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1 INTRODUCTION 
Most of statistical theory 

is analytical in nature. One 
begins with a set of data and 
a fairly general stochastic 
model believed to have gen- 
erated that data. Statistical 
theory is then invoked to 
estimate the parameters of the 
model and to determine the 
accuracy of those estimates. 
Ultimately, the original model 
may be pared down as the 
result of a series of statis- 
tical tests which often take 
the form of investigations 
into whether particular 
parameter values may be 
reasonably inferred to be 
zero. 

The bulk of survey sampling 
theory, by contrast, is not 
analytical but descriptive. 
There is a finite population 
of interest. Information 
about this population can, in 
principle, be summarized by 
means of one or more descrip- 
tive statistics (for example, 
the population mean and 
median). The survey statis- 
tician is constrained by time 
or budgetary considerations to 
estimate such statistics using 
only a sample of population 
units. He (she) often faces a 
two-fold problem- first a 
method of sample selection 
needs to be chosen, then the 
population statistic(s) needs 
to be estimated from the 
sample. Although it is 
possible to construct a model- 

based statistical theory for 
these purposes (see, for 
example, Royall, 1970), most 
survey statisticians invoke a 
model-free approach known as 
design-based sampling theory. 
In this theory, it is not the 
sample data values that are 
stochastic (as they are in 
model-based theory) but the 
sample selection process. Rao 
& Bellhouse (1989) provides a 
useful summary of both design 
and model-based theory and of 
attempts to synthesize the two 
approaches. 

This paper is concerned with 
estimating parameters of a 
linear model based on data 
from a sample survey. 
Although design-based theory 
was originally intended for 
descriptive rather than 
analytical inference, Kish & 
Frankel (1974) and Fuller 
(1975) among others have 
generalized the results of 
that theory to the estimation 
of linear regression para- 
meters. Theirs is not the 
tack taken here; rather, we 
take essentially a model- 
dependent approach to the 
problem. In so doing, how- 
ever, we essentially build on 
design-based techniques. Both 
Skinner (1989) and Kott (1991) 
note the robustness of the 
design-based linearization 
variance estimator to complex 
error structures (i. e., the 
model variance matrix for the 
error term being block diag- 
onal across primary sampling 
units but unspecified within 
blocks). The main concern 
here will be in testing 
hypotheses about linear 
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regression parameters. We 
will assume that the model is 
correct and that model errors 
are normally distributed with 
a possibly complex covariance 
structure. Unlike Wu, Holt, & 
Holmes (1988), however, we 
will not explicitly model the 
error structure (except, per- 
haps, at a very late stage). 
Rather, we will focus our 
attention on t-statistics 
calculated using the linear- 
ization variance estimator. 

It will be argued that the 
design-based t-statistic for a 
particular regression coef- 
ficient should be modified by 
first reducing the bias of the 
linearization variance esti- 
mator and then estimating its 
effective degrees of freedom 
(which may require some error 
modelling). Since variance 
estimators for different 
regression coefficients are 
likely to have different 
effective degrees of freedom, 
a Bonferroni procedure is 
recommended for testing joint 
hypotheses about the coef- 
ficients. 

2 A MOTIVATING EXAMPLE 

The following example will 
demonstrate the need for 
adjusting conventional design- 
based practice in calculating 
and using t-statistics for 
regression coefficients. 

Consider a simple random 
sample of n units, a of which 
are in a subset of the sample 
denoted by A. Let Yi be the 
observed value for unit i. 
Suppose the following linear 
model holds: 

Yi = d i b l  + ( 1  - d i) b 2 + 6 i ,  

where d i = 1 is unit i is in 
set A, and 0 if i is in A, the 
sample complement of A; and 

the ~i are independent nor- 
mally distributed random 
variables. 

Assuming homoscedastic 
errors, both the model-based 
and design-based regression 
estimator for b I is the simple 
mean, Y--A = ~ieAYi/a" We will 
see that the linearization 
estimator for the variance of 
this estimator is 

V n = ( n / [ n - 1  ] ) ~iEA (Yi- YA) 2/a2" 

This differs from the model- 
based variance estimator- 

V M = {~i6A(Yi--YA) 2 + 

~i6~ (Yi -- 7[) 2 } / [ a ( n- 2 ) ] . 

The advantage of v n is that, 
unlike VM, it is asymptot- 
ically unbiased under the 
model even if the Eiare 
heteroscedastic. That point 
was noted by Skinner (1989) 
and Kott (1991). 
Unfortunately, there still may 
be considerable bias for 
finite n. For example, when 
n = i00 and a = I0, the 
relative bias of v n is approx- 
imately 10%. We can see this 
by noting that 

v~ = ~ieA(Yi- Y--A)2/(a[a-l]) 
= ([n-l]/n)(a/[a-l])v n 

is exactly unbiased. 
If one were to calculate a 

t-statistic using conventional 
design-based practice, he 
(she) would not only use a 
biased variance estimator but 
would also assume that the 
statistic has 97 or 99 degrees 
of freedom (i00 sampling units 
minus one strata minus two 
regressors, were this last 
subtraction is not always 
performed). Under ideal 
conditions (homoscedastic 
errors within set A), however, 
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the t-statistic calculated 
using v~ has a Student's t 
distribution with only 9 
degrees of freedom. 

3 THE MODEL 
Suppose we have a population 

of M elements that can be fit 
by the linear model- 

YM = XMB + E M, (1) 

where YM is an M x 1 vector of 
population values for the 
designated dependent variable; 
X M is an M x K matrix of 
population values for the K 
designated independent 
variables; 
B is a K x 1 vector of 
regression coefficients; and 
CM is a normally distributed 
random vector with mean 0 M and 
variance ~M- 

A random sample, S, of m 
distinct elements is drawn 
from the population. To allow 
a certain amount of generality 
in the sampling design, we 
assume that the population is 
divided into H strata. From 
each stratum h, n h distinct 
clusters of elements are 
randomly sampled and denoted 
hl, h2, ..., hn h. A random 
sample of my elements is 
selected from each cluster hj. 
The clusters are also referee 
to as primary sampling units. 
There are n = ~ n h primary 
sampling units in the sample. 

Each sampled element has a 
designation hji, where h is 
its stratum, hj its primary 
sampling unit within h, and i 
the element itself within hj. 
Let P~i be the probability 
that element hji is in the 
sample, and let Whj i = 
m/(MP~i) be the sampling 
weight of the element. 

The linear model in (i) also 
applies to the elements in 

sample S- 

Ys = XsB + Es, 

where Ys, for example, is the 
m x 1 vector of sampled values 
for the dependent variable. 

• E be Let ~= ( E~I , E~2 , "'' ~m~) ' 
the error vector for t he' 
elements in primary sampling 
unit hj. Now, E s can be 
arranged so that the E~ are 
stacked one on top of the 
other. Let Var(E~) = 
E(E~') be denoted by the 
mhj X mhj matrix ~, which need 
not be diagonal. We assume 
that the E~ are uncorrelated 
across primary sampling units, 
so that ~s is block diagonal. 
The design-based estimator for 
B is the weighted least 
squares estimator" 

Bw = (Xs'WXs) IXs'WYs, 

where W is the m x m diagonal 
matrix of sampling weights. 
The g~ diagonal value of W is 
the sampling weight associated 
with the g~ element of the 
sample. Clearly, B w is an 
unbiased estimator of B under 
the model in (i). 

Kott (1991) shows that B w 
can remain nearly model 
unbiased when the model in 
equation (i) is misspecified. 
We are assuming here, however, 
that (i) is correct. Conse- 
quently, the ordinary least 
squares estimator, 

Bo~ = (Xs' Xs) iXs, Ys, 

is every bit as unbiased as 
fiw- Despite this fact, we 
will continue focusing our 
analysis on B w, since 
whatever applies to Bw also 
applies to ~o~ (and to other 
weighted regress ion 
estimators) with a straight- 
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forward modification of C 
below. 

One can~simplify the nota- 
tion for B w by letting C be 
the k x m matrix (Xs'WXs)IXs'W , 

so that B w = Cy s. Let D~ be a 
m x m diagonal matrix with 
l's corresponding to the 
sampled elements of hj and O's 
elsewhere. Furthermore, let 
C~ = CD~. Finally, let 
rs = Ys - XsBw be the vector of 
residuals. 

The Taylor series or linear- 
ization estimator for the mean 

A 

squared error of B w (Shah, 
Holt, and Folsom, 1977) is 

mse L - 

H n h 

(n h / [  n h- 1 ] ) ~ Ahjrs r s '  Ahj' 
h=l j=l 

(2) 

where A~j= C~ - nh*~C~, and the 
summation is over all the 
primary sampling units in 
stratum h. The terms "Taylor 
series" and "linearization" 
refer to the derivation of 
mse L using design-based 
sampling theory. Kott (1991) 
shows that mse L is a nearly 
unbiased estimator of the 
model variance of ~w under 
reasonable conditions. 

It should be noted that in 
their derivation of mseL, 
Shah, Holt, and Folsom assumed 
that the primary sampling 
units were chosen with re- 
placement. Here, as in Kott 
(1991), we are assuming that 
the primary sampling units are 
distinct which suggests that 
they were selected without 
replacement. The reason for 
this discrepancy is that the 
assurance of independence 
among the selected primary 
sampling units within a 
stratum in design-based theory 
and model-based theory has 
almost opposite requirements. 

The discrepancy goes away, 
however, if we assume that the 
primary sampling units were 
chosen without replacement but 
that the goal of design-based 
regression theory is not to 
estimate a finite population 
regression parameter but the 
limit of that parameter as the 
population (and the number of 
primary sampling units per 
stratum) grows arbitrarily 
large. See Fuller (1975). 

If the model in equation (i) 
holds and H > i, then there is 
an alternative to mse L that is 
also nearly unbiased. It has 
the same form as equation (2) 
except that all n sampled 
primary sampling units are 
treated as if they came from a 
single stratum (H = i). Since 
the alternative can be ex- 
pressed using equation (2), 
there is no need to treat it 
separately in the analysis 
that follows. 

4 THE CONVENTIONAL t-STATISTIC 

The estimator Bw is a 
K-vector. In this section 
will be interested in the 
t-statistic used to test the 
univariate hypothesis that 
qB = h for some K element row 
vector q = (ql, q2, ---, qK)- 
The most common example of 
such an hypothesis addresses 
whether a particular element 
of B = (BI, ..., BK) , say Br, 
is zero. In this example, all 
of the qt would be zero except 
qr which would be 1; h would 
also be zero. 

If the model in (1) and the 
null hypothesis that qB = h 
are true, then 

A 
X = (qB w - h)/{qVar(Bw)q' }u2 

would be normally distributed 
with mean 0 and variance i. 
If Var(Bw) were known, then 

27 



the null hypothesis could be 
tested by comparing the 
statistic x to a standard 
normal table. Unfortunately, 
Var(Bw) must be estimated from 
the sample. Conventional 
design-based practice is to 
compare the "t-statistic'" 

t=(qB w - h)/(qmseLq') I/2 (3) 

to a Student's t distribution 
with n - H or (n - H - K) 
degrees of freedom (see Shah, 
Holt, and Folsom, 1977). 

The primary goal of this 
paper is to investigate and 
then modify the rather ad hoc 
practice described above using 
the model in equation (I) and 
our assumptions that ~s is 
block-diagonal. This will be 
done by examining the first 
four moments of t in (3). To 
this end, let 

v 2 = qvar(Bw) q', 

s 2 = qmseLq', and 
d = (s 2 - v2)/v 2. 

Under mild conditions, which 
we assume hold (see Appendix 
A), x is Op(1), and d is 
Op (n -I/2) . Dropping terms of 
probability order n °3/2, we have 

t = X(l - d/2 + 3d2/8), 
t 2 ~ x2(l - d + d2), 
t 3 = x 3(I - 3d/2 + 15d2/8), 
and t 4 ~ x 4(I - 2d + 3d 2) . 

(4) 

In deriving (4), one assumes 
that n is large enough for n -3/2 
terms to be safely ignored. 
It is important to realize 
that this is weaker than a 
commonly made assumption that 
i/n terms can be ignored. 
Under that stronger 
assumption, t would be 
approximately normal. 

5 THE ADJUSTED t-STATISTIC 
Appendix A shows that under 

mild conditions, E(d)=O(i/n). 
Since we are not be dropping 
1/n terms in this analysis, it 
seems advisable to reduce the 
slight model bias in s 2. This 
can be done by replacing s 2 
with 

s. 2 = s2/(i - p), (5) 

H 

where p = So -2{ ~ (nh/[n h-l]) 
h=l 

nh 
(ghj -- gh) Z(ghj -- gh)'}, 

j=l 
H n h ^ 

s02 = ~ E ghj~Sghj', 
h=l j=l 

ghj = qCDhj, 
nh 

gh = ~ ghj/nh, 
j=l ^ ^ 

Z = 2XC~ s- XC~sC'X' and 
is block diagonal with each 

~ j  = rh j rh j ' .  
A p p e n d i x  B s h o w s  t h a t  u n d e r  

m i l d  c o n d i t i o n s ,  p i s  O p ( 1 / n )  . 
This suggests that s. 2 can have 
the same asymptotic design- 
based properties as s 2. From 
the model-based point of view 
taken here, E(s.2/v 2) = 1 + 
O (n -3/2) under mild conditions. 
This is also demonstrated in 
Appendix B. 

Let us define the adjusted 
t-statistic as 

t. = (qB w - h)/s.. (6) 

The analogue to equation (4) 
is 

t. = x(l - d./2 + 3d.2/8), 
t. 2 = x2(l - d. + d.2), 
t. 3 = x 3(I - 3d./2 + 15d.2/8), 
and t. 4 ~ x4(l - 2d. + 3d.2), 

(7) 

where d. = (s. 2 - v 2)/v 2. 

L e t  ehj = nghjE s. T h e  ehj a r e  
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independent normally distri- 
buted random variables of 
probability order 1 under mild 
conditions. Let the variance 
of e~ be denoted by Vhj2. 

Under the null hypothesis, x 
and d. can be re-expressed as 
(see Appendix C) 

x = Z Z %/(nv) and 
d .  = ( n v )  -~fJ ]~h {% [ehj 2 -- 

ehjem/(n h - 1)  }. 
i#j 

Vhj 2 ] -- 

It is now not difficult to see 
that E(t°) and E(t. 3) are 
(approximately) 0. Appendix C 
establishes that 

E(t. 2) = (8) 
H 

1 + 2 (nv) 4 ~ ~ Vhj2Vm 2/ (n h- 1 ) 2, 
h=li#j 

and 

E(t. 4) 

H n h 
3 + 2 (nv) ~ ~ { ~ 3Vhj 4 + 

h = l  j=l 

(9) 

[ (6n h + 3)/(n h-l)2] ~ Vhj2V 2}, 
i~j 

while the coefficient of 
kurtosis for t. is 

E(t4)/[E(t.2) ]2 

H n h 
3(i + 2[nv] ~ ~ { ~ vm a + 

h = l  j=l 

(1o) 

Vhj%, 2/[ nh_ 1 ] 2} ) . 
i~j 

Let t F be a random variable 
with a Student's t distri- 
bution with F degrees of 
freedom. If F -3/2 is ignorable, 
then E(tF) = E(tF 3) = O, 
E(tF 2) ~ (i + 2/F), and 
m(t/)/[E(tF 2) ]2 = 3(I + 2/F). 
Comparing this last (near) 

equality to equation (I0) 
suggests a Satterthwaite-like 
determination of the effec- 
tive degrees of freedom of t° 
(see Satterthwaite, 1946); 
namely, 

F = (ii) 
(nv) 4 

m m m m m m m m m m m t m m m m m m m m m m m m m m m m  

H n h 
{ 4 + Vhj2V$/ (nh--1) 2} 

i=l j=l i#j 

which can be estimated from 
the sample by 

f = (12) 
H n h 

(nSo) 4 - ~ ~ 2shj4/3 
m m m m m m m m m m m m m m m m m m m m m m m m m m m m m  

H n h 
{ ~ Shj4/3 + ~ Shj2S~/ (nh--l) 2} 

i=l j=l i#j 

2 n 2 2 where s~ = (g~rs) (since 
E(s o2) = Vhj 2 + O(i/n), and 
E(s~ 4) = 3Vhj 4 + O(1/n) ; see 
also Appendix C). 

The claim that t. has 
approximately a Student's t 
distribution with F (or f) 
degrees of freedom under the 
null hypothesis relies on the 
twin assumptions that t. is 
well described by its first 
four moments and that terms of 
order n "3/2 are ignorable. 
Under those conditions, the 
claim may be slightly conser- 
vative because E(tF 2) is some- 
what larger than E(t. 2) when 
the Vhj 2 are not all equal for 
a given h. 

What is being recommended 
here is that one test whether 
qB = h by assuming under the 
null hypothesis that t° in 
equation (6) has a Student's 
t distribution with either F 
or f degrees of freedom, where 
F is determined using equation 
(ii) and making some assump- 
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tions about the vhi , and f is 
determined using equation (12) 
and the data alone. Let us 
call this test the adjusted 
t-test. The advantage of 
using f over F is that the 
former requires less 
assumptions. On the negative 
side, f is a random variable 
and may be unstable. 

6 JOINT HYPOTHESES 

Often a statistician needs 
to test a hypothesis con- 
cerning more than a single 
regression coefficient. Many 
of these hypotheses can be put 
into q8 = h form (for example, 
a hypothesis about the equal- 
ity of two coefficients), but 
most cannot (for example, a 
hypothesis about the equality 
of three or more coeffi- 
cients). 

Conventional practice allows 
testing of joint hypotheses of 
the form Q~ = h, where Q is an 
R x K matrix. The test sta- 
tisistic is 

T 2 - 
^ J% 

(QSw-h) ' (QmseLQ ' ) * (QSw-h)/R, 

which is assumed under the 
null hypothesis to have an F 
distribution with R and n - H 
(or n - H - R) degrees of 
freedom (see Shah, Holt, and 
Folsom, 1977). 

This is a straightforward 
generalization of the con- 
ventional t-statistic in 
equation (3). Unfortunately, 
there is no analogous way to 
generalize our adjusted 
t.-statistic in (6). Con- 
structing a matrix analogue to 
equation (5) is not difficult. 
The stumbling block is deter- 
mining the effective degrees 
of freedom for a putative 
"adjusted F-statistic." 

The joint hypothesis QB = h 

can be viewed as the union R 
component hypotheses corres- 
ponding to the rows of Q and 
elements of h. Let us denote 
the rth row of Q as q, and the 
rth element of h as h,. One 
can test each of the R com- 
ponent hypotheses in QB = h 
with its own adjusted t-test. 
Note that there is no guar- 
antee that the respective 
t.-statistics have the same 
effective degrees of freedom. 
This is why it is prohi- 
bitively difficult to deter- 
mine the effective degrees of 
freedom for a putative 
adjusted F-statistic. 

One practical way to test 
the joint hypothesis QB = h is 
through a Bonferroni procedure 
(Korn and Graubard, 1990, 
suggest this approach for a 
different reason). That is to 
say, one can test each of the 
R component null hypotheses 
using the appropriate adjusted 
t-test at the ~/R level. If 
one component null hypothesis 
fails, say, qrB is found 
significantly different from 
h r at the ~/R level for some 
r, then the joint null 
hypothesis, QB = h, fails; if 
all R components "pass", then 
so does the joint null 
hypothesis. 

The Bonferroni procedure is 
known to be conservative (that 
is, it does not reject null 
hypotheses as often as it 
should). An "improved Bon- 
ferroni" has been proposed by 
Simes (1986), who speculates 
that it is, if anything, still 
conservative "for a large 
family of multivariate 
distributions" when the 
component hypotheses are not 
independent. Unlike the 
Bonferroni, the Simes 
procedure is exact when the 
component hypotheses are 
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independent. 
Let p(,), p~, ..., p~ be the 

ordered p-values for the R 
component hypotheses using the 
appropriate adjusted t-statis- 
tics. The Simes procedure 
rejects the joint null hypoth- 
esis, QB = h, at the ~ level 
when p~ S j~/R for some j. 
The jolnt null hypothesis is 
accepted when PO > j~/R for 
all j. It is easy to see that 
this procedure is less con- 
servative than the original 
Bonferroni procedure which 
depends solely on whether P(n 
is greater than ~/R or not. 

7 DISCUSSION 

Let us return to the moti- 
vating example in section 2. 
It is not difficult to see 
that applying equation (5) to 
the linearization variance 
estimator, VL, produces the 
exactly unbiased variance 
estimator, v~. Assuming 
identically distributed errors 
within set A and calculating 
the effective degrees of 
freedom, F, with equation (ii) 
yields 9.99. This is almost 
exactly one degree too many 
but clearly better than 97 or 
99. 

Repeated application of 
equation (12) on I0,000 
simulated data sets con- 
structed under the assumption 
that the ~i in the motivating 
example are normal, indepen- 
dent, and identically dis- 
tributed yielded an average f 
value of approximately 11.2 
with a standard deviation of 
about 3.5. The average f 
value was greater than F due 
to the variability of the 
denominator of equation (12). 
By contrast, the average value 
of i/f was roughly 0.i00 
(~ 1/9.99), as expected. 
What this rather synthetic 

example shows is not so much 
how well the adjusted t-test 
works, but how misleading 
conventional design-based 
practice can be even with an 
apparently large sample size. 
The adjusted t-test, even when 
equation (12) is estimated 
from the sample, is clearly a 
giant step in the right 
direction. 

As noted earlier, design- 
based techniques (sampling- 
weighted regression, the 
linearization variance 
estimator with stratification) 
also provide protection when 
the model in equation (i) 
fails, for example, when there 
are regressors missing from 
the equation. Unfortunately, 
this protection can not be 
addressed in the strictly 
model-dependent framework 
adopted here. It would be 
foolish, however, to expect 
the conventional design-based 
t-statistic to behave any 
better when the model in 
equation (i) fails than when 
it holds. 

One potential problem of the 
test statistics suggested here 
when the model in (I) does not 
fail is that they may not be 
very powerful. Power can be 
lost by estimating regression 
coefficients with sampling 
weights, by not modelling the 
error structure, and by using 
a Simes-Bonferroni for testing 
joint hypotheses. 

Returning to the motivating 
example can illustrate this 
point forcefully. If all the 
E i are assumed to be iden- 
tically distributed, then the 
model-based VM, which depends 
on the assumption of homo- 
scedasticity, is unbiased and 
has 98 degrees of freedom, as 
compared to v~ with only 9. 
Often in practice, however, it 
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will be prudent to sacrifice 
power for robustness. One of 
the purposes of this paper was 
to provide a better measure of 
just how much power is lost 
using (modified) design-based 
methods when testing hypoth- 
eses about linear regression 
coefficients. 

APPENDIX A: The Asymptotic 
Framework 

Many of the results in this 
paper rely on the assumption 
that n, the number of primary 
sampling units in the sample, 
is large. (Formally, we 
should assume that there are 
infinite sequences of sta- 
tistics -- {tn}, {sn2}, etc. -- 
taking on values as n grows 
arbitrarily large.) If n is 
large, then so too must be M 
and m, the number of elements 
in the population and the 
sample, respectively. We 
will assume that max{mhj } is 
bounded by a finite value, say 
~. Thus, m is bounded by mon 
and the number of nonzero 
elements in the block-diagonal 
matrix E s is bounded by ~2n. 
We have some flexibility 

concerning H. Either H can 
stay fixed as n grows arbi- 
trarily large with the nh/n 
ratios converging to fixed 
positive limits, or H/n can 
converge to a fixed positive 
limit with max{nh} bounded. 

Our concern in these appen- 
dices is with providing 
sufficient conditions for the 
results in the text to hold. 
Thus, the random variable x 
(formally, the infinite random 
sequence {~}) will be said to 
equal Op(n ~) when IE(x2)~ < 
B/n 2~ for some finite B. The 
random matrix X will be said 
to equal Op(n 4) when each 
element x~ in X satisfies 
IE(x~2) l < B/n 2~. When x is not 

random, the P subscript on O 
is not needed. The same is 
true for O. 

The following two assump- 
tions are reasonable given the 
structure that has been laid 
out: 

(a) C = (X'WX)Ix'w exists and 
is O(1/n) , and 

A 

(b) E (~j) = ~j ̂ + O (l/n) 
(recall that ~j = rhjrhj') . 

Assumption (a) assures us that 
Var(~w) = CEsC' = O(1/n) 
(since there are m elements in 
the rows of C and no more than 
~2n non-zero elements in Es). 

The random variable 
s 2 = qmseLq , where q is a row 
vector, can be rewritten as 

H 
s 2 = ~ (nh/[nh--l]) 

h=l 
nh 

(ghj - gh) rsrs' (gh~ -- gh) ', 
j=l 

(AI) 

where ghj = qCDhj, Dhj is a 
diagonal matrix with l's 
corresponding to the sampled 
elements of primary sampling 
unit hj and O's elsewhere, and 
gh = nh 1~ g~ where the sum- 
mation is across the j in h, 
as in the text. 

Recall that d = (s 2 - v2)/v 2. 
Now 

E (gh~sghj') = ghLESghj' + O (n-3), 
E (ghZSghj'l = gh~Sghj' + ? (n3), 
and E(gh~Sgh') = gh~Sgh + O(n -3). 

Consequently, E (s 2 - v 2) = O (n "2) , 
and E(d) = O(I/n). Moreover, 
since d can be put in the form 
of a linear combination of n 
independent O (i/n) random 
variables, d = Op(n -I/2) . 
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APPENDICES B AND C 
Appendix B, which addresses 

the relative model biases of 
s 2 and s. 2, and Appendix C, 
which establishes equations 
(8) through (12), are avail- 
able from the author upon 
request. 

DISCLAIMER 
This paper reports the general 
results of research undertaken 
by Census Bureau staff. The 
views expressed are attrib- 
utable to the author and do 
not necessarily reflect those 
of the Census Bureau. 
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