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(1) The Controversy 
We start by describing a controversy that recently 

appeared in the medical literature concerning the 
appropriate way to analyze an association between a 
person's body iron stores and the risk of developing 
cancer. The data source used for this analysis was a 
follow-up of a large national health survey called the 
first National Health and Nutrition Examination 
Survey (NHANES I). The original survey was 
conducted in 1971-1975 and the follow-up was 
conducted in 1982-1984. 

Using NHANES I and its follow-up, Stevens et 
al. [1] found a statistically significant difference in 
two measures of body iron, total iron-binding 
capacity and transferrin saturation, in men who 
developed cancer and men who did not. Age and 
smoking status were controlled for in the analysis. 
The sampling design was ignored in the analysis. 
Yip and Williamson wrote a letter to the editor 
criticizing their lack of use of the sampling design 
and suggested that if the sampling design had been 
incorporated, "it is doubtful that [these differences] 
... would have remained 'statistically significant'"[2]. 

Stevens responded in his own letter to the editor, 
"It is important to take into account the probability 
sampling method used by NHANES when one is 
attempting to estimate the level of a variable in the 
U.S. population at large. To test for differences 
between case patients and controls within the 
NHANES cohort, however, the methods we used are 
appropriate." [3] 

Before going on, let us examine these two 
analyses. We concentrate attention on men and on 
one of the two iron variables, "total iron-binding 
capacity". Results for the other variable and for 
women can be found elsewhere [4]. 

Table 1" 

Cancer 
Analysis No Yes Diff. S___EE p-value 

OLS 62.8 61.3 1.5 0.6 0.013 

Design- 
Based 63.6 62.7 0.9 0.9 0.29 

The top line represents an ordinary least squares 

analysis. The 62.8 is the adjusted mean value among 
the 3116 men who did not develop cancer, and the 
61.3 among the 242 men who did develop cancer• 
The means have been adjusted by linear regression 
for age and smoking status. The difference in these 
values is 1.5 moles per liter with a standard error of 
• 6 for a p-value of .013.  This analysis is one of the 
analyses that Stevens did in his paper [1]. The 
second row contains the results of a design-based 
analysis. This analysis uses the survey design in the 
standard way, i.e., incorporates both the sample 
clustering and sample weights of the observations. 
The difference has become smaller, the standard 
error larger, and the result is no longer statistically 
significant. 

(2) Sample Clustering 
For reduction of costly traveling, and for the lack 

of complete list sampling frames, large scale surveys 
usually have a clustered design. We use NHANES 
I as an example throughout; full design details are 
available elsewhere [5-7]. The mainland United 
States is divided into approximately 1900 primary 
sampling units (PSU's) which are grouped into strata. 
Each PSU consists of a standard metropolitan area, 
or at most three contiguous counties. One or two 
PSU's are sampled from each strata, from which a 
limited number of census enumeration districts are 
sampled. From these a limited number of segments 
are sampled, and then a limited number of 
households. Finally, individuals are sampled from 
the selected households. 

Clustering can lead to a dependence among the 
observations which will lead to an inflation in 
variances. This is true not just for population means, 
but for associations too. Consider the following 
simple example. Suppose we select a simple random 
sample of households, and then sample 4 children in 
each household. Assume we are interested in the 
association of drinking well water with having had 
chickenpox. If we assume that everyone in the house 
has the same water supply, and if one child has had 
chickenpox then his siblings will have had it too, then 
the effective sample size for measuring this 
association is 1000 and not 4000. If we ignore the 
sampling design and use 4000 as our sample size, we 
will be underestimating the variance of the observed 
association by a factor of 4, or the standard error by 
a factor of 2. 
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Now while this extreme example shows how 
clustering can lead to a dependence of the 
observations, it does not imply that it must. In fact 
it is easy to write down sufficient conditions for 
ignoring the clustering in the analysis, for example, 
if the residuals are independent. It is not so easy to 
decide from the data whether the clustering has or 
has not lead to dependence that will affect your 
analysis. 

Fortunately, survey samplers have over the years 
developed methods which estimate standard errors no 
matter what the dependence, e.g., Taylor series 
linearization, balanced half sample repeated 
replication, and the jackknife [8]. These methods 
capture the variability of estimators by measuring the 
variability at the PSU level. All dependence due to 
clustering at the lower levels of sampling is 
automatically incorporated. Thus, these replication 
methods yield approximately unbiased estimates of 
variances whether or not there is dependence. 

Since adjusting for the sample clustering will on 
average increase the standard errors, its use in the 
analysis can be thought of as a conservative 
procedure. What is lost by using the clustering in an 
analysis when it was unnecessary? One potential 
problem with these replicated variances is their 
variability. This becomes more of a problem with 
limited numbers of sampled PSU's. In particular, a 
replicated variance is distributed approximately as a 
multiple of a chi-square distribution with d degrees of 
freedom. For a stratified design, d is equal to the 
number of sampled PSU's minus the number of 
strata. For NHANES I body iron analyses, the 
design can be approximated by a sample of 67 PSU's 
from 32 strata which leaves 35 degrees of freedom, 
a reasonably large number. But consider another 
HANES survey, the Hispanic HANES (HHANES). 
The design of that survey can be approximated by a 
sample of 16 PSU's from 8 strata [9], leaving only 8 
degrees of freedom. 

A good way to describe this variability is in terms 
of the inefficiency of using the sample clustering 
when it was actually unnecessary [ 10,11]: 

For 1 parameter 

Inefficiency0 = 1 - (  z~r~/t~tz )2 

For parameters (simultaneously) 

2 %t. Fo~ Inefficiency 0 = 1 -  Xp /u- p#-t,+l~ 

The subscript 0 is a reminder that this is being 
calculated under the null hypothesis that there is no 

dependence. For 1 parameter, if one were doing 
hypothesis testing or constructing a confidence 
interval using a replicated variance, one would use a 
t-distribution with d degrees of freedom. This is 

represented by the upper a / 2  tail of the appropriate 
t-distribution. If one knew a priori that the clustering 
was irrelevant, then one would not need to use a 
replicated variance, but could use a standard ordinary 
least squares variance. Since the surveys are large, 
one could use the upper tail of a normal distribution. 

This inefficiency measures the increase in sample 
size necessary to compensate for using a replicated 
variance when unnecessary. If the analysis involves 
simultaneous inference for p parameters, then the 
inefficiency will be greater as represented by the 
above formula that involves a chi-square and F 
distribution. Table 2 presents some examples from 
NHANES I and HHANES. 

Table 2: Inefficiencies of using clustering when 

unnecessary for a = . 0 5  

# parm. NHANES I HHANES 

1 7% 28% 
2 9% 37% 
5 12% 65% 

Notice that for the case we are interested in the 
inefficiency is quite small, 7 %. 

In this case when the inefficiency is small, we 
would recommend using the replicated variances 
which accounts for the sample clustering. The idea 
is that if there is dependence, then one has correctly 
accounted for it. If there is not, then one has not lost 
much. "Small" here depends somewhat on the 
context. Ten percent is probably always small, but 
100% could be small too if it means the standard 
error is going from . 1 to .2 on an expected relative 
risk of 3. 

What do you do if this inefficiency is not small? 
We offer the following general recommendations. 

Summary of Recommendations -- sample clustering 

(1) If Inefficiency0 is "small", then uses the clustering 
in a standard (design-based) way to obtain replicated 
variances. 

(2) If Inefficiency0 is not small, then 
(a) drop the strata boundaries, and/or 
(b) drop the PSU boundaries. 
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This last recommendation (2) is tentative and 
presently under study. It will increase the degrees of 
freedom at the cost of potentially estimating the 
variance with bias. 

( 3 )  Causality 
Before discussing sample weights, it is useful to 

discuss briefly causality. One possible definition of 
the magnitude of the causal effect of a risk factor on 
an outcome is the expected association one would see 
from a randomized trial of that risk factor [ 12]. With 
such a definition, a key notion is whether a variable 
is "exogenous" or not. An "exogenous variable" is 
one that would not be affected by the treatment 
assignment in a hypothesized randomized trial of the 
risk factor [13]. Under suitable conditions, an 
analysis of a risk factor/disease association will not 
be "hurt" by conditioning on exogenous variables. In 
fact, such conditioning may lead one closer to the 
causal effect of the risk factor. 

(5) Sample Weights 
For complex surveys, each sampled individual 

with data has a "sample weight" associated with his 
data. The sample weight is the number of individuals 
in the target population that the sampled individual 
represents. The sample weight may be derived as the 
product of three components. The first component 
comes from the fact that surveys frequently 
over-sample certain groups in the population (base 
weight). For example, in NHANES I, people living 
in poverty census enumeration districts were sampled 
at either two or eight times the rate as people living 
elsewhere. Additionally, persons aged 65 years or 
over were sampled twice as often as women aged 
20-44, who were in turn sampled twice as often as 
other adults. Finally, in a small number of segments 
there was subsampling of households at rates of 1/2 
to 1/4 because of inaccuracies of census block listings 
("supplemental block" and "duplication control"). 

The second component of the sample weight is an 
adjustment for non-response, including both the 
inability to locate sampled individuals as well as their 
refusal to participate. In NHANES I the non- 
response adjustment was based on five family income 
groups within each PSU. This adjustment to the 
sample weight was truncated at 3. 

The third component of the sample weight is an 
adjustment so that the sum of the weights for a given 
sex, race, and age agree with known population 
figures (poststratification adjustment). Finally, since 
not all sampled persons in NHANES I had their body 
iron stores measured, a special set of weights were 

derived for use in the analysis of these data. 
The reason survey analysts use sample weights is 

that they lead to approximately unbiased estimates of 
population quantities. For example, weighted least 
squares regression, in which the weights are the 
sample weights, estimates population regression 
coefficients. Ordinary least squares (OLS) will not 
in general. 

Why not always do a weighted analysis? As with 
the use of clustering when unnecessary, the use of 
sample weights when unnecessary leads to an 
inefficient analysis. Since in this case, OLS is 
optimal, the inefficiency can be defined as 

Inefficiency 0 1 - Var( [3°~ = x )/Var(131 wzs) 

where [3 x is some regression coefficient of interest. 

The subscript 0 is again a reminder that this 
inefficiency is being computed under a null 
hypothesis (that the OLS coefficient is actually 
unbiased). We now discuss three ways of estimating 
this inefficiency from the data. We start with the 
case of a simple mean, for which the unweighted and 
weighted estimates are given by 

~oLs_ y , /n  and ~ s _  w y , / ~ w ,  , 
i=1 i=1 i=1 

respectively. 

(Method 1) Assume Yi are i.i.d. 

Inefficiency0 = 1 -  
w,: 

(Method 2) Assume yi are independent 

Inefficiency0 = 1 -  
Z (Yi -y-)2 [ t12 

E 2 Wi (Yi -y-')2 / (E Wi )2 

(Method 3) No assumption on the Yi 

Inefficiency 0 = 1 - Var(~°LS) / Var(~Wr's) 

Method 1 utilizes only the variability of the sample 
weights. For method 2 the y's do not have to be 
identically distributed. In particular, it allows for the 
possibility that the y's are correlated with the 
weights. Method 3 makes no distributional 
assumption concerning the y's, and so these variances 
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could be estimated by one of the replication methods 
discussed earlier. 

We now consider the corresponding formulas for 
estimating the inefficiency of a single regression 

coefficient 131 based on the model y = X 13 + 
error. 

(Method 1) Assume errors are i.i.d. 

Ineff0 = 1 -  
[ (X/X)-I ] I  1 

[ (XIW~O-l(x IWWX) (X/WX)-l] 11 

(2) Assume errors are independent 

Ineff 0 = 1 -where yl = diagonal ((residuali2)) 

Although the estimation of the inefficiency using 
method 3 has appeal because it makes the fewest 
assumptions, notice that it might be very variable 
because it uses replicated variances. To study this 
we performed a limited simulation. Using the 
observed sample weights from the 3358 observations, 
we generated an independent normal deviate to be the 
y for each observation. Then the inefficiency was 
calculated for the mean using methods 2 and 3. (For 
method 1, the inefficiency is .47 regardless of the y 
data). We repeated this process 100 times with the 
following results: 

Mean SD MIN MAX 
Method 2 .47 .03 .38 .54 
Method 3 .46 .17 .004 .77 

(3) No assumption on errors 

Ineff o = 1 -  Var( ~oh~) / Vttr( ~1 wLs ) 

Here W is the diagonal matrix with the sample 
weights on the diagonal, and the subscript (11) refers 
to the diagonal element of the matrix corresponding 

to 131 . 
The inefficiencies for the analysis of total iron- 

binding capacity are quite high: 

Table 3" Inefficiency0 of using sample weights 
for analysis of Total Iron-Binding Capacity 
for Males 

Assumption on Estimating" 

Method Residuals Mean TIBC [31 

1 i.i.d. 47% 58% 
2 indep. 48 % 70 % 
3 none 20% 60% 

This is not surprising given the high variability of the 
sample weights" 

Table 4" Percentiles of Sample Weights for Men 

Maximum 135,824 
95% 31,556 
75 % 19,504 
Median 8,170 
25% 3,614 
5% 876 
Minimum 477 

Since the y data for this simulation was generated to 
be i.i.d., the correct answer is .47. Although all 
methods are unbiased in this simulation, the 
variability of method 3 is unacceptably large. 
Therefore, we do not recommend this method. 

Since the inefficiency of performing a weighted 
analysis is unacceptably high, what do we 
recommend? One approach is to use an unweighted 
analysis but to control for any exogenous variables 
utilized in determining the sample weights. In the 
present context, in addition to age which is already 
included in the model, we augment the model with 
income levels, an indicator variable whether or not 
age< 65, an indicator variable whether or not the 
household was in a poverty census enumeration 
district, and race. We then perform an OLS analysis 
to estimate the regression coefficients. The standard 
errors of the coefficients are estimated using a 
replication method, since that inefficiency was small. 

Table 5" Regression analysis augmented with 
exogenous design variables (OLS estimates -- 
replicated variances) 

Variable [3 p-value 

No Cancer vs. Cancer 1.4 .010 

Age (years) -. 048 .004 

Smoking (vs. never) .027 
current 0.9 
former 0.7 
unknown 1.6 
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Table 5 (continued) design completely. 

Variable 13 p-value 

Income (5 levels) small .95 

Age < 65 (Yes/No) -1.5 .004 

Poverty ED (Yes/No) 0.1 .83 

Race (White/non.) -1.3 .022 

Adding these design variables changes the estimated 
coefficient for the cancer indicator (x~) very little, 
from 1.5 to 1.4. Additional inclusion of interactions 
among the covariates did not change the coefficient 
for the cancer indicator. We do not recommend 
including interactions of the design variables with x 1 
in the model for the following reason. If these 
interactions are included, then there will be many 
estimates of the treatment effect corresponding to 
different values of the design variables. One is then 
left with trying to average these estimates for an 
overall estimate of the treatment effect. This 
averaging can be done in a weighted or unweighted 
manner, neither of which works well. 

As a final check on the model, we recommend 
testing whether the unweighted regression coefficient 
from the augmented model is unbiased. This can be 
done in a model-based or design-based manner 
[14,15], with the latter approach being preferred. In 
the present context, this can be simply done by using 
the augmented model and estimating the unweighted 

131 (=1.43),  the weighted 131 (=0.72), and 
replicating the standard error of their difference 
(SE=0.86). In this case the coefficients are not 
significantly different. 

Here is a summary of the different analyses: 

Analysis using Cancer 
Cluster. Weights No Yes Diff. SE p-value 

No No 62.8 61.3 1.5 0.6 .013 
Yes Yes 63.6 62.7 0.9 0.9 .29 
Yes * 63.5 62.1 1.4 0.5 .010 

Our recommended analysis is the last line, which 
uses the clustering in a standard design-based way, 
but models the weights by including design variables 
in the regression model. For this particular example, 
our recommended analysis turns out to be very 
similar to an analysis which ignores the sampling 

Summary of Recommendations -- sample weights 

(1) If Inefficiency0 is "small", then use the weights in 
a standard (design-based) weighted analysis. 

(2) If Inefficiency 0 is not small, then 
(a) Augment the model with exogenous design 

variables. 
(b) Do not put interactions with the main 

treatment variable (x~) in the model. 
(c) Test whether the OLS coefficient for x~ is 

biased, i.e., the weights matter. 

(3) If this test (2c) does not reject, stop. 

(4) If this test does reject, then truncate the weights 
the maximum amount so that the test of the bias of 
the truncated beta does not reject. 

This last recommendation (4) is tentative and 
presently under study. 

(6) Discussion 
We end with two suggestions for the designers 

and producers of large-scale health surveys that will 
be utilized by other investigators. Following our 
recommendations, one will sometimes need to utilize 
variables relating to the design and non-response 
adjustments of the survey. Our first suggestion is 
that all these variables be documented and included in 
public use data files. Our second recommendation 
concerns the design of the surveys themselves. As 
we have discussed, a small number of sampled 
primary sampling units, and/or individuals with 
extremely high sample weights can make the use of 
the sample design in the analysis very inefficient. 
Given the large number of secondary analyses that 
are performed using these survey data, we suggest 
that the policy makers provide sufficient resources so 
that the surveys can be designed for efficient 
secondary analyses using the design. 
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