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Introduction 

Estimating the population prevalence of a binary response variable when sample 

information is incomplete or inconsistent, poses immense problems to the applied statistician. 

Traditionally, the analyst simply deletes these values and treats the remaining data as a 

representative sample from the population in question• Providing that stable covariatc fields 

exist and between-variable correlation is zero, then multivariate ANOVA and Chi-square 

techniques will yield a quick check of this strategy. However, if sampling irregularities plague 

covariate fields or confounding presents a problem, then the analyst must se.ck other means of 

verification. One possible solution, given the availability of population information, is to 

construct a test statistic using a population projection technique known as Bayesian Logistic 

Regression. 

Bayesian Logistic Regression 

Bayesian Logistic Regression is an estimation procedure that aims to eliminate within 

covariate gToup variance by utilizing the interrelational structure between the sample response 

variable and known population covariates. A new response vector with elements corresponding 

to the expected value of the underlying covariate patterns form the basis of Bayesian Logistic 

Regression. The expected values result from a bayesian expansion of the outcome variable 

jointly condidon',d on the set of model covar/ates. 

Sampling begins by randomly selecting variables from a population data base. Aiming 

for a computationally ideal model havin~ three covraiates, the next step involves reducing data 

set dimensionality via Stepwise Regrc~ion. Expressing in mathematical terms, let 

T n = {u, v, x, y, z} represent a n-observation sample, where u denotes a binary outcome variable 

with three model covariates v, x and y. The z-covariate represents a model-free population field 

having a relatively stable multilevel element space. On the other hand, the situation assumes 

instabilities exist among one or more of the model covariates v, x and y. Indexing as follows, 

i = O , l  

j ,k ,  h, m = 1,2, 3 ..... (Vn, Xn, Yn, zn) 

z n -.,, fixed population field 

s -* stable vector field 

c .-,. fuzzy-set/chaotic vector field 

the expected respon~ for a covariate pattern missing two elements (e.g. only the value for v is 

present) may be written as: 

Aj " ~[lt=i I vc-- j ]  
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Simplifying the above expression, Aj.k, h becomes 

where ~l is given by 
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Replacing {xc=k, Yc-h) with [Vc= j, xc=k] or lye= j, yc=h) gives the equivalent forms Ay,k and 

Ay,h, while Aj is similarly expressed as A k and A h upon substituting [xc=k} or lYe=h) for 

Ivc- j } .  

A Ilomogeneity Test for Mi~ing Response Elements 

Tile statistical validity of discarding observations having missing or inconsistent response 

outcomes holds only if the truc distribution of these items is indistinguishable from the set on 

non-missing elements• Unfortunately, routine testing of this assuanption is often impossible due 

to coveuriatc non-response and confounding. 

An alternative approach involves partitioning the new response vector into two sets, 

depending upon whether or not the original response is missing. A test of homogeneity of the 

two groups, focusing on extreme deviation rather than on central tendency as a test criteria, is 

made possible by collapsing distinct covariatc responses into single value blocks and subjecting 

these points to analysis using the pantmetcr-free discrete range test. Designating non-missing 

"element blocks as typc-A and missing element blocks as type-B, combine values and rank 

accordingly, noting the relative position of each element block. Assuming element blocks to be 

numbered from 1 to N, define the range as the number on the highest typc-B element block 
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minus the lowest type-B element. An unusually high or low range value raises suspicion that the 

two groups differ with respect to their tail regions. For illustrative purposes, consider the simple 

case where the number of type-A blocks (n^) equals type-B blocks (nB), e.g. N=nA+nu=2n. 

Letting ~ designate the range of type-B blocks among type-A blocks and defining 
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it follows that 

Solving for i gives the probabilites and rejection regions listed in Tables I and 2. Proceeding in 

an analogous fashion will yield test values in the unequ',d group case. In Table 2, if ~ cxce¢~l 

for the indicatr..d sample size then reject H 0 with Type- I error < alpha (.05, .01 ). 

Simulation 

Preliminary simulation suggests that the above procedure performs well when both the 

number of elements within each distinct block and the overall number of blocks in each group 

remains high. This situation generally holds in large-scale sampling situation where the base 

population is greater than 100,000 with an initial sample greater than 10%. 

Table I: Exact Asymptotic Probabilities for t h e  Range 
Distribution 

lim P{~<N-i} limP(~-N-i} 
£ N..~ -- N-.m 

1 1.00000000 0.25000000 

2 0.75000000 0.25000000 

3 0 .50000000  0 .18750000 

4 0.31250000 0.12500000 

5 0.18750000 0.07812500 

6 0 .10937500  0 .04687500  

7 0 .06250000  0 .02734380  

8 0 .03515630  0 .01562500 

9 0 .01953130  0 .00878906  

1 0  0 . 0 1 0 7 4 2 2 0  0 . 0 0 4 8 8 2 8 1  

1 1  0 . 0 0 5 8 5 9 3 8  * * * * * * * * *  

Table 2: Re~ection Regions for the Two-Sample (nl-n2~ 
Range Test 

Sup ~;o): P(~;<_~;o ) < .05  Sup Co) :  P(~;<_C o)  <_ .01 

n <_4 , c o -  (j} 

5 ~ n ~ 6  , C o - N -  6 

7 ~ n ~ 2 6 •  ¢ o - N - 7  

n ~ 2 7 •  C O - N - 8  

n <_.5 , c o -  ( J )  

n m  6 • ~ ; o m N -  7 

7 < n < 1 0  , C o - N - 8  

1 1 < n < 2 0  , C o - - N -  9 

21  <_ n < 204 , C O .. N - 10 

n > 2 0 5  , C O - N - 1 1  
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