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1. Introduct ion 

The classic representation for economic time 
series decomposes an observed series x t into a 
seasonal and a nonseasonal component. The 
seasonal component captures the regular 
variation in the series over the course of the year 
and the nonseasonal component captures the 
residual variation in the series associated with 
the trend or the business cycle. For an additive 
model, the decomposition can be written as: 

(1) X t - ' n  t + s  t 

where n t and S t denote the nonseasonal and 
seasonal components, respectively. In this 
model, seasonal adjustment is a procedure for 
purging x t of its seasonal component, or 
equivalently of forming an estimate of n t, which 

from (1) can be written a s  fi t = x t - ~  t" 
Since the work of Grether and Nerlove 

(1970), it has become standard practice to specify 
independent A R I M A  processes for the 
components n t and s t so that (1) becomes an 
unobserved components A R I M A  (UCARIMA) 
model. Univariate seasonal adjustment 
procedures--procedures that use information on 
{x t} only--can then be thought of as signal 
extraction procedures for estimating the signal, 
nt, from noisy measurements, x c Grether and 
Nerlove (1970) and Engle (1978) used this 
observation to construct optimal seasonal 
adjustment procedures using signal extraction 
methods developed by Weiner (1950), Whittle 
(1963) and Kalman (1960). Indeed, Cleveland 
and Tiao (1976) show that it is possible to 
rationalize official seasonal adjustment 
procedures based on Census X-11 as an optimal 
signal extraction filter. They solve the inverse 
optimal filtering problem and find a U C A R I M A  
of the form (1) in which Census X-11 is the 
optimal signal extraction filter. Since many 
economic time series are measured with error, a 
more useful decomposition is of the form 

(2) X t = n t + S t 4- e t 

where e t represents the measurement error. In 
the classic decomposition of time series, e t is 
called the irregular component and is modeled as 
a white noise process. However, white noise 
measurement error is probably the exception and 
not the rule for most economic time series. For 
example, Hausman and Watson (1985) show that 
the sample design used in the Current 
Population Survey introduces measurement error 
that follows and ARMA(1,15) process into the 
U.S. unemployment data, and Wilcox (1989), 
Bell and Hillmer (1990) and Bell and Wilcox 
(1990) find that similar complicated A R M A  
models describe the measurement error in U.S. 
aggregate consumption data. 

In this paper we extend previous work on 
seasonal adjustment in two directions. First, we 
consider the seasonal adjustment of 
"preliminary," "revised" and "final" data. 
Preliminary data and revised data are modeled 
using an equation like (2) with e t representing 
the error in these data, while the final data are 
assumed to be measured without error, so that 
equation (1) is appropriate. For the data series 
that we study, New Housing Authorizations 
(Building Permits), preliminary estimates are 
revised one month after their initial publication; 
in turn, these revised estimates are modified after 
an annual census yields the final value. The 
second novelty in this paper is a new model for 
the seasonal component. Following standard 
practice we allow the seasonal component to 
follow an A R I M A  process, but we allow the 
innovation in the process to be seasonally 
heteroskedastic. Thus, as an example, the 
innovation in the seasonal component may have 
a very low variance in February, but a high 
variance in August. This heteroskedasticity 
introduces a periodic nonstationarity in the 
univariate representation f Jr x t that is similar in 
some respects to the periodic models discussed 
by Tiao and Grupe (1980). Osborn and Smith 
(1989), and Hansen and Sargent (1990). This 
periodic nonstationarity means that standard 
time invariant seasonal adjustment filters are not 
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optimal. Optimality requires that a different 
seasonal adjustment filter be used for each 
month of the year. 

The plan of the paper is as follows. In the 
next section we discuss the building permit data 
and in Section 3 we develop a model of the 
revision error process. In Section 4 we specify 
and estimate two unobserved component models 
for the final data. The first model is the 
traditional homoskedastic UCARIMA model; the 
second allows the heteroskedastic innovation in 
the seasonal component discussed above. In the 
fifth section we compare optimal seasonal 
adjustment procedures for the two models and 
compare these procedures to the official Census 
X-11 procedure. Standard errors for the 

estimates of fi t a r e  presented for both models 
and for X-11. Some concluding remarks are 
offered in Section 6. 

2. The Data 

The data series used in this paper is "Private 
Housing Units Authorized by Building Permits," 
published monthly by the U.S. Bureau of the 
Census. 1 Usually called ~Building Permits," the 
series is an important leading indicator of future 
macroeconomic activity: it is one of the twelve 
components used by the Department of 
Commerce's Index of Leading Indicators and is 
one the seven components used to construct the 
National Bureau of Economic Research's 
Experimental Leading and Recession Indexes 
(see Stock and Watson (1988)). Economic 
forecasters rely heavily on the preliminary and 
one month revisions of the series. Final values 
of the series, which are available with a 
considerable lag, have little impact on economic 
forecasts. 

Since 1985, the series has been constructed 
from the results of a survey of 8,300 of the 
17,000 permit-issuing places currently in the 
permit-issuing universe. The same sample is 
used every month; the places not included in the 
monthly sample are surveyed once a year. 
Although the sample includes fewer than one 
half of the permit-issuing places, it covers the 
vast majority of permits issued because of the 
selection procedure used. In 1989, the sample 
covered over 92% of permit activity. All places 
in metropolitan areas and all places that 
authorized more than a specified number of units 
in 1978, 1981, and 1982 are surveyed monthly. 

This lower bound is sixty per year for all but ten 
sparsely populated states, where it is forty per 
year. The remaining places are stratified by 
state: one-tenth are included in the sample. 

The preliminary permit data are compiled 
and published before all the surveys have been 
returned. During 1986 and 1987, data from an 
average of 66% of the permit-issuing places were 
included in the preliminary figure. One month 
after the preliminary data are published, they are 
revised to incorporate additional survey 
responses; an average of 76% of the places in the 
sample returned their surveys in time to be 
included in the revised figure. As the surveys 
come in, the actual data replace the imputed 
data and revisions are made. In addition, a final 
revision based on the annual reports from all 
17,000 places is made during the middle of the 
following year. The final revision incorporates 
late survey responses, corrections, and the results 
of benchmarking from the annual surveys. 

Data from nonresponding areas are imputed. 
The imputation is carried out in three steps. 
First, permit-issuing places are sorted by region 
(Northeast, North Central, South and West) and 
location (inside or outside an SMSA), yielding 
eight cells. Second, within each cell, a factor is 
formed from the ratio of the sum of reported 
data for the cell for the current month to the 
sum of the data for the reported places in the 
cell for the previous year. Third, the previous 
year's figure for the nonreported place is 
multiplied by the appropriate factor. 

The final estimates incorporate information 
from the results of the annual census of all 
17,000 places in the "universe." This annual 
census collects data on the annual total of 
permits issued. This additional information is 
used to rescale the monthly estimates so that the 
monthly figures sum to the annual figures. The 
rescaling is carried out by a link-relative- 
benchmark method which chooses the revisions 
in the monthly data to minimize the revisions in 
the monthly growth rates, subject to the 
constraint that, over the calendar year, the 
monthly figures sum to annual census values. 
Summary statistics for the data are presented in 
Table 1. The series are volatile and trendless. 
The standard deviation of monthly growth rates 
is over 16% for all series, ard the twelve month 
growth rates have standard deviations exceeding 
25%. 
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TABLE 1: I)eseriptive Statistics 

Standard  
Var iab le  Mean 

Deviat ion  

Yt 121.44 31.42 

YPt 119.83 30.88 

Y~ 120.24 31.35 

Ay t -.002 0.163 

A~ -.002 0.165 

A~ -.002 0.165 

A12Yt -.018 0.252 

A 12y~t -.019 0.252 

A 12y~t -.018 0.253 
Notes: Yt' YPt and Y~ are the levels of the final, preliminary 
and revised data, respectively, lower ease letters denote 
logarithms, A is the fLrst difference operator (l-L) and A 12 

is the seasonal difference operator (1-LI2). The sample 
period is 1978:1-1989:12. 

3. A Mode l  of  the Revis ion  Errors  

The description of the data suggests that the 
major source of error is the survey nonresponses 
in the preliminary and revised data. Over any 
calendar year, it seems reasonable to model the 
monthly totals of final data as free from error. 
As an approximation, we will assume that the 
monthly values of the final data are measured 
without error. This assumption greatly simplifies 
the analysis, since it allows us to calculate 
historical values of the error in the preliminary 
and revised data. While this approximation 
undoubtedly abstracts from some error in the 
month-to-month changes in the final data, it 
does allow us to focus on the major source of 
error in the preliminary and revised data. 

The imputation procedure used to construct 
the preliminary and revised data suggests that a 
multiplicative model of the error is appropriate. 
Thus, letting Yt denote the logarithm of the true 
data at time t, and letting yt p and y~ denote the 
logarithms of the preliminary and revised data, 
we write: 

(3) YP-  Yt + upt 

r r 
(4) Yt " Yt + ut  

r denote the error in the where uP and u t 
preliminary and the revised data. Since we 
assume that the final published data are 

r can be measured without error, uP and u t 
constructed by subtracting the logarithm of the 
final data from YPt and y~, respectively. 

The first and second moment  properties of 
the joint (Yt,utP,u~) process determine the 
properties of the seasonally adjusted series. In 
the remainder of this section we analyze the 
properties of {uP,u~} conditional on {yt } and in 
the next section we analyze the properties of the 
marginal {Yt} process. 

Table 2 presents some summary statistics for 
r and the correlation between these uP and U t 

errors and Yr Because of significant change in 
the data collection process beginning in 1978, we 
limit the sample period to January 1978 through 
December 1989. The first column of the table 

r have sample means of shows that uP and u t 
-1.3% and -1.1%, respectively. Serial correlation 
robust standard errors for the sample means 
(calculated using an estimated AR(12) model for 
the errors) yield t-statistics that exceed 3, 
suggesting a statistically significant bias in the 
preliminary and final estimates. Moreover, from 
column 2 of the table, biases are of same order 
of magnitude as the standard deviations of the 
errors. The third column presents the F-statistic 
testing for deterministic seasonality in the errors. 
This was calculated as the F-statistic on eleven 
seasonal dummies from a regression of the errors 
on a constant, the seasonal dummies and 12 lags 
of the dependent variable. There is no evidence 
of deterministic seasonality in the errors. 

Columns 4-6 of Table 2 investigate the 
correlation between the errors {Yt}" Column 4 
presents the OLS regression coefficient of uP and 

r onto Yr The coefficient is very close to zero. U t 

Interpreting the statistical significance of the 
OLS coefficient is difficult because, as we show 
in the next section, Yt is reasonably modeled as a 
seasonally integrated process. Thus unit root 
problems complicate the asymptotic distribution 
of the OLS regression coefficient. In column 5 
of the table, we present the dynamic GLS 
estimate of the coefficient, obtained as the 
regression of uP and u~ on Yt and six leads and 
lags of (1-L12)y t. (The regression is estimated 
with a correction for an AR(1) error term.) 
Following the analysis in Stock and Watson 
(1989), the estimated coefficient on Yt (denoted 
-iCy in the table), divided by its standard error will 
have the usual asymptotic normal distribution. 
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TABLE 2: Preliminary and Revised Measurement 
Error  

i i 

Statistic 

Variable X tr F s fly ¥y Fy 

u p -.013 .017 0.694 -.007 -.010 1.370 
(.004) (.742) (.006) (.178) 

r -.011 .011 1.019 .009 .010 1.235 U t 

(.004) (.434) (.004) (.259) 
w 

Notes:  The  values in pa ren theses  unde r  X a n d  ~¢y are s tandard  

errors;  the i r  cons t ruc t ion  is descr ibed in the text. The  values in 

pa ren theses  u n d e r  F s and E are  the p-values for  the F-statistics. The  

sample  pe r iod  was 1978:1-19Y89:12. 

Inference can be carried out in the dynamic GLS 
regression without complicated unit root 
asymptotic distributions. The asymptotic t- 
statistics on the Yt coefficients are 1.6 for uP and 

r The results suggest a small, but 2.2 for u r 
r and statistically significant correlation between u t 

the level of Yr F-statistics testing that 
coefficients on Yt and all leads and lags of 
(1 12 -L )Yt are equal to zero are shown in column 
6. Here  there is no evidence of significant 
correlation between the errors and (Yt}" Taken 
together, the results in the table suggest that a 
model specifying uP and u[ as uncorrelated with 
all leads and lags of Yt is broadly consistent with 
the data. We use this specification in our 
subsequent analysis, but note that an interesting 
extension of our analysis would incorporate a 
nonzero correlation from the regression of the 
errors onto the level of Yt" 

The goal of this section is a complete 
specification of the process of {uP,u[} given {yt }. 
To complete this section we need a model 
characterizing the joint {uP,u[} process. A simple 
model adequately captured the serial correlation 

r in uP and u r 

(5) u p = -.013 + a p + .766 art 

(.004) (.123) 

(6) a p --.243 aP_ 1 + ~ ,  a , p  

(.083) 
-- .015 

(7) u r ' -  -.011 + a r 
t t 

(.004) 

r .290 r r - .010 (8) at  = a t -1  + et, a E r  

(.080) 

F 1 = .176, F 2 = .106, F 3 = .353, 

F 4 = .776, F 5 = .218, F 6 = .315. 

The numbers under the estimated coefficients are 
standard errors, and the F-statistics listed after 
the model are p-values for diagnostic tests that 
will be described below. Equations (5) and (6) 
represent the regression of uP onto u[; atP is the 
AR(1)  error in the regression. Equations (7) 

r The and (8) represent  the AR(1)  process for u c 
r are specification assumes that EP and ¢t 

uncorrelated at all leads and lags. The statistics 
F 1 through F 6 test various restrictions implicit in 
the specification. F 1 tests the null hypothesis 

r enters equation (5) against the alternative that a t 
r r belong in the equation. that a[, at_ l, . . . , at_ 6 

The resulting F-statistic had a value of 1.52 with 
the p-value of .176 shown above. F 2 tests the 
AR(1)  null in equation (6) versus an AR(2)  
alternative. F 3 tests the AR(1)  null in equation 
(6) versus an AR(12) alternative. F 4 tests the 
null that lagged values of uP do not belong in (7) 
against the alternative that lags 1-6 do belong in 
the equation. F 5 tests the AR(1)  null in 
equation (8) versus and AR(2)  alternative, while 
F 6 tests the AR(1)  null versus an AR(12) 
alternative. These diagnostics suggest that 
(5)-(8) provide a reasonable characterization of 
the revision error process. 

This section has developed a model of the 
process characterizing the {uP,u[} given {yt }. In 
summary, the model assumes that {uP,u[} are 
uncorrelated with {yt }. The first and second 
moment  properties of p r {Ut,U t} are given implicitly 
by (5)-(8). To complete the specification of the 
joint process for {YP,Y[,Yt} we require a model for 
the {Yt} process. This is the subject of the next 
section. 

4. Models of the Final Data 

We assume that the Yt data are measured 
without error so that the decomposit ion given in 
equation (1) forms the basis of the models that 
we estimate. We estimate two related models. 
The first is: 

(9) Yt = nt + st 
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i 
(10) n t = r t + e t 

I" 
(11 )  ( 1 - L ) r t -  •t 

s (12) ( l * L * L 2 *  . . . *Ell)st  -- e t 

where e~, e~, and e~ are uncorrelated gaussian 
white noise processes with variance ai 2, a 2, and 

2 respectively. Equations (10) and (11) 
a S , 

represent the nonseasonal process as an 
ARIMA(0,1,1) parameterized as the sum of a 
random walk plus independent white noise; from 
(12) the seasonal component follows a seasonal 
autoregressive process. The initial level of the 
process is captured by the initial value of r 0, 
while the initial seasonal pattern is captured by 
s 0, s q , . . . ,  S_l r Our specification (9)-(12) is 
essentially the model used by Harvey and Todd 
(1983). They allowed a random walk intercept 
term to enter (11), but for their applications, 
point estimates suggested that the intercept was 
a constant representing the average drift in the 
data. Since building permits do not contain a 
drift, this component is absent from our model. 
A detailed discussion of the specification and its 
relation to other models can be found in the 
Harvey and Todd paper and in Harvey (1989). 2 

The model (9)-(12) was estimated by 
maximum likelihood usin~ a diffuse prior on the 
initial values of r t and s t. The results are 
summarized in the first row of Table 3. The 
point estimates imply that the standard deviation 
of the one-step-ahead forecast error for Yt is 
9.5%. Most of the uncertainty arises from the 
nonseasonal component; the standard deviation 
of the seasonal innovation is 0.48%. The model 
fits the data reasonably well; point estimates are 
broadly in accord with an unconstrained ARIMA 
model for Yt" The normalized innovations from 
the estimated model suggest some modest 
autocorrelation; estimated autocorrelation 
coefficients exceeded .2 in absolute value at lags 
10 and 13. 

The second model allows the variance of the 
innovation in s t, denoted e s in equation (12), to t 
have a month-specific variance. Thus for 
example, February's seasonal innovation may 
have small variance while August's seasonal 
innovation may have a large variance. The 
unrestricted seasonally heteroskedastic model 
yielded a maximized log likelihood value of 543.6 

compared to 539.0 for the homoskedastic model. 
While the difference in the likelihood values is 
not statistically significant, the point estimates 
from the heteroskedastic model suggested that 
the months could be separated into three groups. 

s for The point estimates of the variance of e t 
August and December were large; the variances 
were smaller, but still markedly different from 
zero, for March, May, September and November. 
For the other months, the variances were 
essentially zero. These point estimates suggested 
a specification in which August and December 
had a common variance, March, May, September 
and November another, and the variance of e s t 
was constrained to equal zero for the other 
months. The point estimates for this model are 
reported in the second row of Table 3. 

This restricted seasonally heteroskedastic 
model fits the data nearly as well as the general 
seasonally heteroskedastic model. The log 
likelihood falls from 543.6 in the unrestricted 
model to 543.1 in the restricted model, even 
though 10 fewer parameters have been 
estimated. 4 The restricted heteroskedastic 
model appears to fit the data much better than 
the homoskedastic model. The improvement in 
the log likelihood is 4.1, while only one 
additional parameter has been estimated. 

In the next section we will use both the 
homoskedastic model and the restricted 
seasonally heteroskedastic model together with 
the models for the preliminary and revised data 
errors to construct and evaluate seasonal 
adjustment procedures. 

5. Seasonal  Adjus tment  

In this section we answer three questions. 
First, what is the standard error of the estimated 
value of n t using Census X-11? Second, how 
much improvement can be expected over X-11 
from the use of optimal model based 
procedures? Finally, how much of the mean 
square error in the seasonally adjusted estimates 
can be attributed to the preliminary and revised 
measurement error, and how much is inherent in 
the underlying data generation process? 

To answer the first of these questions we use 
the linear approximation to Census X-11 
presented in Wallis (1974). This allows us to 
calculate the mean square error of the seasonally 
adjusted data using standard linear time series 
methods. Wallis derives a symmetric 82-term 
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T A B L E  3: Un ob se r ve d  C o m p o n e n t s  M o d e l  

. . . . . .  

1 ~ Log 
0"$ a i a s a s L i k e l i h o o d  

Model .0690 .0431 .0048 -- 
1 (.0044) (.0053) (.0016) 

-- 539.00 

Model .0693 .0396 -- .0041 .0196 543.13 
2 (.0044) (.0054) (.0029) (.0070) 

Notes: Model  1 is the homoskedastic UCARIMA model and Model 2 is 

the heteroskedastic UCARIMA model. o~ is the standard deviation of 
O 

the seasonal innovation for August and December. OsZ is the standard 

deviation of the seasonal innovation for March, May, September and 
November. The sample period used was 1960:8-1989:12. 

moving average filter to approximate X-11. We 
write his filter as" 

(13) X l l ( L )  = ~i2_82= alil Li 

Wallis' two-sided filter approximates 
the historical X-11 filter, the filter used to adjust 
historical data. 

For  concurrent seasonal adjustment--  
seasonally adjusting the most currently available 
data--X-11 cannot be used since it requires 
future and past data. Instead, an alternative 
filter, X-11 ARIMA,  is used. This procedure 
replaces the future values of the series, necessary 
for X l l ( L ) ,  with forecasts constructed from an 
A R I M A  model. We write the X - l l  A R I M A  
filter as: 

*' b (14) X l l A ( L )  = Ei_ 0 iLi 

where the filter weights b i can be calculated as a 
function of the historical X-11 weights, a i in 
equation (13), and the parameters of the 
A R I M A  process used to form the forecasts of 
the series. In this paper we formed X l l A ( L )  
using the A R I M A  process for Yt implied by the 
homoskedastic modeles t imated  in the last 
section. This A R I M A  model will closely 
approximate any well specified model for Yt 
constructed from the historical time series. 

Since both X l l ( L )  and X l l A ( L )  are time 
invariant linear filters, the mean square error of 
the seasonally adjusted data can be ~ lcula ted  
using standard calculations. Letting n t denote 
the historical value of the X-11 seasonally 
adjusted data, 

(15) fi  t -- X l l ( L ) y  t -- X l l ( L ) n  t + X l l ( L ) s  t . 

Thus, 

(16) n t - f l  t -- [ 1 - X l l ( L ) ] n t - X l l ( L ) s  t .  

Noting that 1 -Xl l (L)  contains the factor ( l-L) 
and X l l ( L )  contains the factor 
( I + L +  . . .  +Ll l ) ,  the mean square error of n t 
can be calculated directly from (16). 

The calculation for the currently adjusted 
value is slightly different, since the filter is not 
applied to Yt, but to a combination of yP, y~, and 
Yt" In particular, if we denote the current^ (X-11 

a 
ARIMA)  nonseasonal estimate by n t 

(17) 

a r *~ 
fit = b0 yP + blYt-1 + ~]i=2 b iYt-i 

= X l l A ( L ) y  t ÷ b0u P + b l U t r l  

so that 

(18) 
n t _ fiat - ( 1 -Xl lA(L) )n  t - X11A(L)s t 

r 
- b0uP - blUt_ 1 • 

The argument in Watson (1987, Appendix B) 
implies that 1 -Xl lA(L)  contains the factor ( l-L) 
and X l l A ( L )  contains the factor 
( I + L +  .^.. +Ll l ) ,  so that the root mean square 

a error of n t can be calculated directly from (18). 
It is possible to construct more efficient 

estimates of the nonseasonal component  using 
optimal model based seasonal adjustment 
methods. It is a straightforward exercise to write 
the joint {Y~,Y[,Yt} process in state-space form. 
Optimal estimates of the nonseasonal 
component,  nt, can then be formed using the 
Kalman filter (for concurrent seasonal 
adjustment) and Kalman smoother  (for historical 
seasonal adjustment). The root mean square 
error associated with the filtered and smoothed 
estimates are calculated as a byproduct. 

Table 4 summarizes our results on the root 
mean square error of the seasonally adjusted 
data. Panel A shows the results for the 
homoskedastic model and Panels B and C show 
the results for the heteroskedastic model. 
Looking first at Panel A, the seasonally adjusted 
preliminary data has a root mean square error of 
4.9% and the annual growth rate has a RMSE of 
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6.4%. 5 Using optimal filters these values fall 
to 2.7% and 1.9%, respectively. The official 
procedures, X-11 and X-11 ARIMA, are far from 
optimal. The relative efficiency of X-11 and 
X-11 ARIMA ranges from a high of 34% to a 
low of 1%. 

Panel B shows results for the heteroskedastic 
model averaged over the year. The results are 
similar to the results for the homoskedastic 
model. Panel C presents month-by-month 
results for the heteroskedastic model. Variation 
in the root mean square error of the optimal 
concurrent estimates range from a high of 3.6% 
in August and December to a low of 2.2% in 
February and July. Interestingly, while the X-11 
RMSEs are considerably larger than the optimal 
estimates, they vary much less over the year. 

6. Concluding Remarks 

Seasonal adjustment techniques arose from a 
need to isolate trend and cyclical movements in 
economic time series. For this purpose the 
minimum mean square error extraction methods 
discussed here are significant improvements over 
the existing official seasonal adjustment methods. 
For other purposes, minimum mean square error 
adjustment procedures may not be an improve- 
ment. As an extreme example, as Sargent (1978) 
and Miron (1986) argue, seasonal variation in 
economic time series may contain useful 
information about economic behavior that 
should be used when estimating an econometric 
model. When using seasonally adjusted data to 
estimate linear relations between variables, the 
arguments in Wallis (1974) suggest that the use 
of a generic filter, like X-11, is preferred to 
model-based filters. Finally, in a similar context, 
Sims (1974) argues that seasonal misspecification 
in economic models can be mitigated by 
removing seasonality with a narrow band pass 
filter and imposing smoothness constraints on 
estimated transfer functions. 

There are important lessons in this paper for 
users of seasonally unadjusted data as well as 
seasonally adjusted data. The model of the 
preliminary and revised measurement error, with 
the composite model for Yt can be used to form 
improved estimates of the seasonally unadjusted 
data. Given the model, the Kalman filter can be 
used to eliminate some preliminary and revised 
error from the data. As an example, the 

preliminary data, yP, has a root mean square 
error of 2.1%. By optimally using the time series 
properties of Yt, Y[, YPt, the Kalman filter can 
produce an estimate with a root mean square 
error of 1.7%. While admittedly not dramatic 
for this data series, this improvement could be 
much larger for other series. 

TABLE 4: Root Mean Square Error 
Seasonally Adjusted Data 

A. Homoskedastic Model 

n t nt-nt. 1 nt-nt.12 
Historical filters 

Optimal .018 .023 .007 
X-11 .047 .060 .062 

Concurrent filters 
Preliminary data 

Optimal .027 .035 .019 
Xl 1-ARI MA .049 .060 .064 

Final data 
Optimal .022 .031 .007 
X11-A RIMA .046 .058 .062 

B. Heteroskedastic Model 
(Average over 12 months) 

n t nt-nt. 1 nt-nt.12 
Historical filters 

Optimal .018 .024 .008 
X- l l  .045 .057 .058 

Concurrent filters 
Preliminary data 

Optimal .027 .035 .021 
Xl l -ARIMA .048 .061 .062 

Final data 
Optimal .022 .032 .008 
Xl l -ARIMA .046 .059 .060 

C. Heteroskesdastic Model 
RMSE of Estimated n t Monthly Values 

Historical Filter 
Concurrent Filter 

(Preliminary Data) 

X l l -  
Optimal X l l  Optimal ARIMA 

January .023 .044 .033 .047 
February .015 .044 .022 .047 
March .016 .044 .025 .047 
April .016 .044 .024 .047 
May .016 .044 .025 .047 
June .016 .044 .024 .047 
July .015 .046 .022 .052 
August .023 .046 .036 .053 
September .024 .044 .033 .047 
October .016 .044 .025 .047 
November .016 .046 .025 .052 
December .024 .046 .036 .053 

Notes: The rmse for the concurrent optimal estimate in the 

homoskesdastic model using preliminary data varies over the year. 

This variation occurs because of the timing of the release of final 
data. In the table average values over the year are reported. 

646 



References 

Bell, W.R. and Hillmer, S.C (1990), "The Time 
Series Approach to Estimation for Periodic 
Surveys," manuscript, Bureau of the Census. 

Bell, W.R. and Wilcox, D.W. (1990), "The Effect 
of Sampling Error on the Time Series Behavior 
of Consumption Data," manuscript, Bureau of 
the Census. 

Cleveland, W.P. and Tiao, G.C. (1976), 
"Decomposition of Seasonal Time Series: A 
Model for the Census X-11 Program," Journal 
of the American Statistical Association, 71, 
581-587. 

Engle, R.F. (1978), "Estimating Structural Models 
of Seasonality," in Seasonal Analysis of 
Economic Time Series, edited by A. Zellner, 
U.S. Bureau of the Census, Economic Research 
Report ER-1. 

Grether, D.M. and M. Nerlove (1970), "Some 
Properties of 'Optimal' Seasonal Adjustment," 
Econometrica, 38, 686-703. 

Hansen, L.P. and Sargent, T.J. (1990). "Disguised 
Periodicity as a Source of Seasonality", 
manuscript, Hoover Institution, Stanford 
University. 

Harvey, A.C. (1989), Forecasting Structural Time 
Series Models and the Kalman Filter, Cambridge, 
Cambridge University Press. 

Harvey, A.C. and Todd, P.H.J. (1983), "Forecasting 
Economic Time Series with Structural and Box- 
Jenkins Models: A Case Study," Journal of 
Business and Economic Statistics, 1, 299-306. 

Hausman, J.A. and Watson, M.W. (1985), 
"Seasonal Adjustment with Measurement Error 
Present," Journal o f  the American Statistical 
Association, 80, 531-540. 

Kalman, R.E. (1960), "A New Approach to Linear 
Filtering and Prediction Problems," Journal of 
Basic Engineering, 83, 95-108. 

Miron, J.A. (1986), "Seasonal Fluctuations and the 
Life Cycle-Permanent Income Model of 
Consumption," Journal of Political Economy, 94, 
1258-1279. 

Osborn, D.R. and Smith, J.P. (1989), "The 
Performance of Periodic Autoregressive Models 
in Forecasting Seasonal U.K. Consumption," 
Journal of Business and Economic Statistics, 7, 
117-128. 

Tiao, G.C. and Grupe, M.R. (1980), "Hidden 
Periodic Autoregressive-Moving Average 
Models in Time Series Data," Biometrika, 67, 
365-373. 

Sargent, T.J. (1978), "Comment on 'Seasonal 
Adjustment and Multiple Time Series 
Analysis'," in Seasonal Analysis of Economic 
Time Series, edited by A. Zellner, U.S. Bureau 
of the Census, Economic Research Report 
ER-1. 

Sims, C.A. (1974), "Seasonality in Regression," 
Journal of the American Statistical Association, 
69, 618-626. 

Stock, J.H. and Watson, M.W. (1989), "A Simple 
MLE of Cointegrating Vectors in Higher Order 
Integrated Systems," NBER Technical Working 
Paper No. 83. 

Wallis. K.F. (1974), "Seasonal Adjustment and 
Relations Between Variables," Journal of the 
American Statistical Association, 69, 18-31. 

Weiner, N. (1950), Exo'apolation, Interpolation, and 
Smoothing of Stationary Time Series. Cambridge 
and New York: Massachusetts Institute of 
Technology Press and John Wiley and Sons, 
Inc. 

Whittle, P. (1963), Prediction and Regulation by 
Least Squares, London: The English University 
Press, Ltd. 

Wilcox, David W. (1989), "What Do We Know 
About Consumption," manuscript, Federal 
Reserve Board. 

Wolak, F.A. (1986), "Testing Nonlinear Inequality 
Constraints in the Maximum Likelihood 
Model," Technical Report 25, Stanford 
University Econometric Workshop, Department 
of Economics. 

647 



Notes 

We thank Ruth Judson for excellent research 
assistance and Linda Hoyle and Jesse Pollock of 
the Census Bureau for useful conversations 
concerning the construction of the data. This 
research was supported by the National Science 
Foundation through grants SES-89-10601 and 
SES-86-18769. 

1. See Current Construction Reports, Series 
C20: Housing Starts. 

2. Our specification abstracts from trading day 
variation in the data. In our model, regular 
seasonal trading day variation will be captured by 
the seasonal component. Other variation, such 
as the timing of Easter, will presumably be 
captured by the nonseasonal component. A 
useful and interesting extension of our results 
would incorporate this additional component. 

3. An excellent discussion of estimation methods 
for U C A R I M A  models can be found in Harvey 
(1989). 

4. Because the restricted model constrains some 
of the variances to zero, one suspects that the 
asymptotic X 2 distribution of the likelihood ratio 
statistic will not obtain. Two complications 
arise. The first is the problem of testing a 
parameter on the boundary of the parameter 
space, a problem considered in detail in Wolak 
(1986). The second is that, because of the unit 
roots in the seasonal autoregressive operator, the 
elimination of some the shock effectively 
eliminates a seasonal stochastic trend. This 
suggests that problems analogous to testing for a 
unit moving average coefficient will affect the 
distribution of the likelihood ratio statistics. 

5. When calculating the RMSE for the monthly 
or annual growth rate it is important to note 
that the estimates of n t, nt. 1 and nt.12 are 
calculated using different filters. All are 
constructed using data through time t, so that 
the estimate of nt_ 1 is formed using one future 
value (Yt) and the estimate of nt_12 is formed 
used twelve future values (Yt-ll, Yt-10, ' ' '  ,Yt)" 
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