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I. Introduction 

Microdata is sometimes masked to protect 
confidentiality of the respondents in the file. The data 
can be masked as a whole by a masking scheme such as 
the additive noise approach. Using this type of masked 
data, mean, variance and covariance can be estimated 
for whole population. However, data users might be 
interested in the estimates for some subgroups. For 
example, if the data is of demographic nature of both 
male and female respondents over all different races, 
one might be interested in the income of the black 
female. However, at this moment no method is known 
for estimating mean, variance and covariance for 
subgroups from the masked data if the masking is done 
on the data set as a whole. Currently, if users want a 
masked data file from which he can obtain the 
subpopulat ion est imates,  the data d isseminat ing 
agency should mask each subgroup separately. This 
will make the masking operations time-consuming and 
costly. In this report, the author tries to correct this 
situation by developing formulae for the mean, 
variance and covariance for subgroups when data is 
masked by the additive noise approach or the additive 
noise plus transformation approach. As usual, these 
formulae will be developed in the context of population 
and the formulae for the sample estimators are derived 
from them. 

To evaluate the performance of these estimates in 
real situations, a data set is masked as a whole and 
subpopulation estimates are calculated from the data set 
based on the formulae developed in this paper. These 
estimates are then compared with those obtained from 
the unmasked data. Findings from this empirical 
investigation are also reported. 

II. Estimation Procedure for Subpopulation When Data 
Is Masked by Additive Noise Approach 

Def'me 

and 

x is the variable of interest which is to be masked; 

o 2 is the variance of x; 
e is the noise following a distribution with zero 

mean and variance co 2 ,  where c is a constant; 

y is the masked variable, i.e., y = x + e. 

Consequently, 

V(y) = (1 + c)o 2 
V(x) = V(y)/(1 + c) 

and 

V(e) = V(y)-  V(x). 

Now for a subgroup s, denote 

Xs: the variable of interest; 

Os2: variance of Xs; 
Ys: masked variable. 

For example, when a researcher is interested in the 
earned income of White persons, x is the earned 
income, s is the subgroup White and Ys is the masked 
earned income for White  persons.  Since, when 
masking was performed, the noise was generated for the 
whole data file including the overall variances of the 
original unmasked variables, Ys can be expressed as 
follows: 

Ys = Xs + e. 

Thus 

E(9"s) = E(Xs), (1) 

and 

V(ys) = Os 2 + co 2. 

Therefore 

Os 2 = V(ys) - co 2. 

Using the fact that 

V(y) = (1 + c ~  2, 

as  2 can be simplified as 
C , 

Cs2= V(ys)- 1 + c V(y). (2) 

This suggests that the variance of x in group s can be 
c 

obtained by subtracting 1 + c times the overall  

variance of the masked variable from the variance of the 
masked variable calculated for the subgroup. 

The covariance between two variables can also be 
obtained for the subpopulation when at least one of the 
two is masked. 

For the derivation of the covariance formula, let 

xi be the unmasked variables of interest, i = 1, 2 

e i be the noise added to xi such that E(ei) = 0 and 
V(ei) = cV(xi), i = 1, 2, 

and 

Yi =xi + ei, i = 1, 2, be the masked variable. 
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LetXis and ~is ,  i = 1, 2, be the means of the 
unmasked and masked variables for subgroup s, 
respectively. 

Then E~is) = E~is), i=  1, 2. 

Note that 

Cov(Yls,Y2s) = 
E[(xls+el)(X2s+e2)] - E(xls+e 1)E(x2s+e2). (3) 

Since e i, i = 1, 2, are generated such that they are 
independent of x i, i = 1, 2, if e I and e 2 are independent, 
the right side of the equation (3) becomes 

Cov(x l s ,  X2s). 

Thus when e I and e2 are independent, 

Cov(xls ,  X2s) = Cov(Yls,Y2s). (4) 

If e 1 and e 2 are correlated such that 

Coy(el ,  e2) = cCov(x 1, x2), 

then the right side of equation (3) becomes 

Cov(Yls,Y2s) = Cov(xls,  X2s) + cCov(x 1, x2). 

Thus 

Cov(xls ,  X2s) = Cov(Yls,Y2s) - cCov(xl, x2). 

But 
1 

Cov(xl ,  x2) = 1 + c C°v(yl ,  Y2). 

Hence 

Cov(xls ,  X2s) = 
c 

Cov(Yls,Y2s)- i + c Cov(yl, Y2). (5) 

This covariance formula is essentially identical to 
the variance formula in equation (2). That is, we can 
obtain the covariance formula in the above equation by 
replacing the variance terms in equation (2) by the 
corresponding covariance terms. If only one variable, 
Xl, say, is masked, then 

Cov(Yls,X2s ) = Cov(xls, X2s). (6) 

Thus, users can obtain the covariance between two 
unmasked variables for a subgroup s from the 
covariance between two variables, only one of which is 
masked, without any adjustment. This is different from 
the case in which both variables are masked as seen in 
equation (5). 

The sample estimators of the mean, variance and 
covariance can be obtained by replacing the population 
parameters by sample estimators in equations (1) 
through (6). 

Note that, in general, the equality of equations (1) 
through (6) would not hold when the population 
parameters are replaced by sample estimates. Thus, to 
empirically compare two sides of equations (1), (2), (5) 
and (6), i.e. to empirically investigate the performance 
of the mean, variance and covariance formulae for 
subpopulations, microdata was masked as a whole and 
means, variances and covariances were calculated for 
subgroups before and after masking. Since random 
noise is generated for more than one unmasked 
variable, i.e., one set of noise for each variable, 
random noise can be generated in a fashion such that 
the sets are either correlated or not. Thus, for this 
report, the cov ariances were estimated twice, first from 
the data set with correlated noise and second from the 
data set with uncorrelated noise. The data set used for 
this study is 1980 Decennial Census tract data. The 
characteristics considered for this study are the age of 
the householder (age), the percent of persons aged 65 
and above in the tract where the household is located 
(oldage), the median age of the houses in the tract 
mentioned above (medage), and f'mally, the median rent 
of the rental units in the tract (medrnt). The subgroups 
considered here are non-Spanish White and Asian. For 
these groups, estimated mean and variance ratios of the 
masked to the unmasked data are given in Tables 1 and 
2, corresponding estimated covariance ratios are shown 
in Tables 3 and 4 when correlated sets of noise were 
used and the same in Tables 5 and 6 when independent 
sets of noise were used. 

As in Tables 1 and 2, the means of the masked data 
are extremely close to those of the unmasked data. The 
differences between the means are all less than 1% of 
the means of the unmasked data, disregarding the race 
groups. More specifically, the differences are less than 
.2% for all four variables in the case of non-Spanish 
White. 

For non-Spanish Asian, the differences are slightly 
bigger, but they are all less than .5%. This shows that 
the means of the masked data are aimost always 
virtually identical to the true means. 

The performance of the variance formula is not as 
good as that of the mean formula. For non-Spanish 
White, the difference ratio, i.e., (masked variance - 
unmasked variance)/(unmasked variance) is less than 
1% for three out of four items and the remaining one is 
1.4%. In the case of non-Spanish Asian, the ratio is 
less than 1% for three variables, ranging from .1% to 
.8%, but the last variable has a difference ratio of 
1.12%. This shows that the variance estimates are also 
excellent.  

The performance of the covariance formula is not as 
good as that of the variance formula. As shown in 
Table 3, three out of six covariances with the correlated 
noise for non-Spanish White are less than or equal to 
1% off, two are about 2% off and one is 4% off from the 
ones from the unmasked data. Table 4 shows that, in 
the case of non-Spanish Asian, two out of six 
eovariances are less than 1% off and the rest are 1.1% to 
4.1% off. 

When the uncorrelated noise is used as shown in 
tables 5 and 6, for non-Spanish White, two cov ariance 
ratios are less than 1% off and the rest are 1.3 to 4.1% 
off, and for non-Spanish Asian, two are less than 1% 
off and the remaining ones are 1.7% to 4% off. 

457 



Comparing Table 3 with Table 5 and Table 4 with 
Table 6, we can observe that the covariances obtained 
from the data with the correlated noise are slightly 
better than the corresponding ones from the data with 
the uneorrelated noise. 

m .  l~stimation Procedure for Subl~pulation When Data 
is Masked by Additive Noise Plus Transformat.ion. 
Approach 

This masking scheme requires transforming y such 
that 

z = ay + (1-a)y 

where z is the new masked variable and a --" "~ 1/(1 +c). 
For this model and the derivation of the approximate 
formula of "a", see the reference. 

Let Zs be z for subgroup s. 
Since masking is assumed to be done for whole 

group, Zs can be expressed as 

Zs = ays + (l-a)~= a(xs+e) + (l-a)~. 

Thus 

E('~) = aE(T s) + (1-a)E('~) 

which is since z = y. 

Hence 

E(~s) = [E(z-~s - (1-a)EC/)]/a. (7) 

Also, 

V(zs) = 

a2[V(xs+e)] + 2Cov[a(xs+e), (1-a)(~'+e~] (8) 

+ (1-a)2[V(~'+c~]. 

Now since 

Cov(xs,'g ) = V(xs)/n and Coy(e, e-')= cV(x)/n 

assuming V(z) = V(x), the right side of equation (8) 
reduces to 

2a(1 
V(z)- V(xs)[a 2 + -a)] + 

n 

2a(1-a)c (l-a)2(1 
V(z)ia:Zc + + +c)]. 

n n 

Thus, V(xs) can be expressed as 

V(xs) = {V(zs) - V(z)[a2c * 2a(l,a)c + (l -a)2(! +c) ]} / 
n 

2a(1 [a 2 + -a)]. (9) 
n 

If n is large 
V(zs) 

V(xs) -" a 2 - cV(z) (10) 

The covariance formula between two masked 
variables can be found in the same fashion as for the 
additive noise without transformation. 

Let 

zi = a(x i  + e i )  + (1-a)(x'i  + ~-i),  i = 1, 2. 

For subgroup s, we def'me 

Zis = a(xis+ ei) + (l-a)('gi + e'i), i = I, 2. 

T h e n  

Cov(zls, Z2s) = a2Cov(x ls + el, X2s + e2) (11) 

+ (1-a)2CovCxl ÷"61, x2 ÷'6"2) 

+ 2a(l-a)Cov(xls + el, 'Z2 +e'2)- 

If el  and e 2 are independent, 

Cov(xls + el, X2s + e2) = Cov(xls, X2s), 

and 

Cov(R'l +"6"1,'g 2 +-6" 2) = n~'Cov(x 1, x2) 

Cov(xls + el,-g2 +~'2) = n~'Cov(xls, X2s). 

Thus the right side of equation (11) becomes 

2a(!-a)] [a 2 + Cov(xls, X2s) 
n 

+ 

Now since 

(l-a) 2 
Cov(x 1, x2). 

n 
(12) 

Cov(zl, z2) = 

2a(1-a) + (l-a) 2 
[a 2 + ] Coy(x l, x2), 

n 
(13) 

From equation (13), Cov(x 1, x2) can be expressed as a 
function of Cov(zl ,  z2). By substituting this new 
expression for Coy(x1,  x2) in equation (12) and 
rearranging the terms in equation (12), we obtain 

Cov(xls, X2s) = 
(l-a) 2 

{Cov(zls, X2s) - [na2 + 2a(l_a)+(l_a)2]Cov(zl ,  z2)} 

2a(l i [a 2 + -a)]. 
n 

If n is large, the above reduces to 

Cov(xls,  X2s) ~ Cov(zls, Z2s) / a 2. (14) 

If el and e2 are correlated such that 

Cov(el ,  e2) = cCov(xl, x2) 
then from equation (11) 
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Cov(zls, Z2s) = 

a2[Cov(xls, X2s) + cCov(x 1, x2)] (15) 

~-C 1 + (l-a) 2 ov(x 1, x2) +-- cCov(xl, x2)] 
n 

~-C 1 + 2a(1-a) ov(x ls, X2s) + -  cCov(xl, x2)] n 
which is since 

Cov(xls, x2)= nl, Cov(xls,  x2s). 

By combining terms, equation (15) can be reexpressed 
a s  

2a(1-a) l Cov(zls, Z2s) = [a 2 + Cov(xls, X2s) (16) 
n 

2a(1-a)c + (1-a)2(1+c) 
+ [a2c + ] Cov(xl, x2). 

n 

Since 

Cov(zl, z2) = 

(l+c) {a 2 + [2a(1-a) + (1-a)2]/n} Cov(xl, x 2) 

Cov(xls. X2s) can be derived from equation (16) as 

Cov(xls, X2s) = {Cov(zls, Z2s)- 

na2c + 2a(1-a)c .+ (1-a)2(l+c) 
( l+c)[na 2 + 2a(1-a) + (l-a) 2] (17) 

2a(1-a)] 
x Cov(z 1, z2)} / [a 2 + 

n 

If n is large, the above reduces to 

Cov(xls, X2s) " 
c 

[Cov(zls. Z2s)- ~+c Cov(zl, z2)]/a 2. (18) 

If the second variable is not masked, 

Cov(zls, X2s) = 

E{[a(xls + el) + (l-a) (T 1 +-el)]X2s} (19) 

- E[a(xls + el) + (l-a) (R" 1 +~'l)]E(x2s) 

= aCov(xls + el,  X2s) + (1-a)Cov(Xl +'el, X2s) 

= aCov(xls, X2s) + (l-a) Cov(xl ' x2).  
n 

Now 
1._~ 

Cov(z 1, x2) = (a + Cov(x 1 , x 2) . (20) 

Thus, from equations (19) and (20) 
Cov(x ls, X2s) = 

1-a 
- Cov(zl, x2)]/a. [Cov(zls, X2s) na + 1-a (21) 

The sample estimators of the mean, variance and 
covariance can be obtained by replacing the population 
parameters with sample estimators in equations (7)  
through (21). 

The performance of the formulae for the mean, 
variance and covariance for a subpopulation was also 
empirically investigated by masking the same data set 
as before based on the additional noise plus 
transformation approach. Note that the new data set 
was created by imposing a linear transformation on the 
data set masked by the additive noise approach. Thus 
all the properties of the latter including those for the 
subpopulation except for "density of data points" are 
transferred to the former, which becomes clear when we 
compare Table 1 with Table 7, Table 2 with Table 8, 
Table 3 with Table 9, Table 4 with Table 10, etc. The 
differences in ratios between the tables are all zero. 
Thus what was observed in Tables 1 to 6 for the data 
masked by the additive noise approach almost exactly 
applies to Tables 7 to 12 for the data masked by the 
additive noise plus transformation approach. 

IV. Concluding Remarks 

In the past, estimation methods were not available 
for subgroups when the data was masked as a whole, 
thus necessitating either masking each subgroup 
separately or the calculation of ratios by the data 
releasing agency of the variance of the masked data to 
that of the unmasked data for the subgroups of interest 
and releasing them along with the masked data file. 
However, with the formulae developed above, the 
estimates of the mean, variance and covariance can be 
calculated for any subgroup. Also when data is masked 
on a subgroup basis, the mean, variance and covariance 
can be estimated for subgroups of the subgroups, i.e., 
sub-subgroups. 

In the above, the mean, variance and cov ariance 
formulae were developed for subpopulations and their 
estimators were derived when the data were masked as a 
whole by either the additive noise approach or the 
additive noise plus transformation approach. For both 
approaches, the estimates of the mean, variance and 
covariance were calculated from the masked data for two 
race groups, non-Spanish White and non-Spanish 
Asian, and compared with estimates from the unmasked 
data. Both approaches of masking rendered almost 
identical results. It also should be mentioned that both 
the correlated and uncorrelated noise approaches were 
tried on the data. The correlated noise approach 
provided somewhat better results. Thus for the purpose 
of summarizing the results of the empirical 
investigation, we will concentrate on the results of the 
additive noise approach with correlated noise for both 
race groups. 

The estimates of the means were the best among the 
three types of estimates, followed by the estimates of 
the variances and finally by the estimates of the 
covariances. The estimates of the means were virtually 
identical to those from the unmasked data. The 
estimates of the variances were excellent, the maximum 
difference ratio being only 1% which occurred only 
twice in eight chances. The estimates of the 
covariances were good whose maximum difference ratio 
being 4% which occurred twice in twelve cases. 
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All in all, these f'mdings lead to the conclusion that it 
is safe to mask the whole data set once and to let the 
users estimate the subl~pulation parameters such as the 
mean, the variance and the covariance based on the 
formulae developed here. 

Table 4 
Covariance Ratios of the Data Masked with Correlated 
Noise to Those of the Unmasked Data for Non-Spanish 

Asian- Additive Noise Approach 
c=.25 and n=6,614 

Reference 

Kim, Jay Jong-IK (1986): "A Method for Limiting 
Disclosure in Mierodata Based on Random Noise 
and Transformation," Proceedings of the Survey 
Research Methods Section, American Statistical 
Association, pp. 370-374. 

Atmendix 
_ _  

Table 1 
Mean and Variance Ratios of the Masked Data to Those 

of the Unmasked for Non-Spanish White - Additive 
Noise Approach 

e=.25 and n=29,079 

Age Oldage Medage Medmt 

Mean Ratio 1.000 1.001 1.002 1.001 

Variance Ratio 1.002 .993 1.000 1.014 

Table 2 
Mean and Variance Ratios of the Masked Data to Those 

of the Unmasked for Non-Spanish Asian - Additive 
Noise Approach 

c=.25 and n=6,614 

Oldage Medage Medmt 

Age .976 1.004 .989 

Oldage 1.041 1.003 

Medage 1.025 

Table 5 
Covariance Ratios of the Data Masked with 

Uncorrelated Noise to Those of the Unmasked Data for 
Non-Spanish White - Additive Noise Approach 

Oldage Medage Medmt 

Age 1.024 1.004 .967 

Oldage .987 .959 

Medage .996 

Table 6 
Covariance Ratios of the Data Masked with 

Uncorrelated Noise to Those of the Unmasked Data for 
Non-Spanish Asian - Additive Noise Approach 

Age Oldage Medage Medmt Oldage Medage Medmt 

Mean Ratio 1.000 1.004 1.004 .997 

Variance Ratio .995 1.012 1.008 .999 

Table 3 
Covariance Ratios of the Data Masked with Correlated 
Noise to Those of the Unmasked Data for Non-Spanish 

White - Additive Noise Approach 
c=.25 and n=29,079 

Oldage Medage Medrnt 

Age 1.023 1.010 .996 

Oldage .984 .960 

Medage .992 

Age .991 1.006 .974 

Oldage 1.040 .983 

Medage 1.024 

Table 7 
Mean and Variance Ratios of the Masked Data to Those 
of the Unmasked Data for Non-Spanish White - Additive 

Noise Plus Transformation 
c=.25 and n=29,079 

Age Oldage Medage Medrnt 

Mean Ratio 1.000 1.001 1.002 1.001 

Variance Ratio 1.002 .993 1.000 1.014 
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Table 8 
Mean and Variance Ratios of the Masked Data to Those 
of the Unmasked Data for Non-Spanish Asian - Additive 

Noise Plus Transformation 
~ .25  and n=6,614 

Age Oldage M~lage Modmt 

Mean Ratio 1.000 1.004 1.004 .997 

Variance Ratio .995 1.012 1.008 .999 

Table 9 
Covariance Ratios of the Data Masked with Correlated 
Noise to Those of the Unmasked Data for Non-Spanish 
White - Additive Noise Plus Transformation Approach 

c=.25 and n=6,614 

Oldage Medage Medrnt 

Age 1.023 1.010 .996 

Oldage .984 .960 

Medage .992 

Table 11 
Covariance Ratios of the Data Masked with 

Uncorrelated Noise to Those of the Unmasked Data for 
Non-Spanish White - Additive Noise Plus 

Transformation Approach 
c=.25 and n=29,079 

Oldage Medage Medrnt 

Age 1.024 1.004 .967 

Oldage .987 .959 

Medage .996 

Table 12 
Covariance Ratios of the Data Masked with 

Uneorrelated Noise to Those of the Unmasked Data for 
Non-Spanish Asian - Additive Noise Plus 

Transformation Approach 
c=.25 and n=6,614 

Oldage Medage Medmt 

Table 10 
Covariance Ratios of the Data Masked with Correlated 
Noise to Those of the Unmasked Data for Non-Spanish 
Asian - Additive Noise Plus Transformation Approach 

c=.25 and n=6,614 

Age .991 1.006 .974 

Oldage 1.040 .983 

Medage 1.024 

Oldage Medage Medrnt 

Age .976 1.004 .989 

Oldage 1.041 1.003 

Medage 1.025 

This paper reports the general results of research 
undertaken by Census Bureau staff. The views 
expressed are attributable to the author and do not 
necessarily reflect those of the Census Bureau. 
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