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Overall Comments: Pfeffermann: 

Estela Dagum quoted the Gordon Commission and its 
recommendations on U.S. employment and unemployment 
statistics: 

...that estimates of standard errors of seasonally 
adjusted data be prepared and published as soon 

as the technical problems are solved. 
That was 1962. The current set of papers is very 
encouraging for offering new and creative suggestions for 
tackling this problem, and I am pleased to have the 
opportunity to read and study these papers. 

Model-based approaches provide appealing solutions 
from a mathematical viewpoint. Hausman and Watson 
(1985) broke new ground with an unobserved component 
models (UCM) approach which incorporated information 
from the survey design. Bell and Hillmer have worked to 
integrate time series modeling with the survey design 
perspective, including efforts to develop greater capability 
for estimating correlations stemming from the rotating 
panel design for the Census Bureau's Current Population 
Survey. However, seasonal adjustment based on time 
series models has now been carried out for about 15 years 
without supplanting X-11, and it appears unlikely to do so 
in the near future. 

ARIMA models represent the most worked-out method 
for modeling seasonal time series, but in practice the path 
to a fully acceptable model is not trivial: two statisticians 
can arrive at different models; modeling is still time- 
consuming. State-space models form a more general class, 
but only limited models are tried so far and model 
identification is not satisfactory yet. David Findley's 
empirical work, discussed further below, prefers ARIMA 
models to the unobserved components. Government 
agencies, chief producers of seasonally data, typically wish 
to limit the use of models for reasons of objectivity and 
reproducibility. Finally, experience with Producer Price 
Index energy series has shown me that economic time 
series models do not always conform well to simple 
univariate time series models (cf. Buszuwski and Scott, 
1988). In particular, differencing alone can be inadequate 
to achieve stationarity. 

This suggests to me that the adaptive nature of X-11 is 
attractive. I think Wayne Fuller has been quoted as saying, 
"Seasonal adjustment is what X-11 gives me." Thus, it is a 
positive development to me that the papers by Pfeffermann 
and Dagum and Quermeville in this session, plus a paper 
presented by Findley and Monsell (1990), present methods 
for variances of X-11 seasonally adjusted series. The 
above comments on the problems with models are meant to 
suggest humility in the face of reality, rather than full 
satisfaction with X-11. The papers by Findley and 
Hausman and Watson offer practical suggestions for 
working with models. 

All the papers contain good applied statistics. The 
knowledge and experience of the authors are reflected in 
the detailed work in their examples and the attention to 
realism. 

I'll now turn to more specific comments, first on the two 
X-11 related papers, then the model-based. Since this has 
been a learning experience for me, the emphasis will be on 
summarizing rather than critiquing. 

The basic decompositions for Yt the true series and Yt the 
observed series are 

Yt = Tt + St + Et = Nt* + St 
and 

Yt = Yt + et = Tt + St + It = Nt + St' 

where I t = E t + e t includes both a random fluctuation and a 
sampling error term, assumed to be uncorrelated. Starting 
from a linear approximation to X-11, 

A 

N t = E wjt.Yt+ j ,  

three different variances are considered, 
A 

(1) Var (NtlT,S) 
A 

(2) Var (N t - NtlT,S) 
A 

(3) Var (N t - Nt*IT, S ) 

(1), a conditional variance of the seasonally adjusted 
series, includes ~ and e t. (3) represents the variance with 
respect to the realized population value T t + E t Supporting 
(3), we may say that what counts is the realization that we 
get, say the unemployment for July, 1990, rather than some 
mean across the infinite realizations that are possible for 
each month. On the other hand, we may argue that two 
series are not equally reliable, when one series has a larger 
e t component over time, suggesting the usefulness of (1). 
Even conditioning on T t and S t, N t is a random variable, so 
(2) is not the same as (1). (2) is more limited, 

Var(Nt-NtlT, S ) = Var(St-StlT,S ). 

This form often appears in model-based papers, except that 
the conditioning is with respect to the data {Yt}" Healthy 
aspects of this paper are airing these alternatives and the 
issue of conditioning and reviewing earlier work starting 
with Wolter and Monsour (1981). 

Using the linear approximation to X-11, in the central 
section of the series, Pfeffermann obtains 

R t = £ aj'It+ j, 

where I t is the irregular component as defined above and R t 
is the estimated irregular from X-11. This equation 
exhibits dependencies among {Rt}, implying that X-11 
irregulars cannot be expected to behave like white noise. 
From this basic equation, assuming higher order 
autocorrelations are 0, he obtains a simple linear system 

U = A V ,  
U and V vectors of nonzero autocovariances for R t and I t, 
respectively. Using the usual estimate for the kth order 
sample autocovariance for R t, V is estimated from the 
linear system. 

The paper provides an iterative procedure for estimating 
the cutoff C for nonzero covariances, plus some overall 
advice in the context of rotating panel designs for 
unemployment surveys, where the examples are drawn. 
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The proposed method gives reasonable U-shaped 
variance curves in the simulations and examples. For Total 
Unemployed Men in Canada, (3) gives standard deviation 
values smaller than standard deviations for the unadjusted 
series in the center of the series and larger at the ends, and 
about 10% higher than values from one of the Wolter- 
Monsour estimates, consistent with (3)'s accounting for the 
sampling error term e t. The method is appealing in its 
simplicity and in not requiring modeling. In the basic form 
presented here, it would suffer when a series experiences 
larger fluctuations in the most recent year or two. 

Dagum & Quenneville : 

The authors set up a common, simple unobserved 
components model (UCM) to approximate X-11. They use 
Kalman filter and fixed interval smoothing techniques to 
estimate model parameters. If a comparison of estimates 
from X-11 and the model indicate a reasonable goodness- 
of-fit, then an estimated covariance matrix from the UCM 
formulation is used for the series being adjusted with X-11. 
(For simplicity in this discussion, "X-11" is intended to 
include XllARIMA, Statistics Canada's widely used 
extended version of the basic U. S. Census X-11). Nice 
features of the paper include (1) a detailed discussion of the 
numerical optimization routine carded out in obtaining 
maximum likelihood estimates for signal-to-noise ratios, a 
spelling out of the differences in handling logarithmic or 
multiplicative decompositions, and a detailed analysis of 
the 1981-82 recession period. In particular, the authors 
find that the UCM seasonally adjusted series behaves 
similarly to the X-11 series in this time interval, probably 
the most sensitive part of the series under examination. 

Turning to some points for further consideration, it is 
seen that the method matches X-11 with a UCM, while an 
ARIMA model may be used for extrapolation in the 
seasonal adjustment program. It seems a little unsatisfying 
to use two differing model formulations in the method. 

A "compromise" UCM is used, in part because earlier 
work on models approximating X-11 refer to the standard 
filter options. Consideration of this method provides 
additional incentive for deriving approximating models for 
each of the limited number of combinations of X-11 trend 
and seasonal filter options. Also, the seasonal part of the 
UCM model seems "simpler" in some sense than X-11, 
suggesting that a check for residual seasonality in the UCM 
seasonal adjustment be made. 

A chi-square test on standardized differences between 
the two seasonally adjusted series is applied to check for 
suitability of the UCM formulation. As the authors state, 
this is considered an indicator, not a formal statistical test. 
While such a goodness-of-fit test is natural to consider in 
this case, some additional thought might be given on the 
appropriate test or suitability check. 

As stated above, there appears to be a reasonable overall 
fit between the two seasonally adjusted series in the two 
unemployment examples. However, from the graphs, it 
appears that there are some seasonal patterns to the 
differences prior to the recession period. The estimated 
variance curves for level and change are U-shaped, except 
that the curve for U. S. unemployment level is increasing. 

Findley : 

This paper on time series modeling does not discuss 
variance estimation, but has relevance to the topic. One of 
the drawbacks stated for model-based seasonal adjustment, 
which permits variance estimation, is identification and 

selection of models. Findley has worked for some time on 
model selection criteria and this paper represents his 
current advice. Previously, he has recommended AIC. In 
this paper, he compares AIC to two new criteria. (Also, as 
mentioned above, Findley and Monsell, 1990, present a 
resampling approach to variance estimation in the X-11 
setting). 

Still based on examining likelihoods, the paper presents 
much technical work on likelihood functions in rather 
general settings and derives statistics for compafin~ 
nonnested models. Basically, given parameter spaces O(13 
and 0(  2 ) associated with two families of models, the test 
examines differences in log likelihoods evaluated at 
maximum likelihood values for the parameters. The model 
from family (1) or (2) is preferred according as the 
difference is positive or negative, with magnitude 
exceeding a critical value defining an inconclusive band 
around zero. The associated limit theorem is general 
enough to include cases where neither family includes the 
true model. The results suggest a graphical technique, in 
both a full-blown and shortcut form, 

(F) plotLM(rM(1))-LM(0M(2)),  N/2<M<_N, 

(S) plot LM(0N(1)) - LM(0N(2)), N/2<M<_N. 

(F) is computer-intensive, in requiring maximum likelihood 
estimates for parameters for a large number of values of M. 
(S) uses likelihoods based on partial samples of size M, but 
with maximum likelihood parameters based on all N 
observations. With iid observations the values L M are 
available as partial sums; for time series models computed 
with a Kalman filter algorithm, the LM'S can also be 
generated in a single pass of the data. A limit theorem 
provides justification for (S). 

The most specific limit theorem states: 

Ln(61) - Ln(d 2) o2(k 1) L 
2.  ~N + ~/N. log ---) N(0,t) 2) 

o2(k 2) 

Under the null hypothesis H0: o2(k1)=o2(k2), the 
second term drops out. Thus, 

LN(01)- LN(02) 
Z = 2 .  

4N.~ 

can be used as a test statistic for comparing two competing 
models. The above null hypothesis, called "weak 
equivalence" in the paper, can be described as the 
competing models having equal mean square forecast error. 
The statistics Z y w  and Z G M applied in the paper 
correspond to using estimates ~i l:;ased on Yule-Walker type 
estimates and more robust estimates (based on an S-PLUS 
computing routine), respectively. 

The graphical procedure and tests using Z y w  and ZGM 
are applied to a set of 43 economic time series modeled by 
Bell and Pugh(1989), and results compared to their use of 
AIC for model comparisons. The table below summarizes 
results. Z.y W is not sensitive to differences in models, 
giving justification for ZGM with its robust standard error 
estimate. The graphical analysis and ZGM are quite 
consistent, as might be expected, and are also close to the 
AIC results. ZGM and the graph have the advantage of 
indicating whether a difference in models is significant or 
not more clearly than AIC. The four series I (rather 
arbitrarily) designated as inconclusive from AIC have 
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differences less than one in magnitude. Thus, in spite of 
the results appearing in the table, the graph and ZGM may 
not really be less sensitive. 

The above limit theorem and test are time series 
analogues of results of Vuong(1989) for lid observations. 
Issues remain in the choice of a3, which is a problem in 
estimating a spectral density. The theoretical results of the 
paper are daunting to one tending to focus on the applied 
side. The new statistics still appear very similar to AIC, 
and lack its appealing feature of a penalty function for the 
number of parameters in a model. Both the theoretical 
results and the graphs for some of the series motivate and 
may add to the reader's intuition for any of these likelihood 
statistics. Also appropriate is the emphasis on formulating 
limit theorems not requiring either class to contain the true 
model. Interesting to me is the preference in most cases for 
ARIMA models over UCM's. While UCM's are really 
more general, the forms in use right now don't seem to be 
rich enough, particularly the part for the seasonal 

(ESt_j=ct). 

Hausman & Watson: 

As in their 1985 JASA paper, the authors tackle a 
specific problem and propose solutions which go beyond 
standard treatment. In this paper, they seek time series 
models for the error in preliminary survey estimates. This 
enables them to carry out model-based seasonal adjustment 
and obtain variances of seasonally adjusted estimates in a 
more careful way. The models offer potential for 
improving the (unadjusted) preliminary estimates. As they 
point out, this is an important topic, since it is the 
preliminary estimates for key series such as the building 
permit series they study which are used by policymakers 
and forecasters. Some work of a similar nature has been 
initiated at BLS for the monthly establishment survey of 
employment. An additional feature of the paper is 
permitting heteroscedastic innovations in the seasonal 
component. 

Census' building permits series lend themselves to this 
analysis, since an annual census is available for 
benchmarking monthly survey values. A substantial 
proportion of the population is covered by the survey, 
which has a cut-off design covering all large permit-issuing 
offices. Even after accounting for nonresponse, 
preliminary and revised figures include roughly 60% and 
70% of the population, respectively. 

Before focusing on the modeling, let me comment on the 
main assumptions. I don't propose changing them, but 
would like to have seen a little more discussion of them. 
The final census annual value is assumed to contain no 
error. Often, data from a census are less accurate than data 
from a survey. In this case, I have no reason to believe that 
response or measurement error is very large. 
("Measurement error" as treated in the paper basically 
refers to sampling error). The second assumption is that 
the monthly figures derived from the annual census 
benchmark contain no error. The final monthly series is 
constructed by constraining the estimates to sum to the 

census annual total subject to minimizing revisions in the 
month-to-month changes. There may be some biases 
stemming from response patterns for individual months. 

Here are the models for Yt, Yt p, and yt r, the final, 
preliminary, and revised estimates, respectively: 

Yt = Nt + St' 

N t x t + E  t, (1-B)x t=e'~ t,l~S t j  e s 
" -  - ~ t '  

YPt = Yt + uPt, 

uP t =-.01 + .24 uPt_ 1 + .77 ar t - .19art_ 1 + eP t, 

yrt = Yt + urt, urt AR(1). 

The trend model is simple, since the series is described as 
"volatile and trendless." Some care is taken before settling 
on the forms for ur t and uP t, plus treating the errors as 
uncorrrelated with {Yt}" 

Changing the seasonal model to permit different 
variances by month leads to a fair amount of improvement 
in the likelihood. A heteroscedastic model based on three 
groups of months (one group of six having zero variance) 
achieves nearly all the improvement in the likelihood with 
one additional parameter rather than 11 with the 
unrestricted heteroscedastic model. 

I am pleased to see some treatment of this issue. Most of 
the time seasonality is concentrated in a few months, with 
several months having negligible contributions to 
seasonality. X-11 addresses this issue to some extent by 
permitting different seasonal filters by month, but this 
feature is not commonly used. Findley and Monsell 
(1990), in their resampling approach to variance estimation, 
found it useful to do some grouping of months in carrying 
out their resampling. 

Hausman and Watson report substantially lower 
variances for their model-based seasonal adjustment, 
compared to X- 11. They rather casually refer to their X- 11 
variance estimates as "using standard calculations." It 
appears that they have used something similar to 
Pfeffermarm's (2), to put it on a similar footing to the 
model-based calculations. I accept the finding of a lower 
variance, but would like to see comparisons of other 
aspects of the adjustment, e. g., the factors themselves. 
Good modeling skills are employed to achieve the 
improvement. 
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Table (Findley application). Model Preferences for 43 Series from Alternate Likelihood Statistics 

AIC Graph ZGM Z y w  

ARIMA model preferred 36 27 27 12 
UCM preferred 3 3 4 0 
Inconclusive 4 13 12 31 

651 


