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1. INTRODUCTION 
Suppose one wishes to decide between two model 

families, not necessarily nested and not necessarily correct, 
for observed data y~ ..... YN. Conceptually, there are two 
possible situations: either the theoretically best-fitting 
models from the competing classes fit (i) equally well, or 
(ii) one model class is capable of providing a better fit than 
the other. In case (i), variability arising from parameter 
estimation can still cause one of the two classes to be 
preferred, and this is the playing field of the null hypothesis 
in classical statistical tests. However, general statistical 
procedures for identifying the preferred class in this case 
seem to require rather strong assumptions about the 
approximate correctness of the models. By contrast, as the 
results of this paper show, there are theoretically founded 
procedures with relatively weak requirements for making 
the more fundamental decisions, does (i) hold, or (ii)? -- 
and, if (ii), which model class provides the better fit? 

As section 2 explains, these two questions are answered 
by deciding if the log-likelihood difference LN 0'2) of the 
maximum likelihood values from the two families diverge 
to an infinite value as N --, oo and, if so, whether to +oo or 
-oo. The obvious diagnostic for such divergence is a graph 
of the log-likelihood differences from an appropriately 
selected increasing sequence of subsets of the observed data 
set. However, the calculation of the sequence of m.l.e.'s 
and the likelihood values required for such a graph can be 
quite demanding computationally and therefore poorly 
suited to interactive modeling. In section 3, we will 
describe a related graphical diagnostic which is suited to 
interactive modeling and is especially convenient because 
it requires only quantities which are usually available from 
the full-data-set likelihood maximizations. Also, a 
condition, (3.5), is given which guarantees that this 
diagnostic describes the relevant behavior of LN0'2) for large 
enough sample sizes N. The proposition of section 4 shows 
that (3.5) can be verified under rather weak assumptions: 
for example, it is not required that the maximum likelihood 
parameter estimates converge uniquely. Section 5 discusses 
some subtle points concerning log-likelihood ratios for 
nonstationary time series models. Section 6 describes the 
results of applying the graphical diagnostics to the 
comparison of ARIMA models with structural component 
models for 10 U.S. Census Bureau time series. 

2. WHEN AND HOW DO LOG-LIKELIHOOD-RATIOS 
DIVERGE TO __. oo? 

Let LN[00)], 0 (2) E O 0) and I.~[0~)], 0 (2) E 0 ¢z) be two 
parametric families of log-likelihoods defined by competing 
models for observed random variates y~ ..... YN. We do not 
assume that the competing log-likelihood functions have a 
similar form or are related in any way. A notation that 
more strongly emphasized possible differences of form 
would be LO[00)], j=1,2, but we will avoid the duplicated 

superscript to reduce notational complexity, anticipating that 
this will not cause confusion for the reader. Usually each 
family of log-likelihood functions has an associated family 
of non-random entropy functions E**[00)], 0 O E O 0) which 
are the limits (existing with probability one) of the 
sample-size-normalized log-likelihood functions, 

(2.1) E**[0 °] = lim r~--.,, N"LN[ 0°)] (J = 1,2) (w.p.1). 

If maximum likelihood estimates 0(N j) exist and if we define 

(2.2) E~ (~) " supooEoO E,,[00], 

then, ordinarily (with p-lim denoting convergence in 
probability) 

(2.3) p-limN._.** N"I_~[0(N j)] _- E(~) 

will hold for j = 1,2: see White (1990) and the proof of 
Theorem 7.4.10 of Hannan and Deistler (1988) where (2.3) 
is established for invertible ARMA models without the 
assumption that the model classes under consideration 
contain the true model. We will use the abbreviations Lr~J) 
• . I_,N[0~J)], i = 1,2, and, for the log-likelihood difference 
( -- log likelihood-ratio), 

Then, from (2.3), we obtain 

(2.4) p-limN_.® N "* L~l,2) = E(1). E(2), 

and, as a consequence, 

(2.5) If..._E~ ~) ~, E~ 2), the......~n p-limN_.** 1~ ~'2) = +_. oo, 

where the sign of the limit and its asymptotic slope are the 
sign and the slope of (E~ ~)- E~Z))N. Thus, I~ ~'2) -- Op(N). 

This result has a particularly straightforward 
interpretation when Gaussian likelihood functions are used 
(without assuming the data are Gaussian), because then, 
usually, 

(2.6) E(~ ) = - log2z~eo~ j), 

where O'~ (j)2 is the variance of the asymptotic "residuals" 
process associated with the best fitting model(s) in the class 
being considered: for example, for competing Gaussian 
ARMA (or ARIMA) time series models, cr~ 0)2 is the 
variance of the one-step-ahead forecast error process for a 
model determined by a limiting value 0(~ ) of ON (j), j=1,2. 
Under (2.6), the sign of E~ (~)- E~ (2) is that of o~ (2) - o~ (~). 
This means that the model class with better one-step-ahead 
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forecasting properties for the observed series is the model 
class whose log-likelihood function wiII dominate the 
Iog-IikeIihood difference as N~oo. 

3. GRAPHICAL DIAGNOSTICS FOR MODEL 
COMPARISON: DETECTING DIVERGENCE 
PROPERTIES OF THE LOG-LIKELIHOOD RATIO. 

The result (2.5) immediately suggests a graphical method 
for detecting whether or not one of two log-likelihoods will, 
in large samples, strongly dominate the other and thereby 
identify itself as the model which is to be preferred: 
reestimate the model over an increasing sequence of subsets 
of the available observations and plot the resulting sequence 
of likelihood ratios as a function of sample size, looking for 
a linear trend up or down in the later part of the graph. In 
the case where the data index has a natural ordering, as 
with time series, this procedure would suggest calculating 
0~ t~ and 0~ 2~ from y, ..... YM for, say, N/2 < M s N, and 
plotting the log-likelihood differences 

(3.1) L~ ''2) , N/2 < M .: N 

as a function of increasing M. However, the calculation of 
the quantities in (3.1) could be time consuming and also 
quite inconvenient to do with some software packages. We 
shall argue in this and the next section that plotting 

(3.2) I~[0NC')] - I~C0~(2~1, N/2 < M < N 

versus M is much less burdensome computationalIy, yet 
also, when N is large enough, equally informative about the 
divergence properties of L~ t'2). Calculating (3.2) rather than 
(3.1) has the obvious advantage that only a single likelihood 
maximization is necessary for each model class to obtain 
L~ ~ and Lr~ 2). Less obvious is the fact that the quantities in 
(3.2) are often immediately available as a byproduct of the 
calculation of L~ 0, i -- 1,2. This is easy to see when the 
data are modeled as though they are independent and 
identically distributed: in this case the log-likelihoods have 
the form 

I_~[0 0~] = Z~:, log g[O°)](y~) 

and, for any M a N, 

(3.3) M LM[0~ D] = E.:, log g[0~J)](y,), 

for j =  1,2. 
In the case of dependent time series data modeled as a 

Gaussian ARMA or ARIMA model, there is an analogue of 
(3.3) which arises from the conditional decomposition 

LN[00)] = log g[00)](y,) + E~=2Iog g[0mJ(y,ly,., ..... y,) 

and takes the form 

(3.4) I~[0~ j)] = "½ ]~=t { Iog2~x~l.-,[0~C0] + 
(J) (y. y.I..,[ONc°]) 2 / ~i..,[O~] } 

In this expression, y,l,.,[0] denotes the linear function of 
y,.t ..... y, which would provide the best predictor of y, if the 
data were Gaussian with the mean and covariance structure 
specified by 0 (or, when n=l, the mean specified for Yl by 
0); ~1,.,[0] is the function of 0 given by the mean square of 
y, - y,i,.,[0] calculated with respect to the joint density 
exp(l_~[0]). AII of these quantities can be calculated from 
one pass over the data with the Kalman filter algorithm, 
given a state space representation of the time series model 
and a suitable initialization, see Bell and HilImer (1990), 
for example. If the Kalman filter has been used to evaluate 
the likelihood function in the maximization routine, all of 
the quantities required for (3.4) and (3.2) will be available 
after the last maximization step. 

Some graphs of (3.1) and (3.2) for competing models 
(described in section 6) are presented on the last page. 
There is further discussion of these figures in section 6. 

In the next section, we shall demonstrate the 
large-sample equivalence of the sets of statistics (3.1) and 
(3.2) by verifying the condition 

(3.5) limM-~ supN,M IM"I-~[0~] " E~J)I = 0 (w.p.1) 

for j=l,2. This condition implies that either set of statistics 
can be used to determine the sign of E~ ') - E~ 2) if this 
quantity is non-zero. (To justify the use of (3.2), it would 
suffice to establish a weaker version of (3.5) with N 
ranging only over M s N < 2M.) 

4. VERIFICATION OF (3.5): A GENERAL RESULT 
One attractive feature of the result of this section is that 

it accommodates the situation, observed by Kabaila (1983) 
to occur with an incorrect first order moving average time 
series model, wherein the m.I.e.'s ON do not converge to a 
single value, but rather have a set of limiting values, 

(4.1) O0-  {0: E,,[0] : E~,}. 

For a set F containing O0, we shall write 

(4.2) ON "-" Oo (in F, w.p.1) 

if, excluding realizations {y,(m)},~<** of {y,},,,,<o. which 
form an event of probability 0, every subsequence of 
{ON(03)}I,,N,:** contains a subsequence which is in F and 
which converges to a point in O0. This is equivalent to 
saying that, given any neighborhood V of O0 in F, the 
probability is 1 that only finitely many of the events 
ON ~ V, N -- 1,2 ..... occur. The result we are after is the 
following. 

Proposition 4.1. Suppose there is a set F containing the 
E~.[0]-minimizing set Oo .defined in (4.1) above such that .(i) 
with probability one, the Io,~-Iikelihood functions I_.N[0], 
N>N 0 are continuous on F; (ii) NqL~[0] converges 
uniformly to E..[0] on F (w.p.1); and (iii) the condition 
(4.2) is satisfied. Then (3.5) holds. 

Proof. It follows from (i) and (ii) that E~,[0] is continuous 
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on F. Given 6 > 0, the set V = {0 e F: IE**[0] - E**I < 6/2} 
is thus an open set in F containing Oo. Therefore, by (4.2), 
the probability is one that only finitely many of the events 
0s ~ V occur and also, by (ii), that only finitely many of 
the events 

supo~vlM"LM[0]  - E**[0] [ -  6/2 (M = 1,2 .... ) 

occur. Since 

IM"L~[0] - E**I "~ IM'L~[0] - E**[0]I + IE**[0] - E**I, 

it follows that, with probability one, at most finitely many 
of the events 

sups,MIM"LM[0N] - Eo, I ~ 6 (M = 1,2 .... ) 

occur. This establishes the condition (3.5). 
In many situations, the condition (ii) is a uniform law of 

large numbers, see Poetscher and Prucha (1989) and their 
references. 

In Findley (1990b), Proposition 4.1 is utilized to verify 
(3.5) for invertible ARMA models. 

5. LOG-LIKELIHOODS FOR ARIMA MODELS AND 
(3.5) 

The models we wish to compare in section 6 are 
nonstationary ARIMA models. The nonstationarity 
introduces some subtle complications which we address in 
this section. Consider the situation in which a 
stationarizing backshift-operator polynomial 6(B) of degree 
d with 6(0) --- 1 is applied to the observed series y~ ..... Ys to 
obtain the data wn -" 6(B)yn, n -- d+l ..... N which are 
actually modeled,  from a log-likelihood family 
Ls,d[0] --" L[0](wa+~ .... ,ws). If we let Ld(yt ..... Yd) denote the 
(unknown) log-density of y~ ..... Yd, then 

L~[0] = L~,d0] + L~ 

is a log-likelihood for yt ..... Ys, in the sense that 

f~ts exp(Ls[0])dyt"'dys = 1 , 

if the integral of exp(Ls, d[0]) over R. Nd is 1: indeed, since 
the Jacobian of the transformation 

(Yt ..... Ys) ~ (Yl ..... Yd,Wd+I ..... WN) 

is 1, we have 

f ,s  exp(Ls[0])dy,'"dys "- 

lid exp(Ld)dYf"dyd f~S-d exp(Ls, d[0])dWd+~'"dws 

=/lS.d exp0-,s.d[0])dwa+~'"dws . 

For a more general discussion, see Findley (1990a). Note 
that Ls[0 ~°)] will be the correct log density for y~ ..... Ys if 
Ls,d[0 (°)] is the correct density of Wd+~ ..... Ws, and if, at the 

same time, Yt ..... Yd are independent of the w,, process. This 
independence is usually assumed, in order to insure that the 
one-step-ahead forecast-error (innovations) process of Yn 
coincides with that of w,,, see Bell (1984). 

Suppose we have candidate transformations 60)(B) of 
degree d o) and candidate m.l.e, models "-'N, d t  0)0) " L'N, aOL" )"0 0)0'lS,d JJ 
for the data w °) = 60)(B)y,,, n = d°)+l ..... N, j = 1,2. Then 
the log-likelihood difference L~ ~'2> = Ld0~',~>] - Ld0~;~<:>] 
satisfies 

(5.~) f.~,,2) __ f,~lk,) - Lr~2,)dq) + {L,K,) - L~2)}, 

so L~ t'2) is known to within a summand which is a function 

of Yt ..... Ym~{aO), ~)}. 
Of course, when d O) -- d ¢2), then Ls (~'2) is known, 

(5.2) L~', 2) = L~l,k,) - L~2,k2) (d 0) = dt~)), 

and the graphical procedures of section 3 can be applied. 
In fact, since LdO) - L~) does not change with N, it follows 
from (5.2) that, whether or not d 0) -- d ¢2), 

(5.3) L~ ''2) -'* - oo if and only if L ~ , )  - L~2~2) --* _ co, 

so the graph of r_~ko - LM(2)d(2), N/2 < M ": N can be 
examined to see if an ultimate direction for Ls (~'2) is  
suggested. 

When d 0) P, d ¢z), we shall refer to the quantities in (5.4) 
and (5.5) below as pseudo-log-likelihood-ratios 
(pseudo-LLR's): 

(5.4) f _ ~ l ) -  L~2~2), N/2 < M ,: N 

and 

(5.5) l_,M,d(1)[0S(t)] - I_,M,,~2)[0S(2)], N/2 < M ,~ N. 

In Findley (1990b), graphs of (5.4) and (5.5) are given 
for two series with models having d O) ,~ d (2), see Figs. 3c, d 
and 7c, d. 

Remark 5.1. If the approach described here to defining 
Ls (*'2) for ARIMA models is used, there are some 
implications concerning the applicability of Akaike's AIC 
criterion. Consider the difference of AIC values, 

(5.6) AAICN (L2) ,, -2Ls (L=) + 2(dim0 ° ) -  dim0~)), 

where dim00) denotes the number of estimated parameters 
in the j-th model family, j=l,2. It is clear from (5.1) than 
when d O) ,,, d (2), since LaO) - Ld~2) has non-zero mean, the 
calculable analogue of (5.6), 

(5.7) -2{L(S,d() - ( ~ )  ~ r_~2,~(z)} + 2(dimO O) - dimO (z)) , 

will not have the same asymptotic mean as the uncalculable 
quantity AAICs (t;0 when the means of the sequence r_~ L2) 
are bounded. As a consequence, the bias calculations 
motivating the use of AIC (see Findley (1985) and Findley 
and Wei (1989)) do not support the use of (5.7). Of course, 
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if  Ls (t'2) ~ -¢- ~o, the finite bias correction term 2(dim0 O) - 
dim0 (2)) is inconsequential. 

6. COMPARISONS OF ARIMA AND COMPONENT 
MODELS 

Bell and Pugh (1989) compared ARIMA models fit 
individually to a large set of log-transformed economic time 
series with the best-fitting (that is, maximum likelihood) 
basic structural component model (BSM) of Harvey and 
Todd (1983) for each series. This model can be written, for 
our purpose, as 

(6.1) Yn = Sn + Tn + In 

where Sn, Tn and In are independent series presumed to 
satisfy 

(I+B + ... B~t)S~ -- etn, etn ... i.i.d N(0,/.ay ~) 

(1-B)2"Fn = (1-rl)e2t, e 2 t -  i.i.d N(0, yo 2) 

I~ ~ i . i .d. (0,  o 2) 

If the estimated value of rl exceeded 0.9, we often used a 
different model for Tn, 

(1-B)Tn " C + %, e2n--- i.i.d. (0, 02) 

with C a constant term, in order to avoid the technical 
problems which were discussed in section 5. We refer to 
this model as a modified component model. 

In addition to the three components of (6.1), the models 
considered for most of the series have a mean component 
consisting of a sum of indicator variables for highly 
significant additive outliers, together with linear regression 
expressions modeling calendar effects, see Bell and Hillmer 
(1983). The theoretical discussion in the preceding sections 
concerned mean zero time series, so we need to say 
something about the additional assumptions and 
developments required to cover the situation of estimated 
mean functions. The estimation of the coefficients of the 
indicator variables has an asymptotically negligible effect 
on the likelihood function because these are localized to 
single observations. So, for theoretical purposes, we 
assume that such coefficients are fixed and not reestimated 
as N ~ oo. The calendar effect variables can be regarded 
as periodic with long periods, and they satisfy Grenander's 
conditions as discussed in Hannan (1973). Our method of 
simultaneously estimating regression and ARMA 
coefficients is described in Findley, Monsell, Otto, Bell and 
Pugh (1988). We shall assume that with properly chosen 
coefficients (perhaps zero) these variables completely 
describe the mean function of Yn, even though the remainder 
of the model might not completely describe the covariance 
structure of the series. With this assumption, the methods 
used for the proof of Theorem 4 of Hannan (1973) can be 
utlized to obtain a generalization of Proposition 4.1 which 
covers models with such mean functions. 

Bell and Pugh used Akaike's AIC as the basic 
comparison statistic. Hence they used the sign of 

zkAIC~ 1;) =-21~ ~;) + 2(dim 0 (~)- dim 0 (2)) 

to indicate the preferred model, the first model being 
preferred over the second if AAIC~ t'2) < 0. Here dim 00) 
denotes the number of independent parameters in the j-th 
family. In our comparisons, the ARIMA model family is 
designated the first family (j=l) and the component or 
modified component model family is always the second 
family (j=2). 

The values of AAICs (1'2) and the interpretation of the 
graph of (3.2) are given in Table 1 for the 10 series from 
Bell and Pugh (1989) for which both the ARIMA and the 
(perhaps modified) structural model were invertible. For 
each series, the same transformation to stationarity was used 
for both models, 60)(B) -- 5(2)(B). The graphical diagnostic 
was interpreted as inconclusive (I) unless there was a 
possibly oscillatory but never-the-less clearly perceptible 
linear trend (upward, or downward) with non-zero slope 
over an interval of time which was large relative to any 
earlier time intervals in (N/2, N] during which the general 
movement was in the opposite direction. 

On the last page, graphs of (3.1) and (3.2) are given for 
a series (cneths) for which these diagnostics favor the 
ARIMA model and also for a series (bdptrs) where no 
linear movement toward +oo or -oo is visible, with the result 
the graphical diagnostics are inconclusive. In the latter 
case, the fact that the graphs are usually well above the 
horizontal line at level dim 0 °) - dim 0 (2) = 1 most of the 
time shows that AIC's preference for the ARIMA model is 
rather stable. The inconclusive situation is the natural one 
in which to apply AIC, see Findley and Wei (1989). 
Findley (1990b) describes the results of analyzing (3.1) and 
(3.2) for 40 series in the study by Bell and Pugh (1989) and 
presents a generalization to time series models of the test 
statistic of Vuong (1989) which offers an independent 
confirmation of the conclusions reached by (3.1) and (3.2). 
The diagnostics favor an ARIMA for 18 of the series, a 
component model for one of the series, and are inconclusive 
for 21 series, often because the graphs of (3.1) and (3.2) 
become level in the last few years of the series (1980-2). 

7. DISCLAIMER 
This paper reports the general results of research undertaken 
by Census Bureau staff. The views expressed are attributed 
to the author and do not necessarily reflect those of the 
Census Bureau. 
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Table 1. ARIMA vs. Component Models 

bdptrs *t* -8.9 
bfrnrs ttt -2.2 
bgasrs -2.7 
bmncrs ttt -22.1 
cnctbp tn -21.2 
cncths tit -27.7 
cneths tit -21.6 
icmeti -7.2 
ifmeti -29.0 
iwrti -2O.6 

GRAPH tt 
I 
I 
I 
A 
A 
A 
A 
A 
A 
A 

t": 
tt: 

tit: 

Negative values favor the ARIMA model 
I -- inconclusive; A = ARIMA model favored; C "- component model favored. 
For these series, the modified component model was used. 

bdptrs: 
bfrnrs: 
bgasrs: 

bmncrs: 
cnctbp: 
cncths: 
cneths: 
icmeti: 
ifmeti: 
itvrti: 

Retail sales of department stores 
Retail sales of furniture stores 
Retail sales of gasoline stations 
Retail sales of men's and boys' clothing stores 
Total North Central building permits 
Total North Central housing starts 
Total Northeast housing starts 
Total inventories of communications 
Total inventories of farm machinery and equipment 
Total television and radio inventories 
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