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1. INTRODUCTION 
Statistical bureaus throughout the world publish 

each month seasonally adjusted figures for numerous series. 
The commonly used procedure for estimating the seasonally 
adjusted data is the X-11 ARIMA method developed by 
Dagum (1980) which extends on the original census X- l l  
algorithm of Shiskin et al. (1967). One criticism of the X- l l  
procedure however is that it fails to provide estimates for the 
variability associated with the estimators it produces. In this 
article we develop a general procedure for estimating the 
variances of X-11 estimators which has the following proper- 
ties: 
1) The method accounts for both the sampling error 

of the survey estimators around the corresponding 
population means and for the error associated with 
the decomposition of the population means into 
their unobservable components. 

2) The method is largely model free but it does 
assume that the error terms are stationary with 
decaying autocovariances. 

3) The method can be applied to series estimated 
based on complex sampling designs with a poss- 
ible overlap from one survey to the other. 

4) The method does not require estimates for the 
covariances of the unadjusted survey estimators. 

5) The method is very simple with negligible addi- 
tional computing time. 

2. COMPONENTS OF VARIANCE 
There are several sources of variation which 

possibly contribute to the total variation of the seasonally 
adjusted data. 

Let {Yt; t = 1 ..... N} denote the observed series. In 
practice, the series {Yt} will often consist of survey estimators 
in which case we define by {Yt} the corresponding popula- 
tion mean values so that we may write 

Yt = Yt + et ; ED(et et-k) = Ak, k = 0,1 .... (2.1) 

The expectation "ED" is with respect to the design 
distribution of the estimators over all possible samples from 
the given population. Notice in (2.1) that the survey errors 
{et} are allowed to be serially correlated. Serial correlations 
occur when the surveys are partially overlapping like in 
rotating panel surveys. 

For the population means we assume the additive 
decomposition, i.e. 

Yt=Tt+St+~t; ~(~t)=0, ~(~t%k)=~,k , k=0,1 ..... (2.2) 

where T t represents the trend-cycle and S t the seasonal 
component. The error terms {~t} are the "Decomposition 
Errors" which are allowed to be serially correlated. 

Substituting the equation (2.2) into (2.1) gives the 
following decomposition, 

Yt = Tt+St+Et+et = Tt+St+lt, (2.3) 

where the error terms I t = Et + et are again stationary with the 

following first and second moments evaluated over the joint 
"D~¢" distribution 

E(It) = 0, E(I tIt_k) = V k = A k + v k,k= 0,1 .... (2.4) 

The decomposition (2.3) (but without the assump- 
tion 2.4) is the decomposition postulated by the additive 
mode of the X- l l  method. The alternative mode applicable 
with X- l l  is the multiplicative decomposition by which the 
observed series is decomposed into a product of the three 
components. The multiplicative mode is comparable to the 
application of the additive mode to the logarithms of the 
series. 

It follows from (2.3) that the variance of the 
observed series Yt may depend on four components of 
variance. These include 
A) The design variance of the survey estimators, 
B) The decomposition variance of the population 

means around the 'true' trend and seasonal com- 
ponents, 

C) The variances of the trend and the seasonal com- 
ponents when considered random. 
Obviously, when the time series under consider- 

ation is not the outcome of a sample survey or that it 
represents a 'census', the first source of variation no longer 
exists. The seasonally adjusted estimators are functions of 
the observations and so the variances of these estimators 
depend on the same sources of variation. 

3. REVIEW OF AVAILABLE METHODS 
3.1 The linear approximation to X-11 

The methods reviewed in this section are only 
those developed for the estimation of the variances of X-11 
estimators. Most of these methods (including the method 
proposed in this article) use the linear approximation to X-11 
as established by Young (1968) and extended by Wallis 
(1982) and so we consider the approximation first. 

The X-11 program comprises a sequence of 
moving averages or linear filter operations whose net effect 
can be represented by a single set of moving averages. 
Thus, if we denote by I~ t = yt-~t the seasonally adjusted 
estimator for time t, as 

N - t  

~ =  } ~  w~.~y~,~ = ~y, t = l  . . . . .  N (s ~) 
/ = - ( t - l )  

with a similar representation for the other estimated compo- 
nents. Notice that the weights {wj,t} depend on t since for 
estimators at the beginning and the end of the series the 
adjustment is carried out using asymmetric filters. It should 
be emphasized also that (3.1) defines only an approximation 
to the actual estimates produced by X-11 because of some 
nonlinear operations possibly involved in the application of 
the procedure like the identification and gradual replacement 
of extreme values and the identification and fitting of ARIMA 
models. 

3.2 Methods proposed 
Wolter and Monsour (1982) consider two situations. 

In the first Situation the population values are held fixed so 
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that the only component of variance considered is the design 
variance of the estimators (equation 2.1). For known vari- 
ances and covariances of the original estimators {Yt}, the 
variances of the seasonally adjusted estimators are obtained 
straightforwardly by utilizing the approximation (3.1). In the 
second situation the population values are considered 
random like in equation (2.2) but with the added assumption 
that the trend and the seasonal components can be 
modelled as fixed polynomials in time. Estimators for the 
variances and covariances {VE} of the total error terms I t 
(equation 2.4) are obtained in this case from ordinary least 
squares residuals and these estimators are substituted for the 
unknown variances and covariances in the expressions for 
the variances of the X-11 estimators obtained from (3.1). 
Armstrong and Gray (1986) propose a replication based 
method which consists of applying X-11 to each replication 
and computing the variance between the replicate estimates. 

The other methods proposed in the literature are 
"model dependent" in the sense that the variance estimators 
depend on stochastic structures assumed for the component 
series of the trend and the seasonals. The models employed 
use filters which are similar to the filters employed by X-11. 
Examples for such models can be found in Cleveland and 
Tiao (1976), Bell and Hillmer (1984), Burridge and Wallis 
(1985), and Dagum and Quenneville (1989). 

3.3 Discussion 
The major disadvantage of the methods described 

in the previous section is their lack of generality. The 
methods proposed for estimating the design variances 
assume either that the design variances and covariances of 
the unadjusted estimators are known or that the sample can 
be split to form replicates of the original sample. 

The procedure proposed by Wolter and Monsour 
(1982) for the case where the population values are con- 
sidered random is restricted to situations where the trend and 
the seasonal components can be approximated by fixed 
polynomials in time. The model dependent methods assume 
stochastic structures for the seasonal and the nonseasonal 
components series. Identifying the models for the compo- 
nents from the model holding for the observed series is 
difficult in practice since different component models can 
lead to the same overall model. It seems therefore that with 
the present state of art, the use of models for estimating the 
variances of the X-11 estimators is not practical as a general 
routine. The use of models by government bureaus was 
always questionable because of the possible effects of model 
misspecifications on the published estimators and with the 
added assumptions and computational complexities, the use 
of a model is even more problematic. 

Government bureaus usually attempt to compute 
and publish the design variances of survey estimators but the 
use of this approach when estimating the variances of 
seasonally adjusted data is not founded. The very act of 
seasonally adjusting the observed series implies the use of 
a stochastic time series model either explicitly or implicitly 
(as in X-11) and by restricting to the design variances the 
uncertainty underlying the evolution of the population values 
(the series Yt in our notation) is not taken into account. 

The method described in the next section attempts 
to compromise between the design and model based 
approaches by conditioning on the population values of the 

trend and the seasonal components but not on the Decom- 
position error. Thus, the variances estimated are with respect 
to the joint distribution of the total irregular terms, 
It = et+~t (et is the survey error, ~t is the decomposition 
error, see equation 2.4), with the other components of 
variance held fixed. This has the further practical advantage 
that the models generating the trend and the seasonal 
components need not be specified beyond what is already 
assumed by X-11. Moreover, under the assumption that the 
X-11 estimators are conditionally unbiased, the estimators of 
the conditional variances can be viewed also as estimators of 
the unconditional variances. 

4. THE NEW METHOD 
4.1 Alternative Definitions for the Variance 

In what follows we consider the linear approxima- 
tion to X-11 described in section 3.1. We describe the 
estimation of the variances of the seasonally adjusted data. 
Estimators for the variances of the other components are 
obtained in the very same way. 

Substituting the model (2.3)into (3.1) yields the 
following decomposition 

N-C 

~t = ~ Wj, tYt+j 
j - - (c -z)  

N - t  
(4.1) 

N - t  

Wj, ~ ( Tt+j+St+ j) + ~ wj, tIt.j 
j = - ( t - 1 )  j=-(:-z) 

Denote by VAR(l~ltlT, S) the conditional variance of the 
estimator I~1 t for given realizations of the trend and the 
seasonals. Then, by (4.1), 

v , ~ ( ~ l T ,  s) = v,~ ~ w j ,~z~ . (4.2) 
j - - ( t -1 )  

The variance in (4.2) is over the joint distribution of 
the irregular terms {I t =e t + ~t, T= 1 ..... N}. This variance is 
different from the variance computed under the model 
dependent approach, which is taken over the distribution of 
the prediction error (Nt-Nt) = [(Yt" ~ t ) "  (Yt" St)] = "(~t-St) so 
that it coincides with the variance of the seasonal compo- 
nent. Thus, if 

^ N-t 

St = ~ J, tYt+j (4.3) 
J--~t-1) 

defines the linear approximation to the seasonal component 
where wj,t = "wj,t for j 4=0 and w0,t = (l"w0,t), 

A 
VAR(~t-Nt) IT, S = VAR(St-S :) IT, S 

(4.4) 
N - t  

= VAR ~ ~ j ,  tIt-,.j 
j=-(t-1) 

Dr. D. Binder suggested to me (private communica- 
tion) that the target in the case of a survey should be the 
estimation of N* t = Yt-St, the seasonally adjusted population 
value. Estimating this quantity is consistent with the common 
routine of estimating the population mean values Yt. We find 
that (Nt" N't) = [(Yt'~t)'(Yt'St)] = [et'(~;t" St)] and so 
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VAR [ ( ~t-N*t l T, S] 

A 
= VAR[ (St-S t) I~', S] + (I-2~o, t) VARD(e t) 

(4.5) 
N - t  

-2 ~ ~ ,  tcov~ ( et.~ , et) 
j=-(~-1) 

j~o 
The computation of this variance requires in principle 
estimators for the design variance and autocovariances of the 
survey errors. Notice however that 
(Iql t - N t) can be written as, 

N - t  

(]~t-]V~t) = ~ W], t [ ( e t . . / + E t . j )  - 6 t ]  , (4.5") 
j=- ( t - l )  

where w'j, t = "wj,t for j=#O; W*o, t = (1-Wo,t) so that when 
Cov( (t, (t+k) = 0 for k=fO only an estimator for the design 
variance is required. 

It is interesting to compare the variance in (4.5) 
with the variance in (4.2). Assuming that the X-11 estimators 
of the seasonal effects are conditionally unbiased, (see the 
discussion in section 4.2), 

A 
E(/~IT, S) =E[ (T=+S=+Ic-S ~) IT, S] =T~. 

Thus, whereas the variance in (4.5) is with respect to the 
distribution of  Nt around the seasonally adjusted value N t = 
Tt+ ~t in the population, the variance in (4.2) is around the 
trend level T t . 

4.2 Estimation of the Variances 
It follows from (4.2), (4.4) and (4.5) that the prob- 

lem of estimating the conditional variances reduces to the 
problem of estimating the variances and autocovariances of 
the irregular terms defined in (2.4). Let 

N-t N-t 

Rt:  ~ aj, tyt+j ;  ( ~ aj, t:O) (4.6) 
j--(~-1) j=-(t-~) 

define the linear approximation to the residual terms pro- 
duced by X-11. Substituting the equation (2.3) into the 
expression for R t gives the decomposition 

N-t 

Rt= ~ aj, tYt+j 
j=-(c-1) 

(4.7) 

aj,~It+j. 
N-t N-t 

j = -  ( t - l )  j= -  ( t - l )  

As can be seen from (4.7), the time series of the X-11 
residuals is not stationary because of the use of different 
moving averages at different sections of the series and the 
contaminating effect of the means 

N - t :  

Mr= ~ aj, t (Tt+j+St+j) • 
j=-(c-~) 

However, assuming that the signal (T t + St) = E(Yt) is a 
smooth function in time, the set of residuals in the centre of 
the series [24 < t < (N - 24) for monthly series for all 
practical purposes] are approximately stationary. This is so 
because the particular weights used for the filter in the centre 
of the series guarantee that for sufficiently smooth signals the 

means M t are close to zero and because the weighted 
residuals 

N - t  

Et= ~ aj, tIt+j 
j = - ( t - 1 )  

form a stationary series since the filter is fixed and the 
irregular terms {It} are stationary. The set of weights {aj.t} 
used for the computation of the X-11 residuals (for example, 
corresponding to the case of using the 13 term Henderson 
moving average for the estimation of the trend levels for a 
monthly series) are symmetric (at_i, t = at+i, t for all i) and add 
up to zero. The corresponding transfer function has zero 
power at the seasonal frequencies {21rk/12, k = 1 ..... 6} and 
at frequencies lower than 2~r/12 implying that the filter 
completely removes the trend and the seasonal components. 

The requirement for the smoothness of the signal 
is not defined in exact mathematical terms but the condition 
that M t - 0 has a clear statistical interpretation. It implies 
that the X-11 estimators of the signals are conditionally 
unbiased, i.e. 

A A 
E[y~IT, S] =E[ (Tt+S t) IT, S] +M~=T~+S~. (4.8) 

One could argue that the condition E[RtlT, S] = M t - 0 is 
a necessary condition for the appropriateness of the X- l l  
method when applied to a particular series. The closeness 
of the means M t to zero is not defined in exact mathematical 
terms either but it will be assumed that the variance and 
autocovariances of the series {Mt}  are negligible compared 
to the corresponding variance and autocovariances of the 
series { E t}. 

Under this assumption, the variance and autocovar- 
iances of the X-11 residuals {Rt} in the centre of the series 
can be expressed as linear combinations of the variance and 
autocovariances of the irregular terms {It} in a straight- 
forward manner, exploiting the relationship (4.7). Inverting 
the resulting equations allows to express the variance and 
autocovariances of the series {It} as linear combinations of 
the variance and autocovariances of the series {R t}. Replac- 
ing the theoretical moments of the series {R t} by the corre- 
sponding sample moments yields the desirable estimators 
for the moments of the irregular terms. 

The use of this procedure has a major deficiency 
in that the estimators can become unstable as the number of 
equations increases. However, it may be assumed that the 
autocovariances of the irregular terms damp to zero so that 
after a certain cutoff C,V k = COV(I t, It-k) " 0. Setting V k = 
0 for k > C reduces the number of equations required for 
the estimation of the variance and the remaining autocovari- 
ances of the irregular term to (C + 1). Next we formulate the 
procedure more rigorously assuming a given value of C. We 
discuss the specification of C in section 4.3. 
Proposition 1: For 24 < t < N-24, 

N - t  

Mr= ~ aj, t ( Tt+j+St+j) =0 
j = - ( t - 1 )  

Proposition 2: For k > C, V k = COV(I t, It-k) = 0 
Let U'= (U o, U 1 .... Uc) be the 1 x (C + 1) row vector 

with elements U k = COV(R t, Rt-k), k=0 ..... C and V' be the 
1 x (C + 1) row vector of the covariances {V k} arranged in the 
same order. By (4.7) and proposition 1, 
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N-t 
Rc= ~ aj, t I t ,  j 

j--(t-1) 

and so by proposition 2 

U k = ak0V 0 + aklV 1 + ... + akcV C = a'kV, k=0 ... C. (4.9) 

The set of equations (4.9) can be written as U = AM 
where A is (C+ 1)x (C+ 1), yielding in turn the set of equa- 
tions V = A-1U. Estimating U' by 0' = (U 0 ..... Uc) where 

N-25 

1 ~ (Rt--R) (Rt_k--R) g i v e s  t h e  
Uk- N-4 8 c=25*k 

estimators 
A A 
V = A -z O (4.10) 

The procedure described by (4.10) is essentially an 
application of the method of moments and retains the 
properties of that method. In particular, under the proposi- 

A 
tions 1 and 2, the estimators V are consistent in the sense 

A 
t h a t p l i m  V k = V k, k=0 ..... C, 

N-'~ 

4.3 Specification of the cutoff point 
The practical use of the procedure requires the 

specification of the cutoff point C. Often, knowledge of the 
sampling design implies at least an upper limit for the cutoff 
C. Having set an upper limit C L for C, it would seem 
desirable to establish a selection procedure which can aid in 
choosing between plausible values of C. The following pro- 
cedure has been used in the empirical examples. 

A 
1) Set C=0 and calculate V o. Estimate U1 (°) = 

2) 

A A 
al. 0 V o and U2 (0) = a2. 0 V o. Compute DI(°) 

-" " .-. (0) = 101-U1(0)]0 0 and O2(°)= I U2-u2 ]0(01. If 
max[D1(°), D2(°) ] < 0.1, specify C = 0. Otherwise 

execute step 2. 

A A 
Set C=1 and calculate V o and V z. Estimate 

A A A 

U2 (I) = %,0 Vo + a3,1 V~ and U3 (I) = a4, 0 V o + 

A 

a4,1V I. Compute D2(1) = 102-U2 (1) I /00 and 

D3(1) = 103-U3(1)1/00 • If max[D2(1), D3 (1)] < 0.1, 

specify C = 1. Otherwise execute step 3. 

Repeat step 2 with the value of C and the number 

of estimated autocovariances {V k} increased each 

time by 1. Stop the procedure for C = q < C L 

such that 

Dq( q) TT( q) o . 1  

m (q) and ~'q*2 IOq*2 T~(q) = - ~ q * 2 1 / 0 o  <: 0 , l  where 

A A 
Ug(q) = ag,o V 0 + ... + ag,q Vq, g = q +  1, q+2. 

Specify C=q. Otherwise specify C = C L" 

4.4 Estimation of the Unconditional Variances 
In the previous sections we focused on the esti- 

mation of the conditional variances, given the realizations of 
the component series of the trend and the seasonal effects. 

Suppose that the trend and the seasonal 
effects are generated by stochastic processes and denote by 
VAR(Iql t - Nt) = VAR(~ t - St) the unconditional variance of 
(N t - Nt). We may decompose the variance in the form 

VAR(N t - N t) = EI{VAR2[(I~ t - N t) IT, S]} 

+ VARI{E 2 [(Iq t - Nt)IT,S]} (4.11) 

where we use the index "2" to indicate the conditional 
moments given the component series and the index "1" to 
indicate the unconditional moments. We conclude from 
(4.11) that under the assumption that the trend and the 
seasonal components estimators are conditionally unbiased 
the estimators of the conditional variances can be viewed 
also as estimators of the unconditional variances. The same 
property applies for the variance of the prediction errors 
(Iqi t - N't). 

5. EXAMPLES 
This section contains three examples illustrating the 

application of the method. The first two examples use 
simulated series. The last example uses an actual series and 
compares the variance estimators obtained by the method 
with estimators obtained when considering only the design 
variances. 

5.1 Simulation Results 
We generated two groups of series, each com- 

posed of 100 independent monthly series of length 192. The 
first group of series was generated by adding white noise 
irregular terms to a fixed signal, i.e., 

yt (n) = T t + S t + It(n) ; 

It(n) -- N(0,36), t= 1 ..... 192, n= 1...100 (5.1) 

The second group of series was generated by adding 
irregular terms from an AR(1) process to the same signal, i.e., 

yt (n) = T t + S t + It(n). 

It(n) = 0.5 It.1 (n) + V t, V t, Vt--N(0,36 ), 

t= 1 ..... 192 ; n= 1 ..... 100 (5.2) 

The signal {T t + St} was taken as the estimated 
signal when seasonally adjusting the series "Employed Males 
in Quebec". The signal values in the centre of the series 
along with the weighted signal 

N-t  
Mr= ~ aj, t ( Tt+l+St+j) revealed that the 

j = - ( t - 1 )  

series {Mt}  has indeed all its values close to zero as sugges- 
ted in Section 4.2. Also, Var(Mt)= 0.527 compared to 
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Var { (T t + St) } = 1896.15. 
Table 1 displays the frequencies of the cutoff 

values C as obtained by application of the selection pro- 
cedure described in Section 4.3 

Table 1. Frequencies of the cutoff values for the two 
groups of series 

Groups 
I 

II 

Cutoff Values 
0 1 2 3 4 5 

63 20 11 3 2 1 
1 34 28 23 10 4 

As expected, for the first group of series the cutoff 
values are highly skewed to the left with 63 out of the 100 
series yielding a value of C - 0  (the correct cutoff in the case 
of a white noise). For the second group of series the cutoff 
values are mostly between 1 and 3 with the value of C=0 
obtained in only one case. The fact that the procedure 
selected the value C= 1 for 34 series can be explained by 
the fact that for the AR(1) process used in this study, Corr(I t, 
It_k) _< 0.25 for k>_2 which implies that the main contribution to 
the variance and autocovariances of the X-11 residuals 
originates from the variance and first autocovariance of the 
irregular terms. 

Upon studying the percentiles P= for <x = 10, 25, 
75, 90 of the empirical distribution of the estimators of the 
standard deviation (S.D.) of the seasonally adjusted series, 
along with the mean of the estimators and the true S.D. 
(equation 4.2), for each of the 192 months, the method 
yielded essentially unbiased estimators - a relative bias of 3 
percent may well be attributed to sampling variations. The 
distribution of the estimators around the true values is 
approximately symmetric with well acceptable variances, 
considering in particular that the method is largely model 
free. In this respect the variances of the estimators were 
somewhat larger at the two ends of the series, but the CV's 
were very stable throughout the series. 

5.2 Variance Estimation for the Series "Total Unemployed 
Males in Canada" 

This series was chosen for illustration because it 
permits a comparison of the variance estimators obtained 
under the new method with estimators obtained when using 
the design based approach described in Section 3.2. The 
design variance and autocovariances of the unadjusted 
estimators are listed in Table 2. The data analyzed cover the 
years 1981-1989. The estimators listed in the table are 
average figures and the second row lists the corresponding 
standard deviations (SD) of the monthly estimators. 

Table 2. Average and Standard Deviation of the Design 
Varlance and Autocovarlances 

Average Values Standard Deviations 
"~o 436 51 
~1 228 26 
~2 148 25 
"~3 105 20 
'~4 73 6.5 
~5 49 13 
'~6 42 7.6 
'~7 37 5.5 
'~8 37 16 
"~9 27 13 
'~10 25 7.4 
~11 30 8.7 
~12 22 - 

The cutoff value selected by the selection pro- 
cedure of section 4.3 is C=3. Our initial guess was C=4 
and it was based on the estimators given in Table 2, implying 

~a/~o <- 0.11 for g > 5. 
We studied plots of the estimators of the SD of the 

seasonally adjusted estimators (equation 4.2) as obtained for 
the two cutoff values, along with the estimators obtained by 
the design based approach, that is, when considering only 
the design variances and autocovariances. Plots of the 
estimators of the SD of the seasonally adjusted estimators 
around the population seasonally adjusted values (equation 
4.5) were also studied. The average design SD of the 

unadjusted estimators was ~ 0  = 20.9. 
The major conclusions were as follows: 

1) The use of the two cutoff values gives quite similar 
results indicating that the variance estimators are 
not very sensitive to the choice between cutoff 
values which pass the goodness of fit criteria set in 
the stepwise procedure. 

2) The use of only the design variance and autocov- 
ariances for estimating the variances of the sea- 
sonally adjusted estimators may result in consider- 
able underestimation. 

3) The design variances of the seasonally adjusted 
estimators are lower than the design variances of 
the unadjusted estimators in the centre of the 
series and are of a similar magnitude at the two 
ends of the series. Wolter and Monsour (1981) and 
Armstrong and Gray (1986) report similar results. 
The variances of the seasonally adjusted estima- 
tors around the population seasonally adjusted 
values are smaller than the design variances of the 
unadjusted estimators in the centre of series but 
larger at the two ends. This result is explained by 
the particular filters used for the estimation of the 
seasonally adjusted values. Notice so that the vari- 
ances are smaller than the variances around the 
trend values shown in Figure 6, i.e. 
Var[(Nt - N't) IT,S] <Var[(hl t - T t) IT, S]. 

4) 

6, CONCLUDING REMARKS - EXTENSION OF THE 
PROCEDURE 
The results presented in this article refer to the 

estimation of the variances of the linear approximation to X- 
11. As mentioned in section 3.1, the X-11 ARIMA algorithm 
uses several "nonlinear" operations. These include the 
identification and gradual replacement of extreme values and 
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the identification and estimation of ARIMA models for aug- 
menting the series by one and possibly two years of forecast- 
ed values. A possible way to assess the contribution to the 
variance implied by the nonlinear operations is by simulating 
replications of the original series. Work in this direction is 
currently under way. 
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