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1. Introduction 

Consider the following sampling problem. Primary 
sampling units (PSUs) are to be selected for two designs, 
denoted as designs 1 and 2, both of which are one PSU per 
stratum designs. The selection of sample PSUs for each 
design is to be with probability proportional to a measure of 
size which need not be the same for the two designs. The 
universe of PSUs is the same for both designs, but each is 
stratified independently. The sample PSUs in design 1 are 
required to be a subset of the sample PSUs in design 2. This 
necessitates the following assumption: 

The probability of selection for each PSU in design 1 does 
not exceed the probability of selection of that PSU in 
design 2. (1.1) 

In this paper we demonstrate how the two-dimensional 
controlled selection procedure of Causey, Cox and Ernst 
(1985) can be used to satisfy all the conditions of this problem, 
that is, 

There is one sample PSU in each design 1 and design 2 
stratum, selected with the required probabilities. (1.2) 

Each design 1 sample PSU is a design 2 sample 
PSU. 0.3) 

A particular application of this procedure, to the proposed 
expansion of the Current Population Survey (CPS), which 
motivated this work, is presented in Section 6. Some readers 
may wish to read the beginning of that section before 
proceeding further, to obtain an understanding of this 
motivation. 

Recently this author has become aware of a more general 
result by Pruhs (1989), who considers the same problem 
without the assumption (1.1), and consequently (1.3) is not true 
in general. Instead, using a graph theory approach, he presents 
an algorithm for which (1.2) is satisfied and the following 
additional condition holds: 

The expected value for the number of sample PSUs 
common to the two designs is maximized and the actual 
number in common for any sample is always greater than 
the expected value minus one. (1.4) 

Thus, Pruhs views the probIem as one of maximizing the 
number of sample PSUs common to the designs when the 
sample PSUs are chosen for the two designs simultaneously. 

Previously, Causey, Cox and Ernst (1985) and Ernst (1986) 
presented optimal linear programming procedures for 
maximizing the number of sample PSUs in common to two 
designs when the two sets of sample PSUs are chosen 
sequentially. In general, choosing the two samples 
simultaneously permits a larger expected overlap, but in 
many applications it is not possible to select the samples 
simultaneously, such as when the two designs are for the 
same periodic survey, but the second design is a redesign of 
the first design done at a later date. 

It is shown here that the problem considered by Pruhs can 
also be solved by the controlled selection procedure of 
Causey, Cox and Ernst (1985). This approach has two 
advantages over Pruhs approach. The controlled selection 
approach involves a solution of a sequence of transportation 
problems. Commercial software is readily available which 
can solve transportation problems, and the remainder of the 
controlled selection algorithm is easily programmable. In 
addition, the proof that the controlled selection procedure 
satisfies the required conditions is not difficult. By contrast, 
both the theory and the task of programming the algorithm 
with Pruh's graph theory approach appears to be much more 
complex. 

In Section 2, a brief review of the procedure of Causey, 
Cox and Ernst is given. In Section 3, the particular 
formulation of the sampling problem is presented. The 
presentation will first be for the more general problem in 
which (1.1) is not assumed. It will then be shown, quite 
simply, that with assumption (1.1), a special case of the 
general problem arises for which (1.3) is satisfied. In 
Section 4, the methods of avoiding some difficulties in using 
this procedure relating to rounding are described. In Section 
5, formulas for the between PSU variance for linear estimates 
for both designs are presented for the controlled selection 
procedure. Finally, in Section 6, the application of the 
procedure to the proposed expansion of the CPS is 
considered, which includes an empirical comparison, for each 
design, of between PSU variances for controlled selection 
and independent selection. 

Due to lack of space, some portions of the complete paper 
are omitted here. Specifically, Section 4, three of the four 
tables and the list of references have been omitted. The 
complete paper is available from the author. 

2. Review of Controlled Rounding and Controlled 
Selection Concepts 

The concepts of zero-restricted controlled rounding and 
controlled seIection are briefly reviewed here. The reader is 
referred to Cox and Ernst (1982) and Causey, Cox and Ernst 
(1985) for more details and motivation on this subject, and 
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for other references. 
An (m+l)x(n+l)  array, A--(aij ), is said to be a tabular array 

if 

m 

i=~ aij -- a(m+l)J ' j=l ..... n+l, 

n 
2: aij = ai(n+l), i=l ..... m+l.  

j= l  

Such an array can be represented in the form 

al l  • . . aln 

aml • . . amn 

a(m+l)l • . . a(m+l)n 

al(n+l) 

am(n+l) 

a(m+l)(n+l) 

with the internal, row total, column total and grand total cells 
clear from this diagram. 

A zero-restricted controlled rounding of an (m+l)x(n+l)  
tabular array, A=(a..), with respect to a positive integer base b 1j 
is an (m+l)x(n+l)  tabular array, R(A) = (rij), for which 

rij = Laij/bJb or [aij/b]b for alI i,j, 

where [xJ, Ix] denote the greatest integer not exceeding x 
and the smallest integer not Iess than x, respectively. If no 
base is stated, base 1 is understood. 

By modeling the controlled rounding problem as a 
transportation problem, Cox and Ernst (1982) obtained a 
constructive proof that a zero-restricted controlled rounding 
exists for every two-dimensional tabular array. 

If S---(sij ) is an (m+l)x(n+l)  tabular array, a solution to the 
controlled selection problem S is a finite sequence of arrays, 
N 1 = (n!jl) , N 2 = (nij2) ..... N l = (nij/), and associated 
probabilities, Pa ..... Pl, satisfying: 

N k is a zero-restricted controlled rounding 
of S for all k, (2.1) 

l 
Pk = 1 (2.2) 

k=l 

l 
E(nijkl i'J) = k~l nijk Pk = sij, 

i=l ..... m+l, j --1 ..... n+l. (2.3) 

If S arises from a sampling problem for which s.. is the lj 
expected number of sampling units selected in each ceil, and 
the actual number selected in each ceil is determined by 
choosing one of the Nk'S with its associated probability, then 

by (2.1) the deviation of s.. from the number of sampling 1j 
units actually selected from ceil (i,j) is Iess than 1, whether 
i,j is an internal ceil or a total ceil. By (2.3) the expected 
number of sampling units selected is si.. 

In Causey, Cox and Ernst (1985~ a solution to the 
controlled selection problem is obtained by recursively 
defining the sequences N 1 ..... N l and Pl ..... Pl as follows. For 
fLxed k, to define N k, Pk, begin with the tabular array A k = 
(aijk). A 1 = S and for k>l, Ak+ 1 is defined in terms of N k, 
Pk" Nk is simply a zero-restricted controlled rounding of A k. 
To define Pk, first let 

d k = max{lnijk-aijkl" i=l ..... m+l ,  

j=l  ..... n+l}, (2.4) 

and then Iet 

Pk = l ' d  k i f k = l  

k-1 
= (1 "i~1 Pi) (l"dk) if k>l. (2.5) 

If dk>0 define Ak+ 1 by letting 

aij(k+l ) = nij k + (aij k - rtijk)/dk (2.6) 

for all i,j, and then proceed to define Nk+ 1, Pk+l" 
It is shown in Causey, Cox and Ernst (1985) that there is 

an integer l for which dl=O and that this terminates the 
algorithm; that is N 1 ..... N l and Pl ..... Pl satisfy (2.1)-(2.3). 

3. The Controlled Selection Procedure for Selection of 
Sample PSUs 

The procedure begins by construction of an (m+l)x(n+l)  
tabular array, S, for which a sequence of arrays, N 1 ..... N l, 
and associated probabilities, Pl ..... Pl, satisfying (2.1)-(2.3) 
lead to a solution of the problem described in the 
Introduction. To construct S, let m', n' denote the number of 
strata in designs 1 and 2, respectively, and let m=m'+l ,  
n=n'+l. Let G 1, G 2 denote the random sets consisting of all 
sample PSUs in designs 1 and 2, respectively. For i--1 ..... m', 
j=l  ..... n', let t-. denote the number of PSUs in the i-th design 

,J 
1 stratum and j-th design 2 stratum; let B.. denote the u-th 

lJu 
such PSU, u=l ..... tij; and Iet T denote the set of alI tnples 
(i,j,u). For (i,j,u) e T, let Pi'uj a = P(Bi'ju e Ga), a- l ,2-  and 
IetP min P ,P  FinalI , f o r i  1, m', ' 1, ,n', iju3 = { ijul iju2}" Y . . . .  J . . . .  
let 

~j 
sij = u__Z1 Piju3' (3.1) 

Smj = 1 - Z Piju3' (3.2) 
i=l  u=l 
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Sin = 1-j=Z 1 u=l Piju3, (3.3) 

Smn = 0, (3.4) 

and let S--(si. ) denote the (m+l)x(n+l) tabular array with 
J 

internal elements defined by (3.1)-(3.4). Note that the 
marginal values for S are as follows: 

Si(n÷l) = 1, i=l ..... m', S(m+l)j = 1, j=l ..... n', (3.5) 

s i n ( n + 1 )  = n'  - X (i,j,u)~T Piju3' (3.6) 

S ( m + l ) n  -- m '  - X (i,j,u)eT Piju3' (3.7) 

S(m+l)(n+l) = m' + n ' -  Z (3.8) (i,j,u)eT Piju3" 

Interpretation of the array S will now be provided. For 
i=l .,m', j=l ..... n', s.. is the probability that a PSU is in 

" "  l j  

sample for both designs, that is, in the i-th design 1 stratum 
and j-th design 2 stratum; while s . is the probability that the mj 
sample PSU in the j-th design 2 stratum is not a design 1 
sample PSU, and Sin is the probability that the sample PSU in 
the i-th design 1 stratum is not a design 2 sample PSU. Thus, 
cells (i,j) for which i,:m', jsn' can be thought of as 
corresponding to the selection of sample PSUs that are in both 
designs, while internal ceils in row m correspond to the sample 
PSUs in design 2 only, and similarly, internal ceils in column 
n correspond to design 1 only sample PSUs. 

As for the marginaIs (3.5)-(3.8), (3.5), arises because there 
is one sample PSU in each design 1 and design 2 stratum. 
(3.6) indicates the expected number of PSUs to be selected as 
design 2 sample PSUs which are not design 1 sample PSUs, 
with an analogous interpretation for (3.7). (3.8) is the 
expected number of distinct PSUs that are to be in sample for 
at least one of the two designs. 

After computing a set of arrays, N k, and associated 
probabilities, Pk, k=l ..... l, satisfying (2.1)-(2.3) for this S using 
the controlled selection algorithm described in Section 2, the 
selection of the sample PSUs for the two designs is a two step 
process. First, one of the Nk'S is selected. The internal ceils 
of N k are either 0 or 1. A 1 in cell (i,j) with i-:m', j,:n', 
indicates Bi. u e G 1 n G 2 for a single u=l ..... tij. Among the 
tij such P~Us, one is selected at the second step with 
conditional probability 

P(Bij u e O 1 N G21 nijk=l) = Piju3/sij, u=l ..... tij. (3.9) 

A 1 in ceil (m,j), j=l . . . . .  n', indicates that the sample PSU 
selected for design 2 from the j-th stratum is not to be a design 

111 I 

1 sample PSU. Among the X tij PSUs in the j-th design 2 
i=l 

stratum, one is selected at the second step with conditional 
probability 

P(Biju e G2 - 011 nmjk=l) = (Piju2" Piju3)/Smj , 

i=l ..... m', u=l ..... tij. (3.10) 

An analogous expression holds for a 1 in an internal ceil 
in column n. 

This two-step procedure just described satisfies (1.2) and 
(1.4). To establish (1.2), first note that dearly, by (3.5), 
there is exactly one sample PSU in each design 1 and 2 
stratum. To show that each PSU is selected into the design 
1 and design 2 samples with the correct probabilities, observe 
that by (2.3), (3.9) and (3.10), it follows that for each 
(i,j,u) e T, 

P(Bij u t: G 1 n G2) = 

P(nijk=l ) P(Bij u e O 1 n G21 nijk=l) = Piju3, 

P(Bij u I~ G 2 - 01) "- 

P(nmjk =1) P(Biju e G2 - Ol] nmjk=l) = Piju2 " Viju3" 

Consequently, P(Bij u e G2) = Piju2" Similarly, it can be 
shown that P(Bij u e (31) = Pijul" Hence, (1.2) holds. 

To establish (1.4), first note that for any selection 
procedure satisfying (1.2), 

P(Bij u e O 1 n G2) ,: Piju3, 

and hence, 

(i,j,u) ~ T, 

E[card (G 1 n 02) ] -: X Piju3" 
(i,j,u)eT 

Then (1.4) follows, since for the current procedure, (2.3) 
and (3.1) yield 

m' n' 
E[card (G 1 n G2) ] = X X E(nijk[i,j) = 

i--1 j--1 (i,j,u)ET 
Piju3, 

and (2.1), (3.5), (3.6) yield 

m J n s 

Z nij k n ' -  card (G 1 n G2INk) = i--1 j---1 = nm(n+l) 

> X Piju3" 1, k=l ..... l. 
(i,j,u)eT 

Finally, to show (1.3) holds for this procedure with the 
additional assumption (1.1), simply observe that if 
Pijul ": Piju2 for all (i,j,u)eT, then by (3.3), 

n' t i. 
Sin=l "j~ u~ Piju 1=0' i=l,...,m', 

and hence G 1 - G 2 = 0 for alI samples. Note that in this 
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case, the n-th column can be omitted in defining S. 

5. V a r i a n c e s  f o r  t h e  C o n t r o l l e d  S e l e c t i o n  P r o c e d u r e  

In this section variance formulas are derived for estimators 
of total for both designs when using the sample procedure 
detailed in Section 3, under the assumption that a census is 
conducted in the sample PSUs. If the sample PSUs are 
subsampled then these formulas represent the between PSU 
component of variance. Let X denote the total value over the 
entire population for a characteristic of interest, and let Xij u 
denote the total for PSU Bij u for each (i,j,u) e T. For 

^ 
a---l,2, let X a denote the usual estimator for X for design a 
corresponding to probability proportional to size sampling, that 
is 

^ xi i  u X ~ = Z  ' 
Pijua 

where the summation is over all (i,j,u) such that Bij u e G a. 

For (i,j,u), (i*,j*,u*) e T, (i,j,u) ¢: (i*,j*,u*), a = 1,2, let 

~ijui*j*u*a -- P(Biju, Bi*j*u* e Get ). 

Then from Raj (1968, p.54), 

^ 1 
v ( x ~  = -  × 

2 

Xi'i*u, )2 (Pijua Pi*j*u*a " ~ijui*j*u*a) (~a" Pi*j*u*a 

(i,j,u),(i,,j,,u,)eT 
. .  . 4 . 4  4) (5 .1)  

0,J,u)~0 ,J ,u 

Consequently, it is only necessary to show how to compute 
zr.; .,i, , for each (i,j,u), (i*,j*,u*) e T, (i,j,u)C:(i*,j*,u 4) To 

1JUl u Ot " , 

do tl~is for a=2, first observe that n.; .,~, , =0 if j=j ljul ~ u 2 , " 
Consequently, it may be assumed from now on that j#j . For 
each such i,j,i*,j*, let r...,., - P(n.. - n., . ,  - 1) Note that 1llJ - i l k -  1 j k -  • 
r...,., is the sum of n .  over all k for which n.., = n . , . , -  = 1 
~.~1 J r K  "-ILK 1 J K " 

Then to obtain z~...,.4 ,-., observe that both B.. and B.,. ,  , 1lm j u z qu 1 j u 
can be in G 2 if either 

nij k = ni,j, k = 1, nmj k = ni,j, k = 1, nij k = nmj, k = 1 or 

nmj = nmj, k = 1, 

which combined with (3.9) and (3.10) yield the four terms in 
the following expression: 

:~ijui,j,u,2 = riji,j, Piju3 Pi*j*u*3 
sij si*j* 

+ rmji,j, (Piju2 " Piju3) P i4i*u*3 

Smj Si*j* 

+ rijmj, Piiu3 (Pi*j*u*2 " Pi*j*u*3) 

Sij Smj* 

+ rmjmj, (Piju2 " Piju3) (Pi*i*u*2 " Pi*i*u*3) . 

Smj Smj* 

(5.2) 

The only differences in the expression for ~ijui*j*u*l, 

which is obtained similarly, are that the subscripts mj, mj 4, 
and 2 are replaced by the subscripts in, I"'n, and 1, 
respectively, and that ~:i.ui,j,u41=0,j if i=i*. 

Note, in the special case when P . . -  < P.. ,, for all ljul 1juz 
(i,j,u) e T, it follows that since P.. - P.. , then the last 

1Ju3  - 1 j u l  

three terms in the expression for ~ijui,j,ul drop out, and 
hence 

~:ijui*j*u*l = riji*j* Pijul Pi*j*u*l . 
sij si*j* 

All four terms in ~;ijui,j,u2 remain, although now 1 can be 
substituted for 3 in (5.2). 

Note that (5.2), and hence (5.1), are different for the 
controlled selection procedure than for independent sampling 
for each design. In the latter case, z~ii i , ; , ,  = 

, j U  j U ~  , 

P.. P., . ,  , if either a = l  and i , , i ,  or i r a = 2  and j # j ,  
l u o t j  1 j u ot  . _ . 

and hence there is no between stratum component of variance 
for independent sampling. An empirical comparison of the 
variances for the two procedures for one application is 
presented in the next section. 

6. APPLICATION TO PROPOSED EXPANSION OF 
THE CURRENT POPULATION SURVEY 

A potential important application of the controlled 
selection procedure described in the preceding sections is to 
the proposed "two-phase" expansion of the Current 
Population Survey (CPS). The following is a general outline 
of this proposal. (For further details see Tupek, Waite and 
Cahoon (1990).) Beginning in 1994, a redesign of the CPS, 
based on 1990 census data, is scheduled to be phased in. 
The reliability requirements for the redesign are expected to 
be approximately the same as in the present design. 
Beginning in 1996, if the proposal is implemented in its 
present form, a sample expansion will take place to meet 
strengthened reliability requirements, which will enable 
monthly estimates to be released for all 50 states and the 
District of Columbia. Presently annual estimates for all 
states are released and monthly estimates only for the 11 
largest states, in addition to monthly national estimates. 
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Each month the expanded sample will be interviewed over 
the two-week period consisting of the weeks containing the 
19th and 26th of the month, instead of only the single week 
containing the 19th, as at present. A portion of the total 
sample will be designated as the national sample. This sample 
wiIl be interviewed during the first interview week and will be 
used in the national estimates. The remaining sample, 
designated as the state supplement sample, will be interviewed 
mainly during the second week. The national sample and the 
state supplement sample will be used together to produce the 
monthly estimates for all states. The expanded sample has 
been designated as the "two-phase" sample because it consists 
of both a national and a state supplement sample. The 
redesign prior to the expansion has been denoted Dg0 (for 90's 
redesign) at the Census Bureau, while the expanded design has 
been denoted D 2 (for two-phase design). 

The drawbacks associated with most approaches to the 
selection of sample PSUs for these two designs present a key 
problem in attempting to obtain optimal sample designs for 
both D90 and D 2. For example, if the D90 sample PSUs are 
selected first from an optimal Dg0 stratification and then 
additional sample PSUs are selected to join the D90 sample 
PSUs to form the set of D 2 sample PSUs, variances for the D 2 
design will generally be higher than if the D 2 sample PSUs are 
selected directly from an optimal D 2 stratification. (As in 
Section 5, "variances" in this section refers only to the between 
PSU component.) Similarly, a suboptimal procedure for D90 
PSU selection will result if the D90 sample PSUs are obtained 
by subsampling D 2 sample PSUs selected from an optimal D 2 
stratification. Finally, although increases in variances for 
either design can be avoided by independently selecting D90 
and D 2 sample PSUs from optimal D90 and D 2 stratifications, 
this approach will generally result in some D90 sample PSUs 
being dropped from the D 2 sample, a feature which 
undesirably impacts on field operations. Some of these 
approaches are discussed in Chandhok, Weinstein and Gunlicks 
(1990). 

The controlled selection approach of this paper with 
assumption (1.1) can be used as a procedure for simultaneously 
selecting sample PSUs for both designs while avoiding alI of 
these problems. To use this procedure, first obtain optimal 
stratifications for D9o and D 2, which correspond to the design 
1 and design 2 stratifications respectively in the terminology 
used in the previous sections. Then the controlled selection 
procedure results in a set of sample PSUs for D90 and D 2 
satisfying (1.2) and (1.3). 

As noted in Section 5, the variances for estimates obtained 
for the D90 and D 2 designs with controlled selection differ 
from the variances that are obtained if the sample PSUs are 
selected independently for each design. An empirical 
investigation was undertaken to compare variances using these 
two approaches to PSU selection. 

For the comparison of the variances, the D90 and D 2 
stratifications were obtained using several labor force 
characteristics from the 1980 census as stratification variables. 
1980 census data were substituted for the yet unavailable 1990 
data. A modified Freedman-Rubin clustering algorithm 
(Kostanich et aI. 1981) was used to obtain the stratifications. 
The D90 and D 2 stratifications and the controlled selection 

were performed separately for each state, since it has been 
shown that for each design a sample meeting reliability 
requirements for each state would also meet the reliability 
requirements for national estimates. 

The variables used here to compare the independent 
selection and controlled selection variances are number of 
unemployed persons and number of persons in the civilian 
labor force. The comparisons were done only for the 31 
states listed in Tables 1-4. Of the remaining 20 states 
(counting the District of Columbia), the 11 largest were 
omitted since the precision requirements for this study, and 
hence the stratifications, were the same for D90 and D 2. 
Eight states were omitted because they consisted entirely of 
self-representing PSUs for D 2. For these 19 states, variances 
for controlled selection and independent selection would be 
identical for both D90 and D 2. Finally, Alaska was omitted 
because of problems with the data files. 

For each state and each characteristic, variances were 
computed for each of the two designs and each of the two 
selection procedures, using both 1980 and 1970 census data. 
The 1980 data were used to compare variances for variables 
at the same point in time for which the stratification was 
done, while the 1970 data were used to simulate a 10-year 
lag between the data used in the stratifications and the 
collection of the survey data, which is roughly the anticipated 
average lag time for the D90 and D 2 designs. 

The variances for the controlIed selection procedure for 
D90 and D 2 with 1980 data are presented in Table 1 for 1980 
data and in Table 2 for 1970 data. Both tables are omitted 
here. 

Tables 3 and 4 can be used to compare the variances for 
the controlled selection and independent selection procedures 
for 1980 and 1970 data, respectively. Table 3 is omitted 
here. For each state, the ratio of the variance for the 
controlled selection procedure to the variance for independent 
selection for the indicated characteristic and design is 
presented in numerical columns 1,2,4 and 5. Each entry in 
the next-to-last row of the column is the arithmetic mean of 
the entries in the preceding rows of that column. Each entry 
in the last row is the ratio of the variance for controlled 
selection to the variance for independent selection for the 
total number of persons in all the listed states with the 
indicated characteristic. Finally, each entry in columns 3 and 
6 is the arithmetic mean of the entries in the preceding two 
columns of that row. 

The deviations of the ratios of the variances from 1 are 
generally numerically smaller for D 2 than for D90 on a state- 
by-state basis, and the deviation from 1 for D 2 for alI states 
combined, (in the Iast two rows of the tables) is quite small. 
As for D90, although the ratios in the majority of the 
columns are less than 1 for at least half the states, the bottom 
two rows of these tables are not particularly favorabIe to the 
controlled selection procedure, particularly the final row for 
1980 data, whose entries are numerically larger than the row 
above it due to the presence of a few states with large 
variances together with large ratios of the variances, a 
combination which increases the last row much more than 
the next to last row. Elaboration on these observations will 
be given in the remainder of this section. (Note that since 
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the characteristics that appear in these tables were asked in the 
censuses only for a sample of the population, the "variances" 
used in computing the ratios in the tables are only estimates of 
the between PSU variances. Consequently, any comparisons 
made are not statistical inferences applying to an entire census 
universe.) 

There are at least two explanations for the smaller deviations 
from 1 for D 2 of the ratios of the variances. First, for the 
controlled selection procedure, no two PSUs in the same D 2 
stratum can be sample PSUs for the D90 design, while there 
can be as many D 2 sample PSUs from a single D90 stratum as 
there are D 2 strata containing PSUs from that D90 stratum. 
Thus the restrictions imposed by the controlled selection 
procedure on the possible sets of sample PSUs are more 
restrictive for D90 than for D 2, which partially explains the 
smaller deviations of the ratios for D 2. 

The second reason for the smaller deviations for D 2 is that 
many of the D 2 strata consist entirely of PSUs from a single 
D90 stratum. If the j-th D 2 stratum is such a stratum, then 

~;ijui*j*u*2 --" Piju2 Pi*j*u*2 if j*~j and ~;iiui*j*u*2 " 0 if j*=j, 
for all distinct pairs of triples with j fixed, (i,j,u), (i*,j*,u*)eT, 
for both controlled selection and independent selection, and 
thus the contribution to (5.1) from all such pairs is the same 
for both procedures for D 2. No analogous relationship holds 
for D90. 

We now consider further the question of whether controlled 
selection or independent selection should yield lower variances. 
Note that for each (i,j,u)eT, 

nijui,j,u,o~ = (m'-l) Pijul if ct=l, 

(i,*j,*u*)ET = (n'-l) Piju2 if ct=2, 
(i,*j * * , u ) , , ( i , j , u )  

for both controlled selection and independent selection (see Raj 
(1968)), and hence 

~" (Pijua Pi*j*uct " :rl;ijui*j*u*o,) 

(i,j,u),(i, j, u )eT 
(i,j,u)¢(i, j, u ) 

are the same for both procedures. Consequently, there is no 
reason to expect the variances for one procedure to be higher 
or lower than the other unless the relationship between the 

Pijuet Pi*j*u*ct " •ijui*j*u*a and the (Xiju/Pijuc t - 
X~,:,. ,/P~,:,. ,~) 2 factors differs for the two procedures. • j u , j u ~ -  

Actually, it was surmised prior to performing the computations 
that controlled selection might yield lower variances than 
independent selection for D90. This is because ~;rui*j*u*llj, --" 0 
for controlled selection if j*--j, while - ,,,, ,,(X"'/P"u, ~ 
X.,.,~ u*/P'*'*~ l u ct)* 2, ct=l,2, tends to be small for such pairs of 
PS~Js since they are both in the same D 2 stratum. Thus, 
controlled selection may result in many pairs of PSUs with a 

large value for Pijul Pi*'*u*llj " ~;ijui*j*u*l and a small value 
for (Xru/Pi.ul - Xi,j,u,fP,,.,u,l 'l 2 , . 1 .  a combination which tends J J J 
to lower variances. The data in the tables fail to support this 
supposition, however. 

In summary, controlled selection retains all D90 sample 
PSUs for the D 2 design and selects the sample PSUs for both 
designs from their optimal stratifications. Controlled 
selection appears at least for this limited study, to yield 
variances quite close to independent selection for D 2. More 
study may be needed on the effects of controlled selection on 
the variances for D90. If the results are favorable for 
controlled selection, it appears to be a contender for the PSU 
selection procedure for the proposed CPS expansion. Note, 
however, that unless one is willing to ignore the effect on the 
variances of the between stratum variance component 
induced by controlled selection, variance estimation will be 
more complex than for some other approaches to PSU 
selection. 
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Table 4. Ratios of Controlled Selection VLriances 
to lndcpc,~cnt Selection "variances for 1970 Data 

D~o D 2 

Smm T o ~  T o ~  in Mean of 
Unemployed Civilian Ratios of 

Lm~'e Force Variances 

Total Total in Mean of 
Unemployed CiviLian Ratios of 

Labor Force Variances 

Alzl~una 0.711 1.237 0.974 I. 122 1.032 1.077 
Arizonl 0.828 0614 0 721 1 074 0 885 0 979 
Arkansas 0.878 1.436 I 157 1.061 0.987 1.024 
Colorz~ 1.6OI 0 783 1 192 1.014 0.997 !.006 
Ocorgia 0.800 I 198 0 999 !.041 IOi6 1.028 
Idaho 0665 0 875 0 770 1.099 1,063 1.081 
Indiana 0.567 !.338 0.953 0.892 1.472 1.182 
Iowa 1.226 1.602 1.414 0.783 0.829 0.806 
Kansas 0.728 0 986 0 857 0.953 0.923 0939 
Kentucky 2.075 0 418 1.246 1 083 0.838 0.960 
Louisizaa 2.273 0.764 1.518 0.949 0.972 0.960 
Maryland 0.913 0.831 0 882 IO00 1.000 1.000 
Minnesota 0.884 0 819 0 gSl !.117 0.875 0.996 
Mississippi I. 116 1.661 1.389 0.933 1.028 0.981 
Mimouri 0.555 0.553 0.554 0,950 1.089 1 020 
Montana 0.822 1.235 1 029 0.881 1.188 1.034 
Nebraska 0.946 0.776 0 86 ) 0.991 1001 0.996 
Nevada I. I I 8 0.655 0 886 1.023 0.862 0.943 
New Mexico 0.747 0.628 0 687 0.908 1.405 I. 156 
North Dakota 0.712 0.882 0 797 0.908 0.723 0.815 
Okl~orrm 1.141 0430 0.786 1.019 0 834 0.927 
Oregon 0.737 0.632 0.684 0.894 0.975 0.934 
South Carolina 1.252 0.834 1 043 1 166 1.099 1.133 
South Dakota 0.853 0.993 0 923 0.898 0.951 0.925 
Tcrmesse 1.105 0.578 0.842 1.097 i.002 1.050 
Ulah 0.933 1.479 1.206 0.966 0.936 0.951 
Vir ginia I. 106 2.103 1.604 0.952 1.330 I. 141 
WathinlPOn 1.144 0.536 0.840 0.937 !.247 1.092 
West Vi,-linia 3.049 2.130 2.590 0.932 1.125 1.029 
Wisconsin 1.604 0.919 ! .262 0.958 0.980 0.969 
Wyoming 0.365 0.433 0.399 0.671 1.029 0.850 

Meam of Ratios of 
Variances 1.079 0.9~0 1 030 

Ratios of Vm4u~ceJ 
for Sum of 

Sm~ Totals 1.135 

0.977 1.022 0.999 

!.026 I 080 0 990 1.084 1.037 
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