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Introduction 
More and more users of public data sets 

desire measures of the reliability of the 
information these data sets provide. To help 
answer this need, the Bureau of the Census 
recently created a data set of replicate weights. 
These weights allow users to compute variance 
estimates for 1987 labor force data from the 
Current Population Survey (CPS), a monthly 
household survey the Census Bureau conducts 
for the Bureau of Labor Statistics (BLS). The 
Census Bureau computed the replicate weights 
by generalized replication, a variance estimation 
method developed by Dr. Robert Fay and used 
for several U.S. government surveys. Because 
of the high cost of computing replicate weights 
for the CPS, Census only computes them once 
every ten years-that is, once each time the CPS 
sample is redesigned--using one year's data. 
Generalized variance functions (GVF's) are used 
to generalize the resulting variance estimates 
across time for the duration of the sample 
design. Census computed the 1987 replicate 
weights primarily for estimating variances of 
national CPS estimates and used them to 
compute GVF's for national data. The replicate 
weights in the public data set may be used to 
estimate variances and covariances of any 
statistics computed from the 1987 CPS data. 

Part I of this paper explains how the CPS 
replicate weights were computed and how they 
may be used to estimate variances. Part II 
provides an example of their use for subnational 
variance estimation: ! used the replicate weights 
to evaluate the BLS method of standard error 
estimation for state labor force data. 

PART I 
THE CPS REPLICATE WEIGHTS 

Section 1.1: Computing the Weights 

Creating "SECU's" 
The CPS sample is a two-stage cluster 

sample of housing units. Most of the primary 

sampling units (PSU's) are metropolitan areas, 
large counties, or groups of smaller, contiguous 
counties. The Census Bureau stratifies the 
PSU's and selects one PSU from each stratum, 
with probability of selection proportional to the 
population size the of the PSU. PSU's in strata 
by themselves--generally large metropolitan 
areas-are called self-representing (SR). The 
remaining PSU's are called non-self- 
representing (NSR), since each one chosen 
represents not only itself but its entire stratum. 
In the second stage of sampling, clusters of 
about four housing units are selected 
systematically from the sample PSU's, using the 
address list from the most recent decennial 
census as a basic sampling frame. (For a 
detailed though somewhat outdated discussion 
of the CPS sample design, see Technical Paper 
40(1978).) 

The replication (or half-sampling) method of 
variance estimation was originally developed 
assuming a two-PSU-per-straturn design, PSU's 
within a stratum being about equal in size. 
Since the CPS employs a one-PSU-per-stratum 
design and PSU's may vary in population size, 
Census created Standard Error Computing Units 
(SECU's) or "pseudo-strata," each containing 
two or three panels ("pseudo-PSU's"), the 
panels being about equal in population size. 

To create SECU's for NSR strata, Census 
collapsed NSR PSU's into groups of two-- 
creating "NSR pairs--and three--creating "NSR 
triples." Because of this collapsing, variance 
estimates computed from the replicate weights 
include a "between-stratum" component of 
variance, not actually present in CPS estimates. 
Census tried, however, to collapse PSU's in a 
way that minimized the upward bias in the 
variance estimates. For a description of the 
collapsing method used, see Canamucio (1987). 

Since SR PSU's are generally much larger 
than NSR PSU's, each was divided into several 
pieces-SR SECU's-each comprising nine to 
sixteen clusters of housing units. Each SR 
SECU was then divided into two panels, which 
served as pseudo-PSU's in the replication 
procedure. 
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In dividing SR SECU's into panels, Census 
had to consider the CPS "4-8-4" sample rotation 
scheme. Under this scheme, a new group of 
households enters the CPS sample each month. 
Households remain in sample for four months, 
leave the sample for eight months, and then 
reenter the sample for the following four months. 
Thus each month's CPS data include responses 
from households in each of eight rotation 
groups, which may be identified by the number 
of months they have been in the sample (first 
month-in-sample, second month-in-sample, 
etc.). Since estimates for households in 
different month-in-sample categories reveal a 
relative bias--higher unemployment rates are 
obtained for respondents in their first and fifth 
months in sample (see Bailar (1975))-Census 
divided each SR SECU into panels that were 
approximately balanced, both by size and by 
rotation group distribution. (This procedure is 
described by Kostanich (1987).) But since SR 
SECU's may contain as few as nine clusters of 
housing units, complete balancing of panels by 
rotation group was not always possible. 
Variance estimates computed from the replicate 
weights may therefore reflect a slight upward 
bias due to the rotation group bias in the CPS. 

Assi.qnin.q Replicate Factors to SECU Panels 
To assign replicate factors to the SECU 

panels-the PSU's or pseudo-PSU's within the 
SECU's--Census used the generalized 
replication theory developed by Fay (1984, 
1989). The method used for each SECU type 
was slightly different. 

The procedure for assigning replicate factors 
to the panels of SR SECU's involved a 48 X 48 
Hadamard matrix (with the first column of l 's 
removed) and a random number n, which served 
as a starting column number for assigning matrix 
columns to SECU's. The nth column of the 
matrix was assigned to the first SECU on a list 
of SR SECU's. The (n+l)st column was 
assigned to the next SR SECU on the list and so 
forth--one column per SECU. Each matrix 
column contained 48 entries (l 's and -l's) which 
determined the replicate factors according to 
formula (2.5) in Fay (1989) as follows: 

Let xk be an estimate of total (for some 
characteristic) for the kth panel of a SECU 
containing two panels (k = 1, 2). An estimate of 
the variance of the SECU total x = Xl + x2 is: 

v = ( x , -  x~)~, 

which may be written as the quadratic form 

V - x T C x ,  (1.1.1) 

where 
X - - I x  1 ,x2]T , and 

C ..... 

C has one positive eigenvalue, ;L = 2, and the 
corresponding normal eigenvector is v = [(1/2)~2, 
-([1/2],,2)]T. 

Let 
H~r = the entry in the Hadamard matrix for 

the rth replicate (or matrix row) for 
SECU i; 

r= 1,2,..., 48; 
f~k = the replicate factor for replicate r and 

panel k of SECU i; and 
fir = [fir1, fir2] T. 

Formula (2.5) from Fay (1989) gives the vector 
of replicate factors f~r as" 

M 

fir = 1 + c % Hir m ;Lml/2Vm, (1 .1 .2 )  
m=l 

where M is the number of positive eigenvalues 
of C, counting multiplicities. In this case, M = 1 
and the formula reduces to" 

fir = 12 + c Hir X1/2v, 

-" [1 ,  1] T 4- C H,r (2 "2 )  [ ( 1 / 2 ) " 2 ,  - ( [1 /2 ] ' /2 ) ]T  

= [1, 1] T + C Hir [1 ,  -1]T. 

The constant c was chosen to be 1/2. This 
choice was deemed suitable for a number of 
surveys conducted by the Census Bureau; it is a 
"half-way" value between standard balanced 
repeated replication (c=1) and a Taylor Series 
linearization procedure (c=0). With these 
values, the replicate factors from the formula 
are: 

fir~ = 3/2 and f~,2 = 1/2, when Hir = 1, and 

f~rl = 1/2 and fir2 = 3/2, when Hit = -1. 
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Since NSR PSU's may vary in size, the 
replicate factors derived for SR SECU's were 
adjusted to account for differences in PSU size 
and then applied to the NSR SECU's, using a 
similar procedure for assigning Hadamard matrix 
columns to SECU's. 

Each NSR triple comprised three NSR 
PSU's. Replicate factors for the NSR triples 
were derived directly from (1.1.2); the derivation 
(Fay (1987)) is the same as that given above for 
the replicate factors for SR SECU's, but with 
three panels instead of two. A variance estimate 
for the SECU total x = Xl + x2 + x3 is: 

V = 3/2 ~ [xk- 1/3 T--, k xk] 2, 

where xk is the sample estimate for panel k (k = 
1, 2, 3). This may be written in quadratic form, 
as in (1.1.1), with 

X T = IX1, X2, X3] and 

C ~__. 

-.1/ -1/2 -1/2 
2 1 -1/2 

l/2 -1/2 1 

in general, (1.1.2) requires that the number 
of Hadamard matrix entries corresponding to 
each replicate equal the number of positive 
eigenvalues of C, counting multiplicities (M). In 
this case, C has one positive eigenvalue, ;L = 
3/2, of multiplicity 2, so two matrix columns were 
assigned to each NSR triple. Orthonormal 
eigenvectors corresponding to ;L = 3/2 are v~ = 
(3/2),/2(1,-1/2,-1/2) and v2 = (1/2)1/2(0, 1,-1). 

Let 
Hi r ,  = the entry in the Hadamard matrix in 

the first of two columns for the rth 
replicate for SECU i; 

H~r2 = the entry in the Hadamard matrix in 
the second of two columns for the rth 
replicate for SECU i; 

f irk = the replicate factor for replicate r and 
panel k of SECU i(k = 1, 2, 3); and 

fir = [fir1, fir2, fir3] T. 

Plugging these values into (1.1.2) gives 

2 

fir = 13 + 1/2 % Hir m ~L1/2Vm, 
m=l 

where ;L = 3/2, 
v, = (3/2)1/2(1,-1/2,-1/2), and 
v2 = (1/2),,2(0, 1,-1), 

which yields the following table of replicate 
factors: 

(Hirl, Hit2) 

(1,1) (1 ,-1) (-1,1) (-1,-1) 

fir1 1.5 1.5 0.5 0.5 
fir2 1.183 0.317 1.683 0.816 
fir3 0.317 1.183 0.817 1.683 

Computin.q Replicate Weights 
The replicate factors were applied to the 

sampling (or base) weights of person records on 
the CPS data file, creating 48 replicate samples. 
The full sample and the 48 replicate samples 
were then processed through the CPS 
estimation procedures (which include a 
noninterview adjustment and two other ratio 
adjustments) to produce a set of 49 weights--the 
full sample weight and 48 replicate weights--for 
each sample person. These weights may be 
used to estimate variances and covariances for 
any statistics computed from the 1987 CPS 
data. 

Section 1.2" Using the Replicate Weights 

Estimating variances from the replicate 
weights is easy. First we compute a replicate 
estimate for each characteristic g and replicate i" 

Xgi = ~-"1 Wgil, 

where wg, is the replicate weight for sample 
person I having characteristic g. A variance 
estimator for the full sample estimate, (or 0th 
replicate estimate) xg is: 

R 

var (xg) = bR T_., (x~i- xg)2, 
i=1 

where bR = 1/Rc2, and R is the number of 
replicates. Here R = 48, and c = 1/2, so bR = 
4/48, and the variance estimator is 

48 

var (Xg) = (4/48) T'. (xgi- xg)2. 
i=1 
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Variances for CPS Composite Estimates. 
Variance estimates for CPS composite 

estimates may be computed by compositing the 
monthly estimates for each replicate sample and 
applying the variance formula above. Variance 
estimates from the first two months, however, 
should be disregarded: these data months are 
needed to initialize the composite estimator. 

PART II 
APPLYING THE VARIANCE ESTIMATION 

SYSTEM TO STATE DATA 

Section 2.1" The Current BLS Method of 
State Variance Estimation 

The GVF's the BLS uses for state variance 
estimation are based on design effects 
estimated from national data collected under the 
1970 CPS design. Here I derive the state GVF's 
and outline the main assumptions implied. 

Derivation of Current State GVF's 
Since the CPS employs a two-stage sample 
design, the variance o'2 of a CPS estimate of 
total includes both within-PSU and between- 
PSU components; that is, 

0 -2 = 0'2 w -!- O'2B, 

where ~2 w and 0"2 B are the within- and between- 
PSU components of variance. The national 
within-PSU design effect (deNw) is defined as the 
ratio of the within-PSU variance of a CPS 
estimate of total, assuming the CPS sample 
design, to the total variance of the estimate, 
assuming simple random sampling. 

~2w may be estimated by" 

~2w = desw (N/n) N (y/N)[1-(y/N)], 

where desw is the state within-PSU design 
effect, estimated from deNw by adjusting for 
differences in noninterview rate. 

Let P = ~2B/0-2. Then 0-2 B --'- P 0-2, and 0-2 may be 
estimated by 

~2 = ~2w/(1 - p) 
= desw (N/n) (y) [1-(y/N)] / (1 - p). 

where p, an estimate of P, is computed from 
decennial census data. 

Assumptions: 
1) The within-PSU design effect calculated from 

national data is assumed to roughly equal the 
corresponding state design effects. 

2) P = ~B/~  is assumed constant across time. 

In evaluating this method, I tested 
assumption (1) above. Assumption (2) may be 
tested only by estimating state within-PSU 
variances. Since the replicate weights allow 
only estimation of the total variance of a given 
labor force characteristic, I could not test 
assumption (2). 

Section 2.2: Using the Replicate Weights for 
State Variance Estimation 

Variance estimates computed from the 
replicate weights for a given state are less 
biased than variance estimates computed by the 
GVF method described above, so I used them to 
evaluate the bias associated with the GVF 
method. As mentioned, however, the replicate 
weights were computed primarily for use at the 
national level. Though they are also suitable for 
estimating variances for the most populous 
states, limitations arise when they are used to 
estimate variances for small or rural states. 

Stability of Variance Estimates 
For small or rural areas, variance estimates 

computed from the replicate weights are 
relatively unstable because they do not have 
many degrees of freedom. The number of 
degrees of freedom of a small area variance 
estimate is the rank of the matrix formed by 
placing side by side all Hadamard matrix 
columns assigned to SECU's in that particular 
small area. Since each orthogonal row of this 
matrix determines an independent replicate 
estimate, the rank of the matrix is the number of 
independent replicate estimates. If this number 
is small, the resulting variance estimates will be 
unstable. And if many SECU's in the area are 
assigned to some columns of the Hadamard 
matrix while few are assigned to other columns, 
the replicates will be poorly balanced; this also 
decreases the stability of the variance estimates. 

The following formula provides an estimate of 
the coefficient of variation (CV) of a variance 
estimate for a state or for a group of states, 
taking into account the effect of differing 
sampling ratios between states and the effect of 
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differences in the number of SECU's assigned to 
the various columns of the Hadamard matrix. 

CV(var) : [2 '~H ( ,T--S Ws2msH) 2] 

[~ ' ,  '~S Ws2ms,], 

1/2 

(2.2.1) 

where Ws = the sampling interval (or base 
weight) for state S, and 

msH = the number of SECU's from state S 
assigned to column H of the Hadamard 
matrix. 

Use of (2.2.1) for approximating the stability 
of CPS variance estimates is optimistic, since 
the formula assumes that within-SECU variance 
is the same for all SECU's, an assumption which 
may not hold for the CPS. A SECU comprising 
three NSR PSU's, for example, may have a 
different within-SECU variance than a SECU 
representing a much smaller geographic area in 
an SR PSU. Though each SECU may 
contribute one degree of freedom to the 
variance estimate, their effect on the stability of 
the estimate may differ. Because of 
confidentiality laws, however, data that might 
allow further examination of within-SECU 
variances cannot be provided in a public data 
set. 

Table 1 gives estimated CV's for state 
variance estimates, along with the 
corresponding numbers of SECU's and degrees 
of freedom for the eleven states having the 
lowest CV's. Estimated CV's of the variance 
estimates for the remaining states fell between 
thirty and fifty percent. 

Evaluating the Current State GVF's 
In order to evaluate the state variance 

estimation method described in Section 2.1, I 
used the replicate weights to compute variance 
estimates for monthly 1987 state employment 
and unemployment totals. I compared these to 
the corresponding standard error estimates 
computed by the current GVF method. 

Because of the instability of the replication 
variance estimates for small states, I used only 
data from the eleven states having the most 
stable variance estimates-the eleven states 
listed in Table 1-in my analysis. 

From the state variances estimated by 
replication, I computed monthly design effects 
for state employment and unemployment totals. 

I averaged the monthly design effects for March 
through December (using the first two data 
months to initialize the CPS composite 
estimator) and computed monthly 1987 standard 
error estimates from these average design 
effects. 

Using the estimated CV's from Table 1, I 
constructed approximate 1~ confidence intervals 
around the 1987 total employment and 
unemployment standard error estimates 
computed directly from the replicate weights. 
Then I examined standard error estimates 
computed by 

1) the current state GVF method and 
2) the new method: using state design 

effects computed from the replicate 
weights 

to see whether or not they fell within these 
intervals. 

The results for Michigan were typical: as 
figures 1 and 2 show, the employment standard 
errors computed by the current method fell 
below the lower confidence limits, while most of 
the standard errors for unemployment computed 
by the current and new methods fell within the 
intervals. For most states, there was little 
difference between the unemployment standard 
errors computed by the current and new 
methods, indicating that the bias associated with 
the current unemployment GVF's may be 
reasonably low. For every state examined, 
however, employment standard error estimates 
computed by the new method were noticeably 
higher than those computed by the current 
method. 

.Analyzing State unemployment Des.i.qn Effects. 
Since my analysis using confidence intervals 

indicated that unemployment design effect 
varied little across states, I wanted to test for 
significant differences between the state and 
national unemployment design effects. In order 
to justify the use of a t-test for this purpose, I 
first examined the correlation structure and 
distribution of the ten monthly observations 
(March through December, 1987) of state 
unemployment design effect for the eleven large 
states. 

CPS sample overlap and composite 
estimation cause positive correlation between 
CPS unemployment estimates from consecutive 
months. But the correlation between design 
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effects computed from consecutive months' data 
may reasonably be expected to be lower than 
the correlation between monthly estimates of 
total unemployment. To examine the 
autocorrelation of the monthly unemployment 
design effects, I standardized the observations 
from each state by subtracting the mean and 
dividing by the estimated standard error of the 
design effect for that state. I paired the 
observations (within state) from consecutive 
months to obtain 97 ordered pairs of 
observations. (Nine from each of the eleven 
large states, minus two from Florida-I had 
deleted one outlying observation from the 
Florida data.) The Spearman correlation 
coefficient for these pairs of observations was 
about -0.128, indicating no significant positive 
correlation. Since sample overlap and 
composite estimation were the only suspected 
sources of dependence between the 
observations (in particular, no negative 
correlation was suspected), it seemed 
reasonable to assume that the monthly 
observations of unemployment design effect 
were essentially independent. 

To test for normality, I computed a Shapiro- 
Wilks statistic for the ten monthly observations 
of design effect from each of the eleven large 
states. For Ohio and Texas, the p-values for the 
normality test were less than 0.05, so I limited 
further analysis to data from the remaining nine 
states. 

For each of the nine large states, I used a t- 
test to test for differences between (a) state 
unemployment design effect and (b) the national 
unemployment design effect, adjusted for 
differences in noninterview rate-that is, the 
design effect used in the current state GVF's. 

The ratio of between-PSU variance to total 
variance differs by state, so I performed the test 
on the state within-PSU design effects, 
estimated by 

desw = deSTA (1-ps), where 

deSTA = average total design effect for state S, 
estimated from the replicate weights, 

Ps = estimated ratio of between-PSU variance to 
total variance, mentioned in Section 2.1, for 
state S, and 

desw = estimated within-PSU design effect for 
state S. 

For each state, I computed a t-statistic to test 
the hypothesis: 

Ho: I~s =0 vs. HA: I#sl>O,where 

IJ.s = desw -den fs, 
den = national within-PSU design effect for 

unemployment, 
desw = estimated state within-PSU design 

effect for unemployment, and 
fs = the adjustment factor for differences 

between state and national noninterview 
rates. 

Table 2 provides the resulting t-statistics and 
p-values along with the state within-PSU design 
effects and their standard errors. For all states 
tested, the p-values were too high to justify 
rejecting Ho. 

Assuming a significance level of 0.05, I 
estimated the power of the t-test for each state 
under three simple alternative hypotheses: 

Hi: = den fs; 

H2:I#~1 = (0.2) deN fs; 

H3:I#~1 = (0.3) deN fs. 

The estimates of power appear in Table 3. 
Good power was obtained for most states for the 
test of Ho against H3; the power of the test of Ho 
against H2 was also reasonably good in many 
cases. 

Interpretin.q the Results 
For all states for which I performed t-tests, I 

failed to reject Ho at the 0.05 level of 
significance. Though I did not reject Ho for 
Florida, Illinois, and New York, the probability of 
type II error was high for these states. Possible 
reasons for this include: 

1) The within-PSU unemployment design 
effects for the states listed above actually 
exceed the national unemployment design 
effect. 

2) The ratio of between-PSU variance to 
total variance for these states increased 
between 1980 and 1987, artificially 
inflating the estimated state within-PSU 
design effects. 

3) The observations of unemployment 
design effect for Florida, Illinois, and New 
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York were too variable to support good t- 
tests. 

Without direct estimates of within-PSU 
variance, I could not determine which of these 
factors caused the low power of the tests for 
Florida, Illinois, and New York. 

For small or rural states, instability in the 
replication variance estimates caused high 
variability in unemployment design effects 
computed from these variance estimates. Since 
the analysis described above indicated that the 
bias in state unemployment standard error 
estimates computed by the current GVF method 
is reasonably low, the mean square error of 
unemployment standard errors computed using 
new state design effects (computed from the 
replicate weights) is likely to exceed that of 
standard error estimates computed by the 
current method. The BLS will therefore continue 
to use the current method to estimate standard 
errors for state unemployment totals. 

Computin.q State Employment Desi.qn Effects 
Since the confidence interval analysis 

described above indicated a downward bias in 
the employment standard error estimates 
computed by the current method, I used the 
replicate weights to estimate employment design 
effects for all states. Except for the states in 
Table 1, the estimated CV's of these design 
effects ranged from twenty-five to fifty percent. 
In order to gain stability in the state employment 
design effects, I grouped similar states together 
and computed a within-PSU design effect for 
each group, thus incurring some bias. I adopted 
a "linear programming" approach to collapsing 
states for computing employment design effects: 

1. For a given state S, form all possible groups 
of states G such that" 

a) Gincludes S. 
b) G comprises two to five contiguous 

states. 
c) The number of states in G bordering S 

equals or exceeds the number of states in 
G not bordering S. 

2. Choose the group G which maximizes Os = 
ns/nG, where 

ns = sample size for state S, and 
n G = sample size for group G, 

subject to the following constraints" 

a) CV(varG) < 35%, where vara is a monthly 
variance estimate from group G; 

b) CV(deG) < 20%, where deG is the average 
employment design effect for March 
through December for group G; and 

c) des - ~(~ < deG < des + ~(j,), where 
des = estimated design effect for state S; 
~(j,, = standard error of des, estimated 

from the ten monthly observations. 

The idea that states within the groups should 
be contiguous is based on the belief that 
employment design effect is correlated with 
some economic and demographic 
characteristics. Though the bias due to 
collapsing states cannot be estimated, use of Os 
above as an "objective function" is intended to 
minimize it: Os is clearly negatively correlated 
with this bias. Constraint (c) serves as a bias 
control, while constraints (a) and (b) ensure a 
minimum level of reliability for the design effects. 
The upper bounds on the CV's of monthly 
variance estimates and average design effects 
are based on feasibility, in view of the 
corresponding CV's for the eleven large states~ 
Table 4 gives the new design effects, for 
selected states, computed using this approach. 

Summary and Conclusions 
To estimate variances for CPS labor force 

estimates, the Census Bureau developed a 
variance estimation system using Dr. Robert 
Fay's method of generalized replication. Since 
the CPS employs a one-PSU-per-stratum 
sample design, Census created a two- or three- 
PSU-per-stratum "pseudo-design" in order to 
apply the replication method. At the request of 
BLS, Census made the 1987 replicate weights 
available in a public data set. Users may easily 
compute variance and covariance estimates 
from these weights. 

Using the replicate weights, I evaluated the 
variance estimation method the BLS uses for 
state employment and unemployment totals. I 
found that the current BLS method yielded good 
estimates of variance for unemployment totals 
and low estimates of variance for employment 
totals. I computed new state employment 
design effects from the 1987 replicate weights. 
Using these new design effects, the BLS may 
now compute less biased standard error 
estimates for state employment totals. 
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Table 1 
STATES IN A S C E N D I N G  ORDER OF 

% C V  ON VARIANCE E S T I M A T E S  

California 

Massachusetts 

New Jersey 

Pennsylvania 

New York 

Florida 

Michigan 

North Carolina 

Ohlo 

Texas 

Illinois 

Number 
of SECU's 

9 3  

5 0  

5 2  

5 3  

8 4  

6 0  

51  

4 9  

4 7  

4 8  

4 2  

Degrees 
of Freedom %CV (var) 

4 7  

4 7  

4 7  

4 7  

4 7  

4 7  

4 5  

4 2  

4 0  

3 8  

3 6  

2 0 . 9 6  

2 1 . 1 7  

2 1 . 4 1  

2 1 . 6 0  

2 1 . 7 6  

2 1 . 8 6  

2 2 . 0 9  

2 2 . 9 1  

2 3 . 5 7  

2 4 . 3 2  

2 4 . 8 3  
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T a b l e  2 

U N E M P L O Y M E N T  D E S I G N  E F F E C T S  
a n d  T - S t a t i s t i c s  f o r  N i n e  L a r g e  S t a t e s  

Callfornla 

Florlda 

Illinois 

Massachusetts 

Mlchlgan 

New Jersey 

New York 

North Carolina 

Pennsylvania 

Average 
Design Effect 

1 .264  

1 .423  

1 .418  

1 .150  

1 .297 

1 . 1 6 9  

1.378 

1 .338  

1 .283  

Standard 
Error 

0 . 2 5 9  

0 . 3 3 8  

0 . 3 1 8  

0 . 2 1 2  

O. 1 9 8  

0 . 2 2 9  

0 . 3 6 9  

0 . 3 3 5  

0 .281  

T 
Stat ist ic p-value 

- 0 . 0 6 6  0 . 9 4 9  

1.361 0 .211  

1 .355 0 . 2 0 9  

- 1 . 7 8 1  0 . 1 0 9  

0 .441  0 . 6 7 0  

- 1 .385 O. 199 

0 . 9 3 7  0 . 3 7 3  

0 . 7 6 9  0 . 4 6 2  

0 . 3 0 4  0 . 7 6 8  
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Tab le  3 

P O W E R  O F  T - T E S T S  
U n d e r  T h r e e  S i m p l e  A l t e r n a t i v e s  

Callfornla 

Florlda 

Power 1 Power 2 

0 .26  0 .73  

0 .04  O. 16 

llllnols 0 .03  O. 17 

Massachusetts 0 .03  0 .42  

Michigan 0 .28  0 .88  

New Jersey 0 .05  0 . 5 0  

New York 0 .03  O. 18 

North Carolina 0 .04  0 . 3 0  

Pennsylvania O. 16 O. 60 

Power 3 

0 . 9 8  

0 . 5 0  

0 . 5 8  

0 .94  

0 . 9 9  

0 .93  

0 .53  

0 .68  

0 .93  



Table 4 
Optimal State Collapsing Patterns for Computing Employment Design Effects 

State 
Effect 

Collapsed 
with 

Within-PSU Value of CV of Monthly CV of 
Employment Objective Variance Average 

Design Effect Function O~ Estimates Design 

Alabama Mississippi 
Tennessee 

1.287 0.329 0.300 0.165 

Arizona New Mexico 
Oklahoma 

1.301 0.305 0.291 0.159 

Arkansas Oklahoma 
New Mexico 

1.213 0.355 0.279 0.196 

Colorado Arizona 
New Mexico 
Utah 

1.592 0.256 0.347 0.195 

Idaho Nevada 
Wyoming 

1.060 0.401 0.319 0.199 

iowa Missouri 
Minnesota 
Tennessee 

1.273 0.252 0.270 0.154 

Indiana Kentucky 
Missouri 

1.365 0.381 0.265 0.184 

Kansas Oklahoma 1.326 0.510 0.330 0.166 

Mississippi Alabama 
Tennessee 

1.287 0.344 0.300 0.165 

Missouri Iowa 1.562 0.530 0.296 0.187 

Nebraska Iowa 1.048 0.506 0.329 0.170 

New Hampshire Vermont 1.542 0.482 0.316 0.200 

North Dakota Montana 
South Dakota 
Wyoming 

1.569 0.268 0.273 0.186 

Oklahoma Kansas 1.326 0.490 0.330 0.166 

Utah Nevada 
Wyoming 

1.250 0.363 0.302 0.173 

Vermont New Hampshire 1.542 0.518 0.316 0.200 
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