
Imputation of the 1989 Survey of Consumer Finances: 
Stochastic Relaxation and Multiple Imputation 

Arthur B. Kennickell, Board of Governors, 
Federal Reserve System, Mail Stop 180, Washington, DC 20551 

KEY WORDS: Multiple imputation, Gibbs sam- 
piing, stochastic relaxation 

The Survey of Consumer Finances 

(SCF) is designed to gather detailed information 
on the financial and demographic characteristics 

of U.S households. Inevitably in such a survey, 

some respondents are unwilling or unable to 
provide all of the information requested of them. 

In waves of the SCF before 1989, imputations of 
missing values were made on an ad hoc basis. 

A decision was made for the 1989 survey to 

build systematic imputation and editing software 

that reflects the current state of knowledge in 
the area and that would be substantially reusable 

in future waves of the survey. 
This paper describes the Federal 

Reserve Imputation Technique Zeta (FRITZ) 

developed for the 1989 SCF. In the next section 

of this paper, I give a description of the structure 
of the 1989 SCF and evaluate the incidence of 

missing data. In the third section, I review some 

of the theory underlying the procedures applied. 

In the fourth section, I give an outline of the 

structure of the FRITZ model. The final section 

provides some statistics on the performance of 

the model. 

1989 Survey of Consumer Finances 
The purpose of the SCF is to provide a 

comprehensive and detailed view of the f'man- 

cial behavior of households. Altogether well 

over 1,500 distinct variables were collected. 

Detailed information was gathered on all assets 

and liabilities attributable to the primary 

economic unit in the household. Liabilities in- 

clude credit card debts, installment loans, 

mortgages, lines of credit, and other loans. 

Assets include the principal residence, all types 

of loans made to others, real estate assets, 

businesses, various types of accounts, including 
checking, saving, money market, IRA, Keogh, 
and brokerage accounts, stocks, mutual funds, 

bonds, and other assets. Detailed information 

was also collected on the current job of respon- 
dents and their spouses, their current and future 

pension rights, and other demographic charac- 
teristics. 

To accommodate the many types of 

information requested from a range of socio- 

economic groups, the questionnaire for the SCF 

is quite long and highly structured. Typically, 

the design of the instrument is such that ques- 

tions about dollar amounts are preceded by one 
or more filter questions. For example, before 
asking the amount in a respondent's fifth check- 

ing account, the person is asked first whether the 
unit has any checking accounts, and then how 

many accounts the unit has. Sometimes respon- 

dents are asked different sequences of questions 

depending on the answer to such filter questions. 

The sample design of the 1989 SCF is 

also complex (See Heeringa and Woodburn 

[1991 ]). The two major parts of the sample are 

the overlapping panel cross-section based on the 

1983 SCF sample (1803 cases), and a new inde- 

pendent cross-section sample (2000 cases). 
These samples are based on a dual frame design. 

One part of this sample was drawn from a stan- 

dard national area-probability frame and the 

remainder was selected from a list frame 

developed from administrative files maintained 

by SOI for the purposes of oversampling respon- 

dents likely to have higher levels of income and 

wealth. The motivation for the dual frame 

design was two-fold. First, since an important 

mission of the survey is to characterize the dis- 

tribution of financial assets, which are highly 

concentrated in a small part of the population, 



an efficient design should over-represent that 

group. Second, common survey folklore and on- 
going analyses of the 1989 SCF support the 

claim that nonresponse tends to be higher for 

households with higher levels of wealth. In most 

area-probability samples, there is no means of 

making systematic adjustment for this differen- 

tial nonresponse. The advantage of the list 

sample used for the 1989 SCF is that non- 

response adjustments can be made based on 

extensive income information contained in the 

administrative records that served as the sample 

frame. 

Data for the survey were collected be- 

tween the months of July 1989 and March 1990 

by the Survey Research Center at the University 

of Michigan. Interviews were largely conducted 

in person and averaged about 75 minutes. 

Before the data were punched, the 

questionnaires went through several stages of 

editing. Interviewers performed a consistency 

check as soon as possible after the interview. In 

the field office, the questionnaires were ex- 

amined more closely for evidence of interviewer 

or respondent error - with particular attention to 

the possibility of double-counting of assets and 

liabilities. Further machine editing was per- 

formed on the punched data for more 

complicated logical problems. 

Data changes at all stages of editing 

represent something very close to, if not identi- 

cal to, imputation. Generally, a conservative 

approach was taken to changing data in editing. 

However, when missing pieces of information 

were obvious in the context of other information 

in the questionnaire, the data were filled in at 

this stage. Records were kept of major changes 

to the data. As one might expect of an interview 

that was administered to households of all 

ranges of financial sophistication, editing was 

substantial and important for the quality of the 

final product. 

The achieved sample for the entire 

1989 survey includes 3,803 households. Of this 

number 3,134 have cross-section representation 

and 1,479 have panel representation. Area- 

probability and list cases were treated slightly 

differently in the field. Area-probability cases 

were approached directly by interviewers, and 

about 69 percent of these cases were eventually 

interviewed. The list cases were given a prior 

opportunity to refuse participation by returning 

a postpaid card. About a third of the list cases 

refused participation at this stage. The 

remainder were approached by interviewers, 

yielding an overall interview rate for the list 

sample of about 34 percent. While the interview 

rate for the list cases is not high according to 

usual criteria, this figure merely makes explicit 

the differential nonresponse with respect to in- 

come that is hidden in other surveys that have 

insufficient frame information to reveal the 

problem. Moreover, in the SCF, we have at 

least the hope of making systematic adjustments 

to the sample by estimation of response models 

using the universe data under the assumption 

that units are conditionally missing at random. 

Every observation in the survey con- 

tains at least one piece of missing information - 

often a very trivial item such as the interviewer 

ID number. Partial information was available 

for many items. Respondents who were reluc- 

tam to provide dollar values directly were 

offered a card containing dollar ranges labeled 

with letters. For total income a more directed 

"tree" approach was taken to bound income 

more tightly. Excluding range-card responses, 

the mean number of missing values per case is 

21.6, the median is 11, the 90th percentile is 37, 

and the total number of missing values to be 

imputed is 82,125. ~ The mean number of 

range responses was 3.4 per interview and the 

total number of such responses was 3,477. For 

comparison, the maximum possible number of 

missing values is about 6 million. However, all 

pieces of missing information are not of equal 

value in terms of the overall objectives of the 

survey - e .g . ,  the m o u n t  a respondent has in a 

sixth checking account is usually less important 

that the total amount of corporate stocks. 



Another gauge of severity of the problem, the given in Rubin [1990] and Gelfand and Smith 
proportion of missing dollar amounts based on [1990]. 

the imputed values, is given below in the dis- The EM algorithm presented in 
cussion of the results of the model. Demster, Laird and Rubin [ 1977] is intended to 

The structure of missing values is quite estimate parameters in a dataset where some 
complicated. As noted above, the questionnaire information is only partially observed and direct 
is designed so that respondents are led down estimation in the presence of missing informa- 
many question paths with several conditional tion is difficult, but estimation with complete 

branches. In addition, a very great number of data would be easier. The procedure operates 
patterns of missing data appear in the data. For by iteratively simulating the missing data and 

all practical purposes, it is a safe assumption estimating the parameters. The iteration con- 
that the overall pattern of missingness for each tinues until the parameter estimates are 
case is unique. Thus, the imputation of the sufficiently close to a fixed point. The intuition 

missing values cannot be addressed routinely of this landmark paper underlies all that is 

using techniques developed for "monotone" pat- reported here. 

terns of missingness without sacrificing Rubin's work on multiple imputation 

substantial information to achieve monotonicity (see particularly Rubin [1987] and references 

for subgroups (See Little and Rubin [1987]). therein) serves as a bridge between EM and the 

Table 1 provides response rates for a later simulation techniques that involve a struc- 
nonrandom selection of survey variables for the ture similar to EM. Briefly, multiple imputation 

panel and cross-section observations taken simulates the distribution of missing data and, 
together. As shown in the table, item non- thus, allows a more realistic assessment of 

response rates vary widely, but generally within variances and a more efficient representation of 

a range that is typical of other economic sur- first moments. 

veys. One exception is 1988 adjusted gross A paper by Tanner and Wong [1987] 

income, which was missing in over 28 percent follows from the methods of EM and ideas of 

of cases. I suspect that this very high level of multiple imputation and offers a clear 
nonresponse had two important sources. The framework for understanding the usefulness of 

field period began later than expected after April iterative simulation methods in imputation. 

15th and ran longer than expected, and respon- Tanner and Wong focus on the estimation of a 

dents were not encouraged to look up data set of parameters where some potential con- 

where appropriate, ditioning information is unobserved, but it is 

Review of I m p u t a t i o n  Theo ry  easy to extend the argument to estimation of 

There are numerous ancestors of the missing data. 
missing value techniques reviewed in this sec- Papers by Geman and Geman [1984] 

t i t ,  For a more complete history, I refer the and Li [1988] provide useful approaches for 

reader to the detailed references in the landmark dealing with more complex data structures. 

National Academy volumes (Madow, Olin, and These papers describe an iterative Markovian 

Rubin [1983]), Little and Rubin [1987], and procedure of successive simulation of the dis- 
Rubin[1987]. tribution of variables conditioned on both 

Three strands of literature are par- observed data and distributions of variables pre- 

ticularly relevant to the work reported in this viously simulated in the same iteration. The 

paper: the EM algorithm, multiple imputation, method is typically referred to as stochastic 

and Gibbs sampling, or stochastic relaxation. A relaxation or Gibbs sampling. Although conver- 

more complete overview of this literature is gence is reported to be slow for large numbers 



of variables, Geman and Geman show that under 
regularity conditions, the process converges and 
that the simulated distribution of X moves 
closer to the true latent distribution Uith each 

iteration. This approach is discussed further 
below in the development of the FRHZ model. 

Descr ipt ion of F R I T Z  
In past SCFs, imputation had been per- 

formed on an ad hoc basis, with significant and 
very frequent intervention by analysts at the 
level of individual imputations well beyond the 
editing stage. While the effort involved in the 
development of FRITZ has been great, I believe 
that much of the core set of procedures can be 
reused for future SCFs as well as for other pur- 

poses. 
There is a continuum of changes to the 

respondents' answers from the point of inter- 
viewer recording, through primary data editing, 
to statistical imputation. Virtually all imputa- 

tions made after the primary editing stage are 
model-based, though a small number of docu- 
mented cases have been imputed judgmentally - 

typically variables that would be quite cumber- 

some to impute, but which are resolved with 

very high probability upon inspection. 

Judgmentally imputed variables are flagged as 
such in a set of flag variables maintained for 

each main variable. 
FRITZ was designed to handle the 

great majority of statistical imputations. 
Although the procedure is iterative and involves 

multiple imputations, for relative transparency 

of exposition, it will be convenient to act at fh-st 
as though the model were the more usual case of 

single imputations computed without iterations. 
The general procedures applied in the first itera- 

tion are used in all later iterations. Special 

problems induced by the mixture of panel and 

cross-section data will only be presented later in 

the discussion. 

Basic Procedures in the First Iteration 

Let the potential set of variables col- 

lected for a given case r (r=l to R) be denoted 

by X r where xris a vector of N variables. 

Additionally, let X r (of rank N ) and X r (of rank 
N = N- N )deno~,respectiv~iy, the pamrtitioning 
o f ~  into ~ariables that are available and those 
missing for some reason. The goal of the im- 
putation process is to obtain a good estimate of 
F(X , X ). Multiple imputation allows the 

m 
dataset its{If to stand as a proxy for that distribu- 
tion. 

Using a variation on the technique of 
Gibbs sampling (or stochastic relaxation), 

FRITZ proceeds through the variables to be im- 

puted in a predetermined sequence making 
imputations variable-by-variable. In the 

process, the information set available for im- 
putation of each case expands as imputation 
proceeds through the sequence of variables. 

Imputed variables are treated exactly like 

reported variables within each iteration. That is, 
in the first iteration we estimate 

F(~ 1 Egg) 

F(XllX ) g 1 
. . . . .  

IX w Xm<n) F(~n g 

IX w X  ~n ) F(Xn g m<n' 

. o o o e  

F( N Ux<N>, 

where X denotes the missing values imputed 
m<n 

in the sequence before variable n and where the 
parameters of the distribution are estimated 
from reported and simulated data in the previous 

iteration, and where ~. is an intermediate 

parameter vector corresponding to the "M" stage 
of EM. 

In the FRITZ system, there are four 

types of model-based imputations: imputation of 

continuous variables, binary variables, and 

polychotomous variables, and nonparametric 

imputation. Unfortunately, theory does not offer 

much help in f'mding the "true" functional form 

of F. In the case of most continuous-variable 



imputations, it is assumed implicitly that the 

variables with missing values can be taken to 
have a conditional distribution of the orm 

F(G(a)IH(b)) ~ Normal(It ,o ), 
where a is a variable with missingava~ues, b is a 

set of conditioning variables, and G and H are 
transformations of a and b, respectively. This 

assumptions amounts to assuming that 
9 

G(a)=H(b) + e , where 8 ~ N(O,o ~). 
a a a 

Typically H is assumed to be multlplicative in b 

and the transformations G and H are taken as 

log transforms, implicitly yielding the linear 

model, 

A=constant+13 B + +e , 
1 .1 "'" A 

where the capital letters indicate ).he log trans- 

form. The great benefit of this assumption is 

that a relatively simple covariance matrix of the 

variables forms a sufficient statistic for imputa- 

tion and, thus, the simulation of A is 

straightforward. 

In practice, we can be almost certain 

that the variables we observe are a subset of the 
appropriate vector B. At the least there are 

likely idiosyncratic factors for every observation 

that would be extremely difficult to represent as 

a reasonably small set of variables even in 

principle. Once we face the fact that all of B is 

not known, a potential problem of nonignorable 

nonresponse arises - t h a t  is, conditional on the 

observed variables the set of nonrespondents for 

a given item may be a nonrandom subset of the 

whole sample (See Little [1983]). 
In FRITZ an agnostic approach is taken 

to the set of observed variables chosen to proxy 

for B. In principle, it might be desirable to take 

the conditioning set as a series expansion of the 

function G involving all variables available for 

each observation. In practice, degrees of 

freedom limit the number of variables, interac- 

tion terms, and higher order terms that can 

feasibly be included. If one can assume that 

there is some "local structure" to the distribution 

of the data (what Geman and Geman call a 

"cliques") then one can use subsets and sum- 

maries of the complete set of information. In 

any event, no attempt is made in FRITZ to ex- 

clude variables that have no obvious "structural" 
interpretation - the underlying model is a pure 

reduced form. Most often, the maximal set of 
conditioning variables for a given case is on the 
order of 200 or more variables, frequently in- 

cluding a number of recoded variables 

particularly relevant for a given imputation. 

Typically included in the set of variables used is 
a group of interviewer observations on respon- 
dents' level of suspicion before and after the 

interview, their level of interest, etc. The data 

indicate a reasonable variation in the amount of 

information reported for all levels of these vari- 

ables. The hope is that these variables will be 

correlated with unobserved characteristics of 

item nonrespondents and, thus, mitigate the 

potential for nonignorable nonresponse bias. 
While there is no guarantee that such an ap- 

proach eliminates - o r  even reduces -poss ib le  

response bias, such a strategy may be the best 

practical insurance against bias. Our means for 
testing this assumption are very limited. 

Operationally, FRITZ looks at a given 

case, determines whether the current variable in 

the sequence should be imputed, determines 

which variables in the conditioning set are avail- 

able either as reported values or previously 

imputed values, and computes a randomized 

imputation. As noted earlier, the combinations 

of missing values varies widely over all cases so 

that virtually e v e ~  case involves a different 

"regression." Thus, A., the imputed value of vari- 

able A foj( observatiod j is dliawn according to 

~A--" [Bg(i)B~(i)] [Bg(i)A] and 

A ~ F(AIB ~A ) j g , j '  , 

where B . denotes the set of values of all obser- 

vations ~ )va r i ab le s  included in B . ,  the set of 

all available (reported and ake{[~y imputed 

within the iteration) values for case j. 

An "improper" imputation is made by 

drawing a value from the distribution implied 

taking the model coefficients [~ to be fixed and 

assuming that e A is distributed normally with 



mean zero and va "ance given by 
A ' A-A 'B  . . [B  . . . 'B ...]-~B . . ' A ,  where the 

relevant " " - -  " "  " "  " " ~ ~ e t ~ ' ) a r ~ ' ~ " ~ o m p ~ { ~ l  as described 

below. The allowed distribution of eA may be 
truncated or otherwise altered using prior infor- 

mation or editing rules. Because the inversion 
of a large matrix is usually involved for each 

such imputation, this method is quite time- 

consuming. 

The moment matrix for the continuous 

and binary imputations is computed for the ap- 

propriate sub-popula t ion-  e.g., the covariance 
matrix needed for the imputation of the amount 

of holdings of certificates of deposit is com- 

puted using only households that actually have 

such instruments. Conveniently, a moment 

matrix computed using the maximal set of con- 

ditioning variables allowed will suffice for 

every case. The software automatically selects a 

submatrix for each case corresponding to the 

conditioning variables available. In the first 

iteration, the covariance matrix for the imputa- 

tions is computed without weights and using all 

non-missing pairs of variables for each observa- 
tion. As is well-known, this method of 

calculation allows the possibility that the 

covariance matrix may no longer be l~sitive 

definite, i~plying a negative value for e . In 
2 .  A 

practice e A ~s rarely estimated to I~ negative. 

For convemence at the first stage, eA is given a 
floor of zero. The alternative of  using only 

cases with full information would usually too 
drastically reduce the number of observations 

available for the calculation. 

A more serious problem in the 

covariance estimation is that induced by the 

presence of very influential cases. Typically 

this has been a problem in cases where there are 

coefficients of conditioning variables that are 

identified by a very small number of observa- 

tions. In such cases as have been detected, the 

set of conditioning variables has been reduced to 

exclude the offending variables. Unfortunately, 

I have not had either computer power or staff 

resources to explore this dimension systemati- 
cally. FRITZ writes out information about 

imputations as it proceeds and such problems 

detected to date have been found through inspec- 

tion of the model output. One sign of problems 
is the frequent inability of a given model to im- 
pute a value strictly within the bounds imposed 

by the constraints (either determined through 

edit rules, or from range card estimates). The 

most desirable approach would be to use robust 

estimation techniques for the covariance matrix. 
This will be an important line of research for 
this project in the future. 

For binary variables, it is assumed that 

the same model holds as in the continuous case. 

This amounts to the somewhat more suspect 

assumption that the linear probability model 

applies. Problems with the linear probability 

model are well-known. The model fails to ac- 

count for the information implied by the fact 

that probabilities must be in the closed interval 

[0,1] and, because the model is heteroskedastic~ 

produces inefficient estimates of the model 

parameters. Much better from a theoretical 

point of view would be to pose the relationship 

as a probit, logit or other such explicit probabil- 

ity model. There is no low-dimensional set of 

summary statistics that would apply to all sub- 

sets of conditioning variables for such models. 

Given the great array of patterns of missing 

data, virtually every observation would require a 

different model and additional passes through 

the data. As Rod Little has pointed out, the dis- 
criminate model uses the same set of input 

statistics as the linear probability model, but has 

the advantage that outcomes are constrained to 

lie between zero and one. In the on-going revi- 

sion of the FRITZ model, the discriminant 

function approach is being implemented. 

Given an estimated probability from 

the linear probability model, a draw is made 

from the implied binomial distribution to deter- 

mine the outcome. Some key polychotomous 

imputations are structured as the sequential 



prediction of binary choices. The input 

covariance matrix is computed exactly as in the 
continuous variable case above. 

Less critical polychotomous variables 
are imputed using a type of randomized hotdeck. 

Cases are arrayed as a multidimensional fre- 
quency table using a number of classifying 

variables. The imputation procedure randomly 

selects a value for the missing variable from the 
appropriate conditional cell. A minimum num- 
ber of cases is required in each cell. If that 
minimum is not achieved, there are rules for 

collapsing adjacent cells. Very closely related 

to this simple hotdeck procedure is a non- 

parametric regression technique. Essentially, 

the difference is that continuous variables are 
allowed in the frequency table and the collaps- 
ing procedures select a slice of specified size 
from the joint distribution of the variables. 

Higher-Order Iterations 
In the first iteration, the goal is to es- 

timate a reasonable set of starting values for 
further iterations. At the end of the first itera- 
tion, we have one copy of the dataset with all 

missing values filled in. From the second itera- 

tion and on, the initial dataset containing 

missing values is replicated 3 to 5 times, and the 

missing values are filled in based on statistics 

computed using the completed dataset from the 
prior iteration. In the second iteration, the 

covariance matrices and other such basic statis- 
tics needed for imputation are estimated from 
the reported data and the single imputations 

from the first iteration. In higher-order itera- 

tions, these statistics are pooled across the 

imputation replicates. 
The number of replicates increases 

from one replicate in the first iteration to five in 

the third and higher iterations. Given the com- 

plex tree structure of the data, it is an open 

question how many replicates may ultimately be 

needed to reflect adequately the variation due to 

imputation. 

If the assumptions we have made do 

not move us too far from the requirements of the 

underlying theory, at each iteration, FRITZ will 
move closer to the true latent posterior distribu- 
tion of the data. For convenience, we define 
convergence in terms of changes in the implied 

distribution of wealth, rather than as a function 
of all possible variables. In many applications, 
Gibbs sampling is known to converge slowly. 
Unfortunately, this may be a severe limitation in 

this application. The first iteration of FRITZ 

requires at least 11 days - la rge ly  due to the 
number of matrices that must be inverted - o n  a 

fairly fast Solboume minicomputer computer 

dedicated to the project. Subsequent iterations 
can take 3 weeks or longer. The amount of time 

required places particularly strains on our ability 

to debug such complex software. For this paper, 

only the output of the first two iterations is 

available. 

Some Results  f rom the Model  
As noted earlier, short of adding up all 

missing values equally, it is difficult to find a 
universally applicable single measure of the in- 
formation missing due to nonresponse. After 

imputation, other metrics are available. One 

such compelling measure is the proportion of 
dollars imputed for various items. Table 2 

provides an estimate of the unweighted percent- 

age of dollars that were imputed for selected 

items for the panel and cross-section cases 

together. Weighted percentages might be more 

informative here, but sampling weights are at 
such a stage that I do not believe such estimates 

would be reliable. Weighted and unweighted 

estimates will be provided later for the panel 

and cross-section separately. 

An estimated 19 percent of total net 

worth in the sample was imputed, with 4.9 per- 

centage points of that amount imputed using 

range information. In the case of total income, 

35.2 percent of dollars was imputed with an 

amazing 30.5 percentage points of this amount 

constrained by range estimates. Most of the 

other figures reported lie somewhere between 

these cases. 



Table 2 also displays the coefficient of 
variation due to imputation for components of 
household net worth and other variables based 
on data from the second iteration of FRITZ. As 
might be expected, the model performs better in 

terms of predicting higher-order aggregates than 
in terms of individual assets. For example, while 
the variation for money market accounts is 7.6 
percent, the total variation in net worth is only 
0.3 percent. 

Because only the f'u'st two iterations of 
the model are currently available, it is impos- 
sible to say very much about the empirical 
convergence properties of FRITZ. However, it 
does appear from the data that are currently 
available that the difference in the cumulative 

distribution of net worth (a key variable) is vir- 

tually unchanged between the first two 

iterations. 

Endnote 
1. If one looks only at dollar amounts of f'man- 

cial assets (checking, money market, savings, 

and other such accounts, certificates of deposits, 
stocks, mutual funds, bonds, and trusts), out of a 

maximum of 136,908 data items, 3350 are miss- 
ing, the mean number missing per case is 0.9 
and the median number is zero. 
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Table  1 It  

llem Nonresl~)nse Rates, Selected Items, Percent 

1989 Survey of Consumer Finances, Panel and Cross-Section, Unweighted 

Item Don't Not Unknown Range Memo item." 

know available whether response percent of all 

have item all cases inap. 

Balance on bank credit 
cards 0.6 1.2 0.0 0.8 30.9 

Value of own home, 
excl. mobile homes 1.6 1.2 0.0 0.6 29.6 

Amount  oulslanding on 
morlgage on home 3.2 2.0 0.1 1.2 58.5 

Have any owned cars 0.0 0.0 0.0 0.0 0.0 

Number of owned cars 0.0 0.2 0.0 0.0 11.5 

Value of I st business 

with mgt. role 15.0 3.1 I .I 4.8 73.7 

Have checking accl. 0.0 0.2 0.0 0.0 0.0 

Number of chkg. accls. 0.0 0.2 0.3 0.0 11.6 

Aml. in I sl chkg. acct. 1.4 4.6 0.3 2.5 I 1.6 

Amounl of (.T)s 3. I 7.8 1.8 5.7 73.9 

Alnl. of savings bonds 4.9 2.3 2.5 2.5 76.3 

Amoun! of slock, exci. 

mulual lunds 5.4 5. I 1.5 5.4 65.4 

(:ash value of life 

insurance 31.7 1.6 4.5 1.9 53.0 

Wage for respondent 

currenlly working 0.9 4.3 I. I 2.1 42.3 

Balance in 1st defined 

contribution pension 

plan fi~r respondent 16.7 1.8 6.2 2.7 84.2 

Tolal family income 2. I 1.7 14.6 0.0 0.0 

Filed 1988 tax return 0.2 1.0 0.0 0.0 0.0 
Amounl of 1988 adj. 

gross income 29.0 6.3 1.4 5.2 13.4 
Amounl of i st 

inherilance 5.9 4.4 3.3 3.6 68. I 
Amoun! of  1988 

charilable contrib. !.6 1.9 2.5 3.0 48.9 
Wage income for non- 

primary uni! members 30.3 2.9 5. I 5.9 90. I 

* Computed as a percent of cases either where response was appropriate or where it was un- 
known whether response is appropriate. 

Table 2 

Proporlion of Total Dollar Value Imputed, 

Coefficient of Variation Due to Imputation, Various hems 

1989 Survey of Consumer Finances, Panel and Cross-Section, Unweishted 

Item [h~o r t i on  of l h ' op~ ion  of Coefficient of 

total dollars total dollars variation due 

imputed using imputed without to imputation 

range information range infmmation 

Checking accounts 

IRA and Keogh accounts 

Money market accounts 

Savings accounts 

Certificates of deposit 

Cofp~ate  stock 

Mutual funds 

Savings bonds 

Other bonds 

Trust assets and annuities 

Cash value of life insurance 

Notes held 

All financial assets 

Principal residence 

real estate 

All businesses 

Vehicles 

M i ~ .  assets 

Total assets 

Credit card debt 
Consumer debt 

Principal residence mortgage 

Other mortgages 

Lines of credit outstanding 

Mi~ .  debt 

Total debt 

Net worlh 

Total income 

Adjusled gross income 

Total inheritances received 

Total charitable contributions 

3.1 11.8 0.039 

10.9 4.2 0.013 

4.2 16.3 0.076 

3.6 13.8 0.056 

5.4 8.0 0.014 

13.2 15.5 0.056 

7.5 15.6 0.087 

3.6 41.7 0.026 

3.9 8.3 0.O42 

7.5 6.0 0.024 

1.8 19.0 0.033 

0.8 15.4 0.037 

7.1 12.0 0.005 

3.3 2.2 0.003 

5.5 2.9 0.016 

22.2 6.3 0.066 

2.6 0.3 0.001 

9.8 5.0 0.011 

5.3 12.9 0.005 

6.0 4.2 0.012 

0.1 4.2 0.000 

O.7 6.3 0.0O2 

4.4 5.8 0.036 

0.9 3.4 0.OO7 

12.2 7.1 0.028 

3.8 6.3 0.030 

4.9 I 4. I 0.00~ 

30.5 4.7 0.010 

15.6 38.6 0.036 

6.6 19.5 0.117 

4.3 2.6 0.009 


