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1. Introduction 

In 1987 about 8,600 radioactive training capsules were 
produced for the Federal Emergency Management Agency 
(FEMA) by a contractor. These capsules are used by various 
state and local agencies (e.g., fire and police departments) to 
train personnel on certain emergency procedures. The capsules 
were manufactured according to very specific procedures 
designed to prevent any leakage of radioactivity from the 
capsules. As a precaution, each capsule was sealed by two 
casings: an inner casing and an outer casing. 

In spite of these precautions, about 50 defective capsules 
(leakers) were detected prior to shipping them from storage 
locations to state and other local agencies. This was quite 
disturbing since leakers constitute a serious hazard. The 
contractor suggested that all the leakers had been discovered 
and that the remaining capsules were safe. However, FEMA 
felt that it was quite possible that there were more defective 
capsules. In order to assess the quality of the remaining 8591 
capsules, FEMA and the contractor agreed to carefully 
examine a simple random sample of 400 of the remaining 
radioactive capsules produced. (Thorough testing of capsules 
is expensive and destructive.) It was decided that the entire 
batch of 8591 capsules would be accepted if no defective 
capsules were detected in the test sample of 400 capsules. 

At that point, FEMA staff requested statistical assistance 
from the Census Bureau. In response, I was brought in as a 
consultant to FEMA to help determine what could be said 
about the quality of the entire batch, based on the sample 
results. In particular, FEMA staff wondered whether one could 
determine the probability that the entire batch (minus the 
original "leakers") was good, given that no defectives were 
detected among the 400 examined. This paper addresses the 
types of inferences that can be made in this situation. 

2. The Probability of No Remainin~ Defectives 

It is not difficult to write an expression for the desired 
probability requested by FEMA staff. Let S and Y be random 
variables that represent the number of defective capsules in the 
sample of 400 and the universe of 8591, respectively. 
Although Y is a population parameter, it can be viewed as a 
random variable since its value is the result of a manufacturing 
process. 

From Bayes Theorem (see, for example, Parzen (1960), 
p.l19), the probability that there are no defective capsules 
among the remaining 8591, given no sample defects, 

is: 
P(Y=ols-o) = 

8591 
P(Y=O) / E P( Y=j) P(S=O [ Y=j) . 

J--O 
(1) 

Unfortunately, the probability given in equation (1) cannot 
be computed unless the production process could be 
characterized probabilistically. Specifically, the exact 
probability distribution of the number of defective capsules 
produced per "batch" would have to be known and assumed 
to have remained fixed throughout the production process. 
Since this probability distribution is unknown, and could not 
be adequately approximated, the desired probability cannot 
be calculated. 

However, some useful inferences can still be made about 
the entire batch of capsules based on the test sample results. 

3. Inferences Based on Confidence Intervals 

A confidence interval of any desired level (e.g., 95% or 
90%) can be computed for the number of defective capsules 
in the entire batch, based on the number of defective capsules 
identified in the sample. In particular, one-sided confidence 
intervals of the form Y,:k are most appropriate in this 
situation, where Y is the number of defects in the entire 
batch of capsules and k is the upper bound of the confidence 
interval. For example, if no defectives are identified in a 
random sample of 400 from the entire batch of 8591 
capsules, then, with 95% confidence, the number of 
defectives in the entire batch is 62 or less. This confidence 
interval was computed using the basic relationship between 
confidence intervals and hypothesis tests and recognizing that 
S, the number of sample defects, has a hypergeometric 
distribution. 

Specifically, consider a test of the null hypothesis that Y=k 
against the alternative hypothesis that Y<k at the 5% level of 
significance. The critical region for this test has the form 
S,:c, where c (the critical value) is the highest nonnegative 
integer having the property that P(S ,: c [ Y " k) ,: .05. 
Then, a 95% confidence set for Y consists of all values, k, 
such that the null hypothesis would be accepted, given the 
sample results. In this case (i.e., S --- 0), this amounts to 
finding the maximum value of k such that the null hypothesis 
would be accepted, given that there were no sample defects. 
Using the hypergeometric distribution with parameters 
N--8591 and k, the largest value of k such that the 
P(S ,: 0) I Y " k) > .05 is k--62. Hence, if there are no 
defects in the sample of 400 capsules, the 95% confidence 
interval is Y ,: 62. This type of inference is discussed by 
Wright (1990). 

These one-sided confidence intervals for Y are given in 
Table 1 for both the 90% and 95% confidence levels; for 
sample sizes of 400, 600, and 800; and for zero or one defect 
in the sample. Although FEMA and the contractor had 
already decided to select and examine a sample of 400 
capsules, the larger sample sizes were included to illustrate 
the potential gains associated with them. Table 1 could be 
used to derive confidence intervals for (1) the total number 
of capsules that are defective, (2) the total number of outer 
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casings that are defective, or (3) the total number of inner 
casings that are defective. (That is, Y can represent any of 
these three quantities.) 

The validity of a confidence interval computed from Table 
1, as for any statistical inference, depends on the accuracy of 
the sample measurement process. In this application, the 
measurement process involves a careful evaluation of the 
safety of each sample capsule, including a close examination 
of both the inner and outer casings. FEMA staff were 
confident that the testing procedure for the sample capsules is 
almost certain to detect defective outer casings, but may not be 
as likely to detect defective inner casings since the outer, but 
not the inner, casings will be cut open during testing. If any 
sample defects are not detected, the confidence interval based 
on the number that are detected would be invalid and 
misleading. Consequently, if there are any doubts regarding 
the capability of identifying defective inner casings in the 
sample, confidence intervals should only be calculated for the 
outer casings. 

An approach which would address the FEMA request 
directly would be to determine the maximum confidence level 
that could be associated with the confidence interval, Y ,: 0 
(i.e., no population defects) given that S = 0 (i.e., no sample 
defects). This approach was investigated by Wright (1990) 
who determined that the maximum confidence level in this 
case would be the sampling rate, n/N. Therefore, for this 
application, the maximum confidence that there are no 
population defective capsules, given that there were no sample 
defectives, is only 4.7% (i.e., 400/8591). For a sample of 800 
capsules this maximum confidence would still only be about 
9%. These confidence levels are, of course, too low to be of 
practical value. 

4. Minimum Probability 0f No L.eakers Based on a Joint 
Confidence Interval 

If the testing of inner casings is thought to be reliable, 
confidence intervals based on Table 1 for the total number of 
defective inner casings or capsules, as well as for outer 
casings, should be valid. In addition, a rough lower bound 
could be placed on the probability that there are no leakers-- 
i.e., no capsules with inner and outer casings that are both 
defective--based on a joint confidence interval for the inner 
and outer casings. A crucial assumption underlying this 
procedure is that capsules were produced in such a way that 
inner and outer casings were randomly paired. In discussions 
with FEMA staff, they stated that the production process did 
put together inner and outer casings in essentially a random 
way. 

If these two assumptions are valid--i.e., that the testing of 
both inner and outer casings in the sample capsules is reliable 
and the pairing of inner and outer casings is random--then for 
a given level of confidence it can be said that, based on the 
sample results, the probability is at least some specific amount 
that there are no leakers in the entire batch. For example, if 
there are no defective inner or outer casings in a random 
sample of 400 capsules, it can be said that, with 90% 
confidence, the probability is at least 0.64 that there are no 
leakers in the entire batch. This lower probability bound was 

calculated by assuming that the number of defective outer 
and inner casings were each equal to 62, the upper 
confidence limit for the 95% confidence interval based on 
zero sample defectives. Then, the probability that, with a 
random pairing of inner and outer casings, none of the 62 
defective outer casings would be paired with any of the 62 
defective inner casings, is .64. The confidence level of 90% 
is the product of 95% and 95%, which is appropriate as long 
as the inner and outer casings are paired at random. 

This lower probability bound is given in Table 2 for both 
the 90% and 81% (i.e., 90% squared) confidence levels and 
for sample sizes of 400, 600, and 800. Note that the first 
row of the table corresponds to the example discussed in the 
previous paragraph. In all cases, the calculations are based 
on a sample having no defective inner or outer casings. It 
would be straightforward to extend the results to samples that 
involve one or more defective outer or inner casings. 

The probability bounds in Table 2 are rough because they 
are based on rather conservative numbers of defective inner 
and outer casings in the entire batch--i.e., the highest value 
in the one-sided confidence interval. However, there does 
not appear to be a statistically sound way to improve on 
these bounds. It is interesting to note that considerable gains 
are made in these bounds when the sample size is raised, 
especially from 400 to 600. 

5. Summary and Discussion 

Because of the unexpected appearance of about 50 
defective radioactive capsules (leakers) among the over 8600 
training capsules produced under contract, FEMA staff 
became very concerned about the quality of the remaining 
8591 capsules. Leaking capsules represent a critical hazard 
to those working with them. 

The contractor and FEMA agreed to thoroughly test a 
simple random sample of 400 of the remaining 8591 capsules 
to assess their quality. It was decided to accept the 
remaining capsules if no sample defects were found. FEMA 
staff wanted to be able to determine the probability that the 
entire batch was good, given no sample defects. As 
described in Section 2, this probably depends on the 
distribution of the number of defectives produced by the 
process. Unfortunately, this distribution is not known. Even 
if it may be reasonable to assume a specific type of 
distribution (e.g., the Poisson) values of the parameters of the 
distribution are not known. It seems likely that the desired 
probability would depend substantially on the assumed values 
of the parameters. (However, this assertion has not been 
verified). 

In order to provide some useful sample inferences, one- 
sided 90% and 95% confidence intervals for the maximum 
number of defectives in the batch were derived based on 
observing zero or one sample defective, for sample sizes of 
400, 600, and 800. Although the one-sided confidence 
interval is statistically sound and easy to interpret, it was not 
the specific inference requested by FEMA staff. To address 
this, an approach by Wright (1990) was considered which 
provides the maximum confidence that one can have that 
there are no defective capsules in the population, given that 
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there are no sample defects. Unfortunately, the maximum 
confidence level for a sample of 400 is only 4.7%. So this 
approach was not helpful for this application. 

In order to provide a more useful inference that was close 
to that requested, a joint confidence interval for the outer and 
inner casings was developed. Using the upper bound of the 
confidence interval for the number of defective outer and inner 
casings, a minimum probability of no leakers was derived for 
a specific joint confidence level, making use of the fact that a 
leaking capsule must have both of its casings defective. These 
minimum probabilities are given in Table 2 for the 81% and 
90% confidence levels. 

A crucial assumption in the calculation of the minimum 
probability was that the inner and outer casings are paired 
randomly in producing capsules. If, on the other hand, a 
capsule with a defective inner casing is more likely to have a 
defective outer casing than is a capsule that has a good inner 
casing, the lower bounds of the probability of no leakers given 
in Table 2 would be invalid. Although FMEA staff felt that 
this assumption was reasonable, no special investigation of it 
was made. 

A major issue regarding the usefulness of the probability 
bounds given in Table 2 is the understanding and interpretation 
of these bounds. To state that, with a certain level of 
confidence, the probability is greater than or equal to a 
specified amount that there are no leakers may not be 
straightforward enough in many applications. However, there 
does not appear to be a better approach to provide the type of 

inference requested in this situation. 
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Table i. One-sided confidence intervals for number of defectives, 

Y, in a batch of 8591 items. 

Sample No. of Sample Confidence Confidence 
Size Defectives Level Interval 
4OO 0 90 Y ~ 48 
400 0 95 Y ~ 62 
400 1 90 Y ~ 81 
400 1 95 Y ~ 99 

600 0 90 Y ~ 31 
600 0 95 Y ~ 41 
600 1 90 Y ~ 54 
600 1 95 Y ~ 65 

800 0 90 Y ~ 23 
800 0 95 Y ~ 30 
800 1 90 Y ~ 40 
800 1 95 Y ~ 48 

Table 2. Lower bounds for the probability of no leakers in the 
entire batch when no defective inner or outer casings are found in 
the sample. 

Sample Confidence Minimum Probability 
Size Level of No Leakers 
400 90% 0.64 
400 81% 0.76 

600 90% 0.82 
600 81% 0.89 

800 90% 0.90 
800 81% 0.94 
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