 

is the estimated generalized least squares estimator 
of ~ . For simplicity we again initially assume that 

ZZ 

(2.11) is positive semidefinite. 

The estimator vech ~ is asymptotically normal. 
Z z  

Theorem 1. Assume 

(1) Zt=z t +at, t= l,...,n, 

zt ~Ind , O Eaatt (2) 

(3) 
(4) 

(5) 

(6) 

t -  l,...,n, 
P'aatt is known for all t, 

the true value, 00, is in the interior of 

0 = { @.P.zz (~ is positive semidefinite}, 

there exists an convex, open set f/C O with 
# 0 in the interior such that 

det[P.ZZtt (0)] _> c > 0 V t and V OE fl, 

n 1 
[n -1 ~ S -  (60)]-1 is uniformly bounded, 

t=l ZZtt 

(7) 

(s) 

(9) 
Then 

where 

-i ~ 1 - 
l i m n  -V'-" - V i , w h e r e  

t-- 1 mmtt , 
n--~ CD 

~'I is positive definite, 

-1 n --1 --1 - 
l i m n  ~Y G Y t=l mmtt mmtt mmtt- GVV' 
n-~oo 

where GVV is positive definite and 

Gmmtt -- Var{vech[(Zt-#) / (Zt-#)]}, 

Z t have uniformly bounded 4+6moments. 

nl/2vech(P'zz-Szz) L :N(0,r) 

r -  vi-1C.vvVi-1. 

Proof. Omitted. D 

Corollary 1.1 Let the assumptions of Theorem 1 
/ hold and, in addition, assume the Z t to be normally 

distributed. Then 

r -91  -I. 
Proof. Omitted. [] 

3. Estimation of Regression Parameters 

Consider the following model. 

Yt - flo + Xtfll +qt' 

Z t - z t + at, t - 1,..,n, (3. i) 

' / -- (Yt,X/t)' Assume where Z t - (Yt'X/t ) / a n d  z t 

[ I[:][ ]/ 
a t , 0 Eaatt , t -  1,...,n 

(3.2) 
where 

G J 

E 
ZZ 

ayy gyx], 

axy Bxx ~ 

Cryy- fll P'xxfll + Cqq, 
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and 

axy -- Exx~ 1 • 

In addition, assume that E is positive definite. 
XX 

Note that  

E-I - i  E _ = xx 6 x x x y  

Thus, a reasonable estimator offll is 

fll ~]-i~ - a (3.3) 
xx xy' 

where E and u are the corresponding 
xx xy 

submatrices of the estimated generalized least 

squares estimator E defined in (2.11). 

Theorem 2. Let model (3.1)- (3.2) and the 
assumptions of Theorem I hold. Also assume that 
E is positive definite. Then 

X X  

N(O, 

fll ~-1~ m O" 

xx xy 

where 

and 

r~-  E~(b' ®A),pr, 'p(b~A' )Z-1 
X X '  

A (p-1)xp = [0, Ip_l], 

/ / 

b p x l - [ 1 , - f l  1] • 

Proof. Omitted. n 

Thus for large samples, fll is approximately 

normally distributed. This large sample result can be 
used to construct confidence intervals and 

hypothesis tests for fll using ill" 

4. Comparison of Theoretical Variances 

Hasabelnaby's estimator (1.6) is generally better 
than estimator (1.4) when there are heterogeneous 
error variances. It is of interest to compare our 

2-stage method-of-moments estimator fl, defined in 

(3.3), with Hasabelnaby's estimator ft. In this 
section we compare the variances of the limiting 
distributions of estimators (1.6) and (3.3) under a 
specific model. Both estimators are consistent. 

Assume that Z t = (Yt' Xt)~' t - 1,2,..,n, are 

observed. Furthermore assume that  the observations 
came from the model, a special case of (3.1) - (3.2), 

Yt - + + qt' 

Z t - z t + a t, 

and 

a t , 0 Eaatt  , t - -  1,...,n 

whores  - 0 . 2 , ~  - 1  a n d s  - 1 .  
qq 1 ' xx 

Assume that one half of the observations have 

.400  ] 
E a a t t -  0 .10 - E a a l l '  

and the other half of the observations have 

.10 0 ] 
E a a t t -  0 .40 -Eaa22" 

It follows from the assumptions that the Z t are 

normally distributed. Under this model 

a -axx~ l+a  - 1 . 2  YY qq 
and 

S O  

m m 

_[1.21]. 
zz 1 1 

Hence, for half of the observations, 
1 . 6 1 ]  

E Z Z t t -  1 1.1 

and, for the other half of the observations, 
1 . 3 1 ]  

E Z Z t t -  1 1.4 

As a result, 
1.0474-1.9044 0.8657 

- -1  
V m m l l  = -1.9044 4.7784-2.7701 

0.8657-2.7701 2.2161 
and 

1.4575-2.0821 0.7436 

V I  - -2.0821 4.1939-1.9334 
mm22 

0.7436-1.9334 1.2567 
Let the assumptions of Theorem 2 hold• 

Corollary 1.1, 
- -  - - 1  

r - v  I 

By 
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where 

- -1  ~, 1 
V I - l i m n  ~V ' - -  

t = 1 mmtt" 
n--4 o0 

For our model, 
--i --I 

V I = .5(Ymml 1 + Vmm22) 

1.2525-1.9933 0.8046 

- -1.9933 4.4862-2.3517 • 

0.8064-2.3517 1.7364 
By Theorem 2, the variance of the limiting 

distribution o fn l / 2 (~  1 - i l l  ) is 

C(b' ®A)¢2r@~(b®A'), 

where 

and 

Therefore, 
[0 1-1] 

= 0.860. 

A - [ 0 ,  11, b - [ 1 , - 1 1 ' ,  

• I  ) m 

2 

100 
010 . 
010 
001 

3.9656 2.7539 1.8922 0 

2.7539 2.6811 2.3551 1 

1.8922 2.3551 2.8887 -1 

Recall that 

avvtt - aqq + awwtt - 2fl 1 auwtt + ~1 auutt" 
Therefore for one half of the observations, 

avvtt - 0.20 + 0.40-0 + 1. (0.10) - 0.70 

and for the other half of the observations, 

avvtt - 0.20 + 0.10- 0 + 1. (0.40) - 0.70. 

Hence, the avvtt are equal for all observations. In 

this case, the weighted estimator (1.6) is equivalent 
to the unweighted estimator (1.4). 

The variance of the limiting distribution of 

nl/2(131 - i l l )  is 

-1 -2 
r/~/~ - { avv axx + axx[" 5 ( auu 11 + auu 2 2) avv 

+ . 5 ( a  v l l  + auv22)]}' 
where 

auvtt  - auwtt - auuttB1 - -auugg' 

for our model. Hence, 

{.To(l) + + .40). 0 + .5(.01 + .16)1) 

= {.70 + [(.25).70 + .085]} 

-0 .960.  

Therefore, the relative efficiency of estimator fll to 

estimator ~1 is Hasabelnaby's 

re(~l ,h l  ) -(0.860)-1(0.960) 
=1.12. 

Results from Monte Carlo simulations with this 
model and these parameters show that for samples as 
small as size 20, the 2-stage method-of-moments 

estimator fll is more efficient than Hasabelnaby's 

estimator/~1" Different choices of P'aal 1 and ~aa22 
give different relative efficiencies. 
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