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ABSTRACr. The Energy Information Administration 
(EIA) collects electric power generation and cost data 
from power plants in the United States. The purpose 
of this paper is to discuss results of applying model 
sampling and unequal probability sampling, and to 
compare these results to each other and to full census 
historical results where available. This may be used to 
help determine whether model sampling, or any sam- 
piing, is appropriate for some EIA applications, ff 
some of the (smaller) plants are not included in future 
surveys, this removes some respondent burden, and 
reduces the number of records that need to be edited, 
thus possibly improving the quality of the editing and 
handling for those records that remain. Periodically, 
censuses may be conducted so that the continuing ap- 
propriateness of such methodologies, should any be 
found, may be examined. This paper represents work- 
in-progress which may be continued for some time. 
Also, additional analyses may be conducted. 

Introduction. Net generation, fuel stocks, and con- 
sumption data are currently collected from every elec- 
tric utility plant in the United States on a monthly ba- 
sis. (Such information from nonutility plants is the sub- 
ject of a separate annual survey which currently does 
not collect data from the smallest of such plants.) Since 
census data are available for utility plants, it is possible 
to compare the results of different sampling estimators 
to what has resulted from the full census by selecting 
a subset of that census as the sample. Thus, assuming 
nonsampling error does not interfere, the difference 
between sample estimated values and census estimated 
values will be considered to be due to the mean square 
error (i.e., bias and variance), and the estimated coef- 
ficient of variation (CV) can also be studied for each 
estimator to see if it behaves as it should. Model sam- 
pling is used as that is the most convenient to apply 
and can remove reporting burden for smaller plants. 
(Perhaps larger plants will be rotated.) 

Due to lack of data, it is usually not possible to inves- 
tigate the appropriateness of a model so thoroughly. 
However, this is what the author has done using hy- 
droelectric utility plant generation information. (Data 
from other plant types have not, at least as yet, been 
investigated; although data are available.) Historical 
files are found starting in 1970 for use as auxiliary data. 
If using prior period generation information, it would 
be most practical to form an auxiliary data file at the 
annual level. However, the volatile nature of individual 
plant data showed that this may not be the best ap- 
proach. 

Net generation may be negative if, for example, a plant 
is out of service for repairs. A great deal of electricity 
could be needed for such repairs. Suppose that a plant 
has a large nameplate capacity (the capacity estimate 

stamped on the generator by the manufacturer), and 
for, say, six months in a given year it has a negative 
net generation, large in absolute value, and for six 
months it has a large positive net generation, with close 
to zero net generation for the year. Nameplate capacity 
would logically be a better auxiliary variate for any 
given month of that year of interest than prior year 
generation data might be since a year with near-zero 
net generation could be chosen for the auxiliary infor- 
mation. 

This investigation only considered a recent month's 
data for 11 States, used nameplate capacity as the aux- 
iliary variate, and covered only hydroelectric plants, 
at least at this point. Results may vary for years of 
drought or flood, although such effects may be pro- 
portioned well enough over various plants that no sub- 
stantial net effect may be seen. 

The results of using three linear regression models de- 
scribed by Royall (1970) were compared in this study. 
Total net generation, by State, and CV estimators were 
compared using census data to determine relative mer- 
its (assuming nonsampling error does not bias the re- 
sults). A fourth model was also studied. The scope of 
this study was limited, at least at this time, to cases 
where only the smallest plants were not sampled. This 
could correspond to a case where only a few utilities 
are not included due to hardship allowances. 

Generation expense estimation is a second part of this 
paper. Generation expense is a ratio of cost to 
kilowatthours of electricity generated, l The current 
estimates of net generation, as mentioned earlier, are 
derived from a census. Thus we must only sample to 
estimate costs. One of the models in the first part of 
this paper is used and compared with results from an 
unequal probability sample design which corresponds 
partially to another one of the linear regression models 
used in the first of these two studies. Census results for 
various cost components are not all available. Plants 
investigated were major, privately owned coal-fired 
and nuclear-powered plants for the years 1986, 1987 
and 1988. Results are being presented in the current 
EIA publication, Electric Plant Cost and Power Produc- 
tion Expenses 1988. 

Model Sampling to Estimate Net 
Generation For Hydroelectric Plants 

Background. As at least a first step in investigating the 
possible use of model sampling for the collection of 
net generation information, three models described by 
Royall (1970) were used to study hydroelectric plant 
data. These three linear regression models consist of a 
more general model, and 2 others which adjust for 
heteroscedasticity (see Maddala (1977), pages 93-94, 
259-261). 
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The models are (Royall (1970) page 378) such that Yi 
has mean 13 xi and variance o ~(xi), where for Method 
1, v(xi) = 1, for Method 2, v(xi) = xi; and for Method 3, 
v(xi) = x2i . Method 1 corresponds basically to ordinary 
regression estimation. Method 2 corresponds to ratio 
estimation and can be found succinctly described, 
among other places, in Cochran (1977), pages 158-160. 
Method 3 corresponds somewhat to unequal probabil- 
ity sampling where sampling is in proportion to some 
measure of size. However, unequal probability sam- 
piing is unbiased due to the nature of the design, 
whereas the purposive selection for this corresponding 
model is sometimes substantially biased. Cochran 
(1977), page 160, mentions that a good use of this 
method is found in Jessen, et.al. (1947). However, 
Jessen does not separate observed and unobserved y 
values as Royall does. This can make a substantial dif- 
ference in an establishment survey due to the predom- 
inance of a relatively few respondents. 

Finally, a fourth method was applied. It is described 
in Cochran (1977), pages 199-200. It is even more gen- 
eral than Method 1 as, unlike the three methods taken 
from Royall (1970), it is not required that the regression 
pass through the origin. \Vith this model, lowest vari- 
ance occurs when 2 = X (i.e., the sample is '~bal- 
anced"), whereas Methods 1-3 have lowest variance 
when the n observations with the largest x values are 
chosen. Method 4 does not separate observed and un- 
observed y values. 

Note that a promising model may also lead to an 
imputation procedure. Also, another consequence of 
this study could be a study of the usefulness of sampling 
for nonutility generation. 

Equations 

See Royall (1970), page 382, concerning variance esti- 
mation for Methods 1-3. Note that Y is an estimated 
total. 

A n n 
l~lethod I: I f  v(xi)= 1, then 13 = bl = ( Z x i Y i ) / ( Y x h ,  
Yb~. = b lXu  + Is, where XN is the total of the auxiliary 
vanate values for the unobserved plants, and ~'stiS the 
total of the observed y values ( Ys = ZsYi), and V(Ybl) = 

^2 (x- n~) 2 ^2 ~.(y; b~x;) 2 / (n 1). o l ( N - n  + ) where o I = - " 

A A n n 
Method 2: I f  v(xi) = xi, then ~ = R = (Z yi) / (Zxi), 

A A A A A 2 
YR = RX,  and V(YR) = o 2(X- n~)X / (roT) where 

n A2 A 2 
Exi = n~ and where o" 2 = E(1 / xi)(Yi" Rxi) / (n-1)  

A 2 A .  
and cr 2 = A m Cochran (1977), page 159. 

A 
Method 3: I f  v(xi)= x 2' then 13 = b3 = 

n ^ 
(1 /n )E(y i /x i ) ,  Yt~ = b3XN + Is, and 

h A A 2 N . ,  n 2 
V(Yb3) = o 3(Y x t -  £x i  + (X-  n2) 2 / n) 

^ 2  n 
where o 3 = E (1 / x2i )(Yi - b3xi) 2 / (n - 1) 

^2 
and ~r 3 = So 2 in Jessen, et.al. (1947), page 370. 

^ 
Method 4: Ylr = N ( y  + b4(2-.~)) 

^ ^ ,,2 ^2-N" n + ~(X "x)~.) 
v ( G )  = ~ o ~t n U '  ~(x;-,~)2 

^2 [(Yi'Y)" b4(xi "Y)] 2 
where o = c n -2  

and 
^2 

13" e = S  2 

in Cochran (1977), pages 199-200, and 

tl 
Eyi(xi-Y) 

b~= n 
Z(xi-Y)2 

^ a ~(X- n,,7) _ ~ ( X -  ruT) / X and 
V ( R ) XnY nx 

(X-n,,7) / X = 1 - ( N ) ( } )  = 1 - f ,  if .~ = ,~. 

^ 
t towever,  for V ( R )  to be minimized, ~ must be greater 
than X. 

As another  aside, note that from Cochran (1977), page 
158, when the ratio estimator is a BLUE:  

" 1. The  relation between Yi and xi is a straight line 
through the orion.  

2. The  variance of Yi about this line is proportional 
to  xi" " 

Thus,  xi and Yi should be highly positively correlated, 
and therefore their signs should often be identical. 

Wha t  happens i f x i = k  is zAero (or nearly zero) and so is 
Yi = k? T h e  k th  term of L" should then be zero if the 
variance o f y i  = k is to be proportional to xi = k. We have 

^ 2 
lira (1 / xk)(Yk-  Rxk)  / (n- 1); and Yk = [3xk + rk  so, 

Xk---~O 

^ 2 
lira (1 / xk)(~xk + ak-Rxk) I (n- I) 

xk-,O 
A2 

0 

since ak should approach zero much faster than xk 
does. However, what  if Yk is not near zero when xk i~ 
zero? L'HospAtal's rule gives us that the k th  term of 

L' 

should be -2Ryk / (n - 1). This could represent substan- 
tial model failure. 

Results. The relative performances of Methods 1-4 
were studied by several means. Each estimator, Y, was 
compared with Y, using the signed rank test. Additional 
methodology is also described. Some of the daha for 
thg~se comparisons are given in the table below. Y and 
CV are the estimated total net generation and estimated 
CV (percent) values for each method. Y is the total 
net generation derived from the fuU^census. D is the 
percent difference between Y and Y, and z is the ap- 
proximately standard normal variate derived in the fol- 
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lowing assuming that a given CV estimate is viable. 
(Also, Yis the estimated total when Ys is not treated 
separately from the unobserved y/s. This only affects 
Methods 1 and 3. In the 11 cases that were studied 
here, Ys was a very large portion of Y. It seems rea- 
sonable that treating Ys separately would reduce vari- 
ance, but the table below also indicates that Method 3 
is a poor model for these data unless Ys is separated. 
When this is done using Royall (1970), Method 3 per- 
forms very well for these data. Apparently the smallest 
plants related differently to the auxiliary data.) 

N O W ,  

A A A V _ V  
D = (.A_~..~_) x 100 °/o, and CI/ = (--~.),, x 100 °Io. 

Y 

^ ^ 

[ %]/[ x,oo%  ] : 

A ^ 

( ) D / C V =  / ^ -  ^ - z ^ .  
Y y y y cr 

In the table, ~ is simply labeled z. 

^ 
Thus, for each sample estimate, Y, and the census 
value, Y (where a total is indicated), a number, z,can 
be estimated as a standard normal variate. This is done 
for each methodology for purposes of comparison. 
Such comparisons make meaningful use of hypothesis 
tests. Although the hypothesized standard normal dis- 

tribution in each case is not being compared with an- 
other hypothesized distribution function (see Knaub 
(1987)), results for each estimator are being compared 
with each other. (See Kolmogorov graphs.) 

The Wilcoxon Signed Ranks Test is employed accord- 
ing to Conover (1980),~ages 278-292, where the raw 
data are the values (Y / Y) and (Y / Y) = 1, for each 
matched-pair. This also is done for each method to be 
compared. 

Wilcoxon Signed Ranks Test Results on D 
(See Conover (1980), Table A13): 

• For Method 1: T + = 13, so fail to reject (two- 
tailed) at 5 percent, but reject at 10-percent level. 

• For Metlugd 2: T + = 10, so fail to reject (two- 
tailed) at 2 percent, but reject at 5-percent level. 

• For Method 3: T + = 28, so fail to reject (two- 
tailed) at 60 percent, but reject at 80-percent level. 

• For Method 4: T + = 47, so fail to reject (two- 
tailed) at 20 percent, but reject at 40-percent level. 

A 
From these results, YR appears to be the most biased 
estimator for Y. However, bias is not of any real im- 
portance here compared with variance in terms of rel- 
ative size. The ratio estimate acttmlly appears to be 
very good, s~ce the absolute difference between Y 
(census), and Y (sample) is least for the r~tio estimate, 
usually by far, for 11 out of 11 data sets. YR, however, 
can only be sai~ to be best, or second best in this way, 
I0 of I 1 times. Y for Method 3 usually did a little better 
here. 

Table 1. Net Generation Data for Five Example Cases 

S t a t e  
M e t h o d  

A 
CV 

A 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

B 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1,807 11.5 1,826 -1.1 -0.09 834 
1,818 1.1 1,826 -.5 -.45 - 
1,830 .2 1,826 .2 .81 2,930 
2,414 105 1,826 32.2 233 - 

588.6 8.7 594.0 - 9  - .11  554 
589.5 2.0 594.0 -.8 -.37 - 
595.2 1.1 594.0 .2 .18 790 
612.2 11.1 594.0 3.1 .27 - 

133.2 7.2 133.3 -.1 -.01 120 
133.8 1.9 133.3 .4 .20 - 
134.1 .9 133.3 .6 .66 141 
142.4 8.6 133.3 6.8 .74 - 

37.4 50.1 41.2 -9.2 -.20 -66 
38.1 8.8 41.2 -7.6 -.93 - 
41.6 1.3 41.2 .8 .63 561 
89.5 21.2 41.2 117.1 2.54 - 

6,673 5.5 6,713 -.6 -. 11 5,871 
6,679 .5 6,713 -.5 -.95 - 
6,693 .1 6,713 -.3 -2.35 8,662 
7,186 6.4 6,713 7.0 1.03 - 

Note: For  State A, EsYi 21797;  for State B, YsYi 2572.9;  for State C, Esyi -~128.1 ; for State D, Esy /237 .9 ;  and, for 
State E, Zsyi ~-6631. 
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Kolmogorov-Smirnov (K-S) Testing on z also in~- 
cated a substantial bias for the CV estimate for YR 
However, again this is a small problem compared with 
v a r i a n c e .  

The graphs below are for the K-S test for Methods 2 
and 4. 

Method 2 

T = 0.40 ~ Attained two-sided 
"significance" level 
approximately 5% 

(See Conover (1980), Table A14.) 

S(x) I.] ~ / ¢ ,  (Cumulative 
Normal) 

Method 4 

(Cumulative Normal) / / / ' ~  

/ I ......... 

CV Estimation. In all 11 cases, the absolute value of 
D for the ratio estimate (i.e., Method 2) was less than 
the estimated CV. Ideally, the CV estimate will be 
greater than the absolute value of D with probability 
approximately 0.68. Here, however, there is a 95-per- 
cent confidence that this probability is 72 percent or 
greater, and this does not consider the fact that the 
difference was often substantial. (For Method 3, D was 
less than the estimated CV in 8 of 11 cases.) 

T = 0.26 ~ Attained two-sided 
"significance" level 
greater than 20% 

(See Conover (1980), Table A14.) 

A A A 
It is concluded that although both YR and CV(YR) 
appear to be slightly biased, deviations from census 

based values are generally low --especially maximum 
deviations -- for this method. For the cases shown in 
the table given in this paper, however, Method 3 per- 
forms somewhat better, indicating substantial 
heteroscedasticity dealing with smaller plants. 

Note that if we denote Pi(I zil ) = 2P[Z <-Izil ], and 
3' = I'] Pi, then for the cases studied, 3 '~e thod  1") > > 
3'(Method 2) > > 3,(Method 3) > > > 3'(Method 4). 
Method 4 sometimes provided poor CV estimates. 

In 7 of 11 cases, ranking I DI from smallest to largest 
for these methods, yielded the order 3, 2, I, 4. There 
are only approximately 15 chances in 10,000,000 that 
1 of 24 possible orderings would occur 7 of 11 times. 
Thus, for these data, a pattern is shown. 

The ratio estimate (Method 2) may be best for general 
purposes of estimating generation. Note that if the as- 
sumptions of this model are strictly correct, estimation 
may proceed as well with the smaller plants as with 
the larger ones, as long as more plants are sampled if 
the smaller ones are used. Suppose the plants in one 
data set are divided into two groups --the larger plants 
and the smaller ones -- and we let E1 be ,~ for the larger 
plants, nl be the size of that part of the overaU sample, 
and E 2 and n2 correspond to the smaller plants. One 
then wants nl + n2 = n s u c h  that 
(X- nlE1) / (X- n2E2) = (nlEl) / (n2E2) implies that 
n2E2 = nlE I. Establish the two groups of plants accord- 
inky. If sc i~ the same in each group, variances will be 
equal, ff YR estimates from these two groups are 
nearly equal, and variance estimates are nearly the 
same, then this is excellent evidence in support of the 
model. If a complete census is not available for testing 
a model, then, in addition to graphical procedures, this 
method could be adopted to the extent data are avail- 
able, as a check of the model. Experience on these 
data, however, shows that it would probably take a 
rather large data set for enough stability for the above 
equations to hold approximately true, even if the model 
works well. Therefore, if these equations do hold ap- 
proximately true, we have very good evidence that 
the model is good, and the smaller the sample sizes, 
the better is such evAdence. FAor the data used, in four 
cases studied, the Y R and CV values varied greatly, 
but the absolute values of D did not. This seems to 
indicate some difference due to plant size, and therefore 
some model failure, but from the size of the D values 
in Table 1 for Method 2, the model failure does not 
appear to be serious. Sample sizes in Table 1 range 
from less than 50 to more than 200. In some cases, very 
few plants had most of the net generation. Under such 
conditions, it is not surprising that the CV estimator 
will be tenuous for the nl group described above. 

Sampling to Estimate Generation 
Expense for Major, Privately Owned 
Coal-Fired and Nuclear-Powered 
Electric Generating Plants 

Background. No census results are available for some 
of the cost components of generating electricity. These 
costs are therefore estimated through sampling. The 
most readily apparent stratification criterion in this 
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new effort was size (net generation, or nameplate ca- 
pacity), so unequal probability sampling was used and 
net generation was chosen as the, measure of size. Also, 
model sampling results, using YR with first net gener- 
ation and then generator nameplate capacity as the 
auxiliary variate were studied. For preliminary sam- 
pies, from which required additional sample sizes were 
calculated, 4 sets of results were provided: 2 design- 
based, and the 2 model-based mentioned above. The 
first design-based method was unbiased, and the second 
was built upon that. The 2 model-based methods make 
use of the model-unbiased ratio model shown earlier 
as Method 2. 

For the design-based analyses, cost estimates and esti- 
mates of their CVs were calculated under the design 
requirement of sampling in proportion to net generation 
and with replacement. (Negative net generation cases 
were handled separately.) Next a without replacement 
design-based set of estimates was calculated by not 
using any duplications of observations, adjusting the 
inclusion probabilities according to the methodolo~  
of Van Beeck and Vermetten shown in Konijn (1973), 
pages 259-261, and multiplying by the usual finite pop- 
ulation correction factor of equal probability sampling, 
as may be justified by the findings in Cochran (1977), 
pages 267-270, and Bayless and Rao, as described there 
by Cochran, and seen to extend to larger sample sizes 
by comparison to the Rao, Hartley, Cochran Method. 
There are a number of more exact methods, but they 
are often quite cumbersome either to calculate or ad- 
minister, and may not easily accept secondary sampling 
when the initial sample is found to be inadequate. 

The Van Beeck and Vermetten Method resulted in in- 
creased relative probabilities of selection for smaller 
plants over what they were when replacement was 
allowed. Since the smaller plants may have dispropor- 
tionately high costs, this could help to lower variance 
since variance approaches zero as proportionality be- 
comes more exact. If this is an over-adjustment, then 
at least the result might be like a Type B population 
(found in Cochran (1977), pages 268-269), thus helping 
to keep variance relatively small. This is apparently 
because the next best situation to complete proportion- 
ality is to have positive correlation between the prob- 
ability of selection and the mean per element. 

Let us consider that n distinct plants were selected, 
some perhaps multiply, so that the with replacement 
sample size n" is such that n" ~ n. If n' > n, then sys- 
tematically chosen subsets of n of the n" observations 
were used for variance estimation. The mean of such 
results, using the finite population correction factor (as 
in Rao-Hartley-Cochran sampling with no remainder 
term) was used as a without replacement type estimate. 
As stated above, the Van Beeck and Vermetten Method 
provides inclusion probabilities that may help insure 
that this correction factor is not too optimistic. 
A big advantage of this sampling methodology is the 
ease with which additional observations may be incor- 
porated. This is convenient if a preliminary sample is 
taken and the remaining required sample size is then 
calculated, as was done here. (This procedure is some- 
times called double sampling.) Also, as was eontem- 
plated in this application, this works well if additional 
observations are wanted in conjunction with 
poststratification. Also, the model sampling results 
could be calculated for every corresponding situation. 

Note that although only costs are discussed here, costs 
per kilowatthour have the same CV estimates since 
kilowatthours generated is considered a constant in 
this application. 

In summary, for estimation of generation expense, un- 
equal probability sampling did not remain strictly sam- 
piing with probability proportional to size (PPS) after 
the first observation was drawn, but became propor- 
tional to the size of the remaining population on each 
draw. However, this may have tended to insure (for 
these data) that variance estimation was not too opti- 
mistic, and also means that drawing additional obser- 
vations was easy. In addition, model sampling was 
done to see if similar results would follow, bringing 
the advantages of purposive sample selection to future 
efforts, and also as a way of comparing the use of net 
generation and generator nameplate capacity as 
variates correlated with costs. Results of a 
poststratilication study to separate plants by those with 
at least one relatively new unit were marginal. Perhaps 
other criteria may be found. Note also that for the 
design-based estimates, using the without replacement 
scheme was of limited help since n' > n. 

Equations and Results 

Required sample sizes. Do a preliminary sample to 
estimate the total size needed. For ratio model sam- 
piing, i.e., Method a2 found earlier, let c be a particular 
CV value. Then, c YR equals the square root of the vari- 
ance. 

Solving fore: ¢~ ~ [  
Y 

1/2 

Solving for n: n ~- sTX21(~c2~2+ sTX';). 
For the; without replacement design-based sampling 
found here: 

1/2 s[ 
Solvingforc:  c~- "X n(N-I 

Y 

Solving for n: n N 

^2 1] (N-1)c 2Y / s  2 +  

If, as happened in the generation expense estimation 
project, a certainty stratum is used (to account sepa- 
rately for two plants with negative net generation to- 
tals for a given year), the last two equations become 

Y 

1/2 

n ~  n2+ 
N - t/2 

^2 ] 
((N-n2-1)c2y I s  2 ) + 1  

where n 2 is the number of units (here plants) selected 
with certainty, n is the total sample size, and N is the 
size of the population. 
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An example encountered in generation expense estima- 
tion follows: 

For N = 63, R2 = 2 and n = 14, the estimate for s was 
12,593, and Y = 17,245. This yields c g19.1 percent. 
If, however, we set c = I0 percent, and solve for n, 
n ~30.7. Therefore, a total sample size of 29 plus the 
two certainties was estimated to be needed to bring 
the CV down to 10 percent. (Thus, there was a lot of 
variability in the data. Either a better stratification cri- 
teflon, or set of criteria, must be found, or relatively 
large sample sizes will continue to be needed. A lot of 
this variability may actually be due, however, to 
nonsarnpling error.) 

^ 
Let V(PPXWOR) be the variance estimate under the 
without replacement unequitl/probo~bility scheme de- 
scribed above, ff we set V(R)= V(PPXWOR)when 
sample sizes are equal, and the unequal probability 
sampling scheme is used, then 
n = s2/Nf(5:)(=-1)((X./E)a-Nb)/(a-b), where a = s~X, and 
b = (Notice that if Y = X / N  = X, then 
n = N. This is not likely, however. More likely, .~ > X.) 

Let g=Xa/ (a -b ) ,  and h = N b / ( a - b ) ,  then 
n = f l ~ ) = ( g / . ~ ) - h ,  and n > f l Y )  implies that 
n + h > g / E .  

Example: N = 61, n = 22, X = 453,380, mean of 
s 2 = 120,976,900, s~ = 6.3006, ^ E a = 10t, 432, then, 
n + h ~168, and g/ .~  ~148, so, V(R) < V(PPXWOR). 
However, En=22(E)~9,329 (found using Van Beeck- 
Vermetten inclusion probabilities), thus 
g / En = 9a(.~) ~ 165.2, and n + h ~ 168.4. 

A A ^ 
Since 168.4 > 165.2, V(R) and V(PPXWOR) would be 
e~p, qctedato be nearly equal on average, but with 
V(R) < V(PPXWOR) in general, when n = 22. The 
graph which follows shows that the point where n + h 
and g~ En(E) cross is near n = 11. 

Therefore, in the future, the model sampling approach 
could be at least partially verified by taking an unequal 
probability sample of (approximately) size 11 as a pre- 
liminary sample, and if results are encouraging, only 
the "largest" plants would be selected to complete the 
desircd sample using amodel sampling approach. Little 
efficiency is lost in this case by waiting until after the 
preliminary sample selection to decide on the final sam- 
piing methodology. 

Alternatively, perhaps a census could be used to de- 
termine, among other things such as a better stratifica- 
tion possibility, more accurate values for g and h (using 
generation nameplate capacity as that now appears to 
be a little better than net generation as a measure of 
size), and establish an improved estimate of the prelim- 
inary sample size for future years. (Variability of s~ and 
s estimates for this sample size could be studied also.) 

200- 

190- 

180- 

170100_ ~ g/En(x) 

15o vv / n -- obs. drswn. PPXWOR 
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IAnother EIA survey is used to estimate revenue to the utility per kilowatthour of electricity sold for various (ultimate consumer) sectors 
of the economy at the State level. Those estimates are made using a double ratio estimate (see Knaub (1989a)) which is design-based rather than 
model-based. (The author has made plans to investigate the possibility of modeling by comparing design-based results, as they are acquired, to 
results that are obtained through modeling and the use of data from certainty strata (i.e., generally large utilities only).) 
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