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1. Introduction 

example, for many parametric infinite populations, 
we have 

u ( y , 8 )  = 
a 1 og f (y; O) 

a8 

Point and interval estimation of popula- 
tion parameters is one of the cornerstones of 
modern statistical theory. For parametric infinite 
populations, these parameters completely 
describe the underlying distribution. In finite 
populations, the parameters are often of a de- 
scriptive nature, such as the population mean. 
Through the use of estimating functions, a unify- 
ing framework can be given for many of these 
problems. This unifying framework has been 
discussed in Godambe and Thompson (1989) 
and in Heyde (1989) for the case of sampling 
from infinite populations. We extend this to 
sampling from finite populations, with or without 
a superpopulation model. Because of the 
absence of a parametric likelihood in design- 
based inference, the issue of nuisance parame- 
ters poses special problems, for which we shall 
propose a solution. 

Most population parameters of interest 
can be described through the population distribu- 
tion function 

F(y) 

Pr{Y<y} for infinite 
populations, 

= ~I{YI<y}/N for finite 
i I "= 

populations, 

where I { - }  is the indicator function taking the 
value one when the condition is satisfied and 
zero otherwise. At this point we do not distin- 
guish between univariate and multivariate popula- 
tions. We assume that the population parameter 
of interest, e o, can be formulated as the solution 
to the equation 

U (O) = f; u (y, e) dF(y) = 0 (1.1) 

Godambe (1984) has discussed such 
parameter defining estimating equations. For 

Godambe and Thompson (1986) discussed the 
use of this score function for superpopulation 
models. 

Examples of estimating functions for finite 
populations are 

m 

u ( y , O )  = y - O  for the mean Y, 

u ( y , x ,  0) = y - e x  for the ratio Y/X, 

u ( y ,  0) = I { y < 0 } - p  for the p - t h  
percentile, 

u ( y , x , O )  = x ( y - x / O )  for ordinary 
least squares regression coefficients. 

In Section 2 we consider point estimation using 
estimating equations. We discuss test inversion 
methods to derive confidence intervals for one- 
dimensional parameters in Section 3. The main 
new results are in Section 4, where we propose 
a method for eliminating nuisance parameters. 
The application of these methods to poststratifi- 
cation and regression is given in Section 5. 

2. Parameter Estimation 

To obtain point estimates of the parame- 
ters defined by (1.1), we first consider the esti- 
mation of F(y) .  For independent sampling 
from an infinite population this may be estimated 
as 

n 

(y )  = ~ I {Y i<y } /n ,  
i =1  

although other non-parametric density estimates 
are also available. For sampling from finite 
populations, we use the general framework given 
by Rao (1979). The well-known Horvitz- 
Thompson estimator is a special case of this 
framework when the sample size is fixed. For a 
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given value of y ,  we consider the finite popula- 
tion elements to be the 0 - 1  variables given by 
I { Y  i ~y} .  The linear estimator for F ( y )  has 
the form 

N 

(y)  = ~ d i ( s) I { Y  i ~ y } / N ,  
i = l  

where s is the set of population units in the 
sample, selected through some probability mech- 
anism p ( s ) ,  and d i ( s )  =0 if i ~ s .  We 
assume that N is known, although, as we shall 
see for many of our applications, this assumption 
is not necessary. It is often sufficient to have 
only an estimator of N ' F ( y ) .  We denote the 
estimate of the population size by 

N 

N =  ~di(s). 
i=i 

Note that when 294 N then F ( y )  is not a true 

distribution function, since F(oo) would not be 
equal to 1. 

Rao (1979) placed the restriction on 
{ d i ( s ) } ,  such that if Yi ~ (° i ,  for some 

{~ i } ,  then the mean square error of 

N N 

i =Z i =Z 

= Nf:y d[/~(y) - F(y) ] 

is zero. This implies that the mean square error 
is necessarily of the form 

MSE ( 9) 

where 

= -~ ~ d~j ~ ~ ~ j ( z~ - zj ) ~ 
i< j  

zi = Yi/~i, 

dij = ~p(s) [di(s)-I] [dj(s)-i]. 
s 

A non-negative unbiased quadratic estimator of 

MSE(Y) has the form 

m s e  ( Y) = - Z Z d~5 (s) e~e5 ( z~ - z 5) ~ 
i<j 
i,jes 

where 

~ p ( s) d i j  ( s) = d i j  , i < j . 
s 

For example, for the case of Horvitz- 
Thompson estimation for fixed sample sizes, we 
have 

~ = ~ = C p ( s )  , 
s ) i  

d i(s) = {I/~io 
if i6s, 

if i ~s, 

dij = ~ij --~i~j 

where 

= ~ p ( s ) .  lz i j  sgi,j 

If d i j ( s )  = d i j / = i j ,  we have the well known 
Yates-Grundy estimator 

ms e ( Y) = ~ ~ ( ~ i ~z i - ~z i J ) < i ~z i j ~z iYi - = sYJ ) 2 " 

i,j6s 

Now, our parameter of interest has been 
defined as the solution to the equation in (1.1). 
We consider a "model-assisted" approach to 
estimation analogous to Cassel, S&rndal and 
Wretman (1976), S&rndal, Swensson and 
Wretman (1989) and Godambe and Thompson 
(1986). For a given e, we consider estimators 
for U(e)  which can be expressed as 

~'p(0) = f : a ( x , p , O )  d [ F ( x )  - F ( X )  I 

+/_'u (y, 8) d# (y), 
(2.1) 

where 

a(X ,  I~,0) = ~ { u ( y ,  0) IX}, (2.2) 
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under some model F,, which may contain an 
unknown parameter I}. For example, if 

u(y,O) = y -O 

(~ (x ,  It, O) = x'~ - 0  

and we use Horvitz-Thompson estimation, we 
have 

A 

(o) = - o ,  
• = NI~ i 

which is the estimating function for a regression 
estimator of the mean. 

If I} is unknown, we include the func- 
tions 

U* (~}) = f;U* ( X , Y ,  ~) d F ( x , y )  (2.3) 

and 

(ll) = f'u* (x,y, ll) d#(x,y) 

in our setup, where I} o is the solution to 

U* ( I})  = 0. In general t~, our point estimator 
for e o, is given as the solution to 

: o ,  

A 

Up (8) = 0 .  (2.4) 

To exemplify these concepts, we con- 
sider the poststratified estimator of the population 
mean. Here we have 

u(y,O) = y - O ,  

and the x 's  are dummy variables for the first 

H - 1  strata. We let I} = (131, . . . ,  13H_1)/. 

For strata h = l ,  . . . , H - l ,  wehave 

( y - 0 )  = 13h-0, 

and for stratum H, we have 

H-1 
1 

h = l  

where N 1, . . . ,  N~ are the known strata sizes 
and 

H 

Nh=l 

The estimating function for I}, given in (2.3) is 

u~ ( y ,  I}) = 6h ( y -13h ) ,  

where 

8h = t  

if observation is 
in stratum h 

0 otherwise. (2.6) 

Solving the equations in (2.4), we obtain f) " " 
h = N h where Yh and N h are the esti- 

mated total and size for stratum h and 

0 = - ~ ~ z % - ~ ,  
= z% 

the poststratified estimator of the population 
mean. 

3. Confidence Intervals: One Dimensional Case 

In the previous section we defined our 
parameter of interest as the solution to equation 
(1.1). We now consider the problem of con- 
structing a confidence interval for this parameter. 
We first discuss the relatively simple case of only 
one unknown parameter 0. In Section 4, we 
extend this to the more complex case where the 
unknown parameters are multidimensional. The 
parameter of interest is defined as the solution to 
U(0  0) = 0  and our estimator of U(0)  is 

(0) with mean square error MSE{ 0 (0) } 
estimated by mse { U ( 0 ) }. 

In Section 2 we discussed design-based 
estimators of the mean square error which could 
be used here when 0 is given. However, we are 
not restricted to only design-based inferences as 
other randomization distributions are also per- 
mitted within the general framework. For 
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example, the parameter of interest may be a 
superpopulation parameter, in which case the 
estimator of mean square error over the super- 
population distribution would be used. 

To construct a confidence interval for 
0 0 we propose the method of test inversion. In 
particular, we let the null and alternative hypoth- 
eses be 

~o' u(O) = o 
H~. u (O)  , o 

and we define the confidence interval for 8 o to 

be the values of @ for which H o is accepted. 
Our acceptance region for H 0 is given as 

0 ( e )  2 2 
< z (3.1) 

mse{ U(e) } 1- ~- ' 2 

where z a is the (z-Ch percentile of a standard 
normal distribution. It is assumed here that 

(t9) is approximately normal with mean 

U(t9) and variance MSE{O(O)} and that 

rose{ 0 ( 0 )  } is a consistent estimator of 

MSE{ U(t)) }. This assumption will be valid for 
a large class of estimators and sample designs 
under various schemes for letting the population 
and sample sizes go to infinity. Sen (1988) has 
discussed the asymptotic theory for sampling 
from finite populations. 

We see that confidence intervals which 
are constructed using (3.1) are preserved under 
one-to-one transformations of the parameter. 
This is to be contrasted with the commonly used 
intervals derived using Taylor expansions of the 
estimating equations. The Taylor expansion 
method (6-method) can be derived by writing 

o = 0 ( e )  

= u ( o )  + [0(0) -u(o) ] 

+ [u(O) -u(O) ] +R, (3.2) 

where 

R = (U-U)(0)- (U-U)(0). 

At O=O0 we have that R=Op(18-O01)  and 

u(O)-U(eo) = (e-e0)[ aU(°°) ]ae 
+o (le-e01). (3.3) 

Therefore, evaluating (3.2) at O =O 0 and using 
(3.3) we have 

0 - - 0  0 ~, -- 
au(o o) ]-~ 

ae 0 ( 0 0 )  

from which the approximate variance of {) may 
be derived and confidence intervals assuming 
normality may be obtained. Binder (1983) dis- 
cussed this method for the more general case of 
multidimensional parameters. 

The estimation of a ratio provides an 
example of confidence intervals obtained by 
solving expression (3.1) for O. Here 

0(o) 
rose{ 0(e) },h 

A A 

Y-eX 

(my z -2 0 my x + 0 2 m xx ) '/'" 
(3.4) 

where my,/ and mxx are the estimated mean 
A t% 

square errors of Y and X, respectively, and 
my x is the estimate for 

~{ (9- Y) (2-x) } 

= _~dij~)io)j( Yi 
i <j (~) i 6~j 6~ i 6~j 

To obtain the confidence interval for the ratio, we 
see from (3.4) that it is necessary to solve a 
quadratic equation. This is similar to the interval 
proposed by Fieller (1932) under sampling from 

infinite normal populations. If, in (3.4), we use 
instead of 0 in the denominator, we obtain the 
usual Taylor expansion based confidence interval. 

Another interesting example is the case 
of estimating the population percentile. In this 
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case we have 

u (y ,  e) = z { y  < e} - p ,  

so that 0 (0) = P (0) - ( ]~/N) p .  Confidence 
intervals defined by (3.1) yield those proposed by 
Francisco and Fuller (1991). If, in the denomina- 

tor of (3.1), we evaluate rose { 0 (0) } at 0 = 0, 
we obtain the confidence intervals proposed by 
Woodruff (1952). 

4. The Multidimensional Parameter Case 

In general, our population parameters are 
estimated through a system of equations, such 
as those given in (2.4). Among the parameters 
(I}, [3) , some of them may be nuisance para- 

meters. We rewrite the system of equations 

given in (2.4) as D'(~,  ~) = 0, where U ( ' )  

includes both ~ ( ' )  and Up ( ' )  in (2.4), and 

~. is the vector of nuisance parameters. We 

assume that U ( 0 ,  ~,) is approximately 
multivariate normal with mean 0"(t9, ~) and 
covariance V U (0 ,  ~ ) . 

First, we consider the case where there 
are no nuisance parameters. Confidence inter- 
vals which are analogous to those defined by 
expression (3.1), are 

{el #(o) '  ~ ~ (o) O<o) ~x~-, (~) }. (4.1) 

^ 

where V U(0) is the estimator of the r x r  

matrix V~ ( t } ) ,  and x 2 ( r )  is the o~ - t h  

percentile of a X 2 distribution with r degrees of 
freedom. 

Note that, in general, confidence intervals 
defined by (4.1) will not be elliptical or even 

symmetric. If we were to linearize U(0 )  around 
^ 

0 = {}, and evaluate V U (t)) at t9 = ~, we would 
obtain the confidence intervals derived in Binder 
(1983). 

Now we consider the case where the 
parameter of interest, 0, is one-dimensional and 
all the other population parameters are nuisance 
parameters. We partition the vector 0"(0, ~,) 
into 

U(e, X) = [/ul 
(e, A) 

L u, (e, x) 

where U 1(t9 o , ~ )  =0 and 0" 2(19,~o) =0-  

Note that U 1 and 0' 2 are the estimating func- 
tions for t9 and ~,, respectively. 

We denote the r-variate standard normal 
density function by ~ r  ( " ) • We say that C is 

a 1- (z  confidence region for (0 ,  ~) if 

O ^ - - 1 ~  _ .~ r<Vu  U)d<P'p"~D ') = l - e : ,  (4.2) 

where 

^ - I A  c = {(e, , t )  I v .  #ec*} .  

The integral in expression (4.2) may be rewritten 
as 

f k  ^ -½ ^ -lh ^ o)Iv.I du, (4.3) 

where 

D = {#1 C*). 

A confidence interval, C e, for t9 which 
does not depend on the nuisance parameters, 
satisfies C = C e x A,  assuming the range for 

does not depend on the value of 0. If U is 
differentiable, then the integral in (4.3) can be 
expressed as 

I J (e ,  x) I 
IJ~, (e, x,) I 

IZ ,  <O, , (4.4) 

where ~4 is some arbitrary value of ~,, 

ce = {el ~ <e,x.) ~~} ,  
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g ~.  
J~o J'~l = 
'7,o a',d 

0% ool 
O0 a~. 
a% a% 
ao 8% 

The integration over the nuisance parameters 
should not be confused with Bayesian methods. 
The use of the integral here has been justified on 
purely repeated sampling principles. 

Unless U is linear in ~, and V~ is 

constant in ~,, expression (4.4) will often be 
difficult to calculate, even numerically. To over- 
come this difficulty, we propose taking a linear 

approximation for U and we assume that V~ is 

approximately constant in ~,. This is analogous 
to the Taylor series method given in Binder 

(1983), except that here we do not assume that U 

is linear in t9 or that " ~  is constant in 19. In 
general, this will result in asymmetric intervals 
similar to those given in (3.1) for the case of no 
nuisance parameters. 

In particular, we take the first order 

Taylor expansion of U around ~'e, the solution 

to U 2 (19, ~,e) = 0, so that 

01 (0, ~.) - 01 (0, ~.o) +z~  (0, ~-o) (~-Xo) 

In order to integrate out ~, in (4.3) we 
must assume that 0"10 and J~-e are independent 

of ~,. Fortunately, many common applications 
satisfy this condition. For example, if, in (2.2), 
13 is the nuisance parameter and 

c~ a (x, II, o) 
aoal~ 

= 0 ,  

then the estimating equations in (2.4) satisfy the 
requirement. This is true, for example, when 
a is a linear model. 

Under our assumptions, we integrate 
(4.4) with respect to ~, and obtain 

[ w-',= % <0, xo>] I wl-' d% <0, xo). 
(4.5) 

where 

L ~ l  ~ 2  , Lj  ,j" 
Note that O" x is evaluated at ~, = ~,e. Applying 
the Binomial Inverse Theorem (see, for example, 
Press 1972, p.23) and defining 

K~I 1112 

for some positive constant c, we obtain 

A 

w = ~c~ EK t,~ ~:2~ K~.  (4.6) 

It is interesting to compare this result 
with the usual classical parametric model case. 

A 

Here, U is usually the score function, and when 

c = a U1/a0 ,  we have that " ~  and E are the 
estimated Fisher information matrix and its 

inverse, respectively, evaluated at ~, = ~'e. In this 

case W = K ~ ,  which is the usual classical result. 
We also note a strong analogy with the 

proposal in Godambe (1991) where it is sug- 
gested that the appropriate estimating function 
for t9 is 

% (o, 

This is because the variance matrix W in (4.6) 
may be expressed as 

-i ^ W = varx=~{O I +KIIl~2U2} 

A 

= varx=le{ 01 - JI~J~U2 }, 

where Jx is assumed fixed. 
To compute this variance it is often 

convenient to use the variable 
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u* ( y ,  0) = (4.7) 

u~ (y, 0, ~..) - j ~ o ' ~ , ~  (y, 0, )-e) 
a n d 

estimate the mean square error of U*. 
Finally, to obtain confidence intervals for 

O, we see that the distribution in (4.5) may be 
treated just as in the case of no nuisance para- 
meters. The analogous expression for (3.1) 
becomes 

i 2 
g Z 

w(o, I o ) 1--"~. 
0.8) 

where W is given in (4.6). If we had taken a 

Taylor expansion of Dz around e = 8 and evalu- 

ated W at e = 0 ,  we would obtain the same 
intervals as those in Binder (1983). However, the 
use of (4.8) to derive confidence intervals 
requires fewer assumptions than the other 
methods. 

5. Examples 

In this section we consider the applica- 
tion of these results to poststratification and to 
estimating a regression coefficient. 

As described in Section 2, for poststratifi- 
cation, we have from (2.1) 

(5.~) 

Evaluating this at 

h=l, . .., H-I. 

we have 

A 

^ N,,  
u~ = -~.  (o-o), 

where 0 is the poststratified estimator for the 
mean. Our nuisance parameters in (5.1) are 

{~h,  h = l ,  . . . , H - l } .  We also let~,=N H 

since N H appears in the expression for U 1. To 

ensure that J~e is independent of the nuisance 

parameters we multiply the right hand side of 

(5.1) by NH/~  tO obtain 

A 

A u = lv,,Y 
XN 

1_. H-1 

h - 0 ,  

Our estimating functions for the nuisance para- 
meters are 

^ 1 ,, u , .  : h=l, . . .,H-I 

^ _ u~. . -  -~ 

Applying our results, we find that u* in (4.7) is 

I H ~hNh _Y__h 

N ^ h=1 N h Nh 
(0 -e ) .  

where (5 h is defined in (2.6). Therefore, the test 
statistic corresponding to (4.8) is 

( 0 - 0 )  2 

A 

When the sample size is constant, so that N=N 

for all samples, the term in O-0  can be ignored 
and the mean square error corresponds to that 
given by Rao (1985). He argued, on the grounds 
of conditional inference, that it is better to leave 

the term Nh/.N" h in the variance expression 
rather than setting it to its asymptotic value of 
one. We see that in our formulation this hap- 
pens naturally. Also the calculation of the MSE 
can be over the conditional distribution, or even 
a superpopulation distribution, if so desired. 

As a second example, we consider the 
estimation of the slope of a regression line in 
simple linear regression. The extension to one of 
the coefficients in a multiple regression model is 
straightforward. We let e be the slope and ~, 
be the nuisance parameter for the intercept. In 
this case we have 
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u 1(y,x,0,~,) = x(y-l-Sx) 

u 2 (y,x,O,,%) = (y-l-Ox), 

so we have 

I =x 
~=~ N 

and from (4.7) 

The test statistic obtained from u* given 
in (5.2) has the same form as that obtained for 
the ratio in (3,4). Therefore, the intervals can be 
obtained, in general, by solving a quadratic 
equation. 

6. Summary 

The application of the theory of estimat- 
ing functions has been well established in the 
classical parametric framework. Godambe and 
Thompson (1986) have shown how some of this 
theory can be applied in sample surveys. How- 
ever, the theory of optimal estimating equations 
depends on model considerations. Some of 
these model assumptions could be weakened as 
was shown by Godambe and Thompson (1989). 
We have shown that the formulation can also be 
applied for descriptive parameters of a finite 
population, using only design-based inferences. 

The issue of removing nuisance parame- 
ters has been addressed in the literature by 
conditioning and orthogonality considerations. 
We have shown that this issue can be resolved 
within a general framework which includes both 
design-based and model-based inference. The 
examples give appealing results which are con- 
sistent with the theory of orthogonal and condi- 
tional methods. 

Finally, we note that when the estimating 
function is not differentiable, such as is the case 
for population quantiles, it may be more difficult 
to eliminate nuisance parameters. The integral in 
(4.2) still applies, but the approximation of the 
integral may be difficult. 
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