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ABSTRACT 

A method of using random error to mask 
categorical variables is described. The 
procedure uses a random transformation of the 
original categorical variables into a normal 
vector. The procedure produces masked variables 
that have nearly the same percentage of items in 
each category as the original variables. 

I. INTRODUCTION AND LITERATURE REVIEW 

I.I Introduction 

The expanding capacity of computers has 
produced an increasing demand for microdata. 

Government agencies such as the Census Bureau and 
the National Center for Health Statistics receive 
data requests from economic, business and medical 
researchers. These government agencies, and 
other data providers, are faced with the problem 
of supplying statistically useful data in a 
manner that minimizes the probability of 
revealing the identity of a respondent or 
confidential attributes of a respondent. 

For example, suppose an agency releases tables 
of annual income cross-classified by sex and 
occupation for residents of Boone, Iowa. 

Furthermore, suppose Joseph lostat is the only 
male statistician living in Boone, Iowa. Any 
user of the table, who knows that Joseph lostat 
is the only male statistician in Boone, Iowa, can 
obtain the information about Joseph lostat. Such 

an occurrence is called a case of attribute 
disclosure. Identity disclosure occurs if a user 
is able to link a respondent to the record of 
that respondent. 

Data agencies must devise methods to reduce 

the possibilities of such disclosures in order to 
satisfy the pledges of confidentiality given to 
respondents. The methods employed to protect the 

anonymity of respondents are known as disclosure 
avoidance techniques. 

1.2 Literature Review 

Early references on confidentiality issues are 
Steinberg and Pritzker (1967) and Bachi and Baron 
(1969). Duncan and Lambert (1986) provide a good 
review of the federal statutes dealing with 
confidentiality. Mugge (1983) discusses 
confidentiality measures taken at the National 
Center for Health Statistics. Cox et al. (1985) 
provide a good discussion of Census Bureau data 
products and the techniques used to mask them 

before release. 
Three forms of data release are frequency 

count tables, tables of aggregate magnitude data, 
and microdata files. Cell suppression, random 

data perturbation, random rounding and controlled 
rounding have been considered as possibilities to 

mask frequency count tables constructed from 1990 
census data. Descriptions and examples of these 
techniques are presented in Cox et al. (1985). 

Also, see Fellegi (1975), Cox (1980), and Cox et 
al. (1986). 

Sullivan and Fuller (1989) presented an 
algorithm for masking microdata. The algorithm 
masks continuous, discrete and classification 
variables. In this article we describe the 
masking procedure appropriate for classification 
variables. The objectives of the algorithm are: 

I. To reduce the ability of an intruder to 
obtain attribute information about a 
particular respondent. 

2. To maintain as nearly as possible the 
original structure of the data. 

the formal manner in which we attempt to achieve 
these informal objectives will be discussed. 

2. TRANSFORMATION OF CLASSIFICATION VARIABLES 

The basic masking algorithm is designed for 
quantitative variables (continuous or discrete) 
and Bernoulli variables. To apply the algorithm 
to classification variables we first transform 
each classification variable into a set of 
Bernoulli variables. 

Let X(1), X(2) ..... X(n) be the responses 
to a variable, X , having categories {C(1), 
C(2) ..... C(r)} . For each response, X(t), 
t=l, 2 ..... n , we define a set of r - I dummy 
variables Z(tl), Z(t2) ..... Z(t,r-l) by 

Ztj = i if X t = Cj , 

= 0 otherwise . (2.1) 

Let 4(j) be the probability that an element is 
in category j , given that it is not in the 

first j -I categories. Hence, 

41 = Pr{C I} , and 

4j = Pr{Cjl not C I, C 2 ..... Cj_ I} , 

for j=2, 3 ..... r-i . 

We further define the pseudo Bernoulli 

variables, W(tl), W(t2) ..... W(t,r-l) , by 

W(tl) = Z(tl) , 

(2.2) 

W(tj) = Z(tj) if Z(ti) = 0 for i<j (2.3) 

= i with prob. 4(j) if some 

Z(ti) ~ 0 for i<j , 

= 0 with prob. [I - 4(j)] if some 

Z(ti) ~ 0 for i<j . 

The W(tj), j=l, 2 ..... r-1, are uncorrelated 

Bernoulli variables. 
To mask the quantitative and Bernoulli 

variables, all observations are transformed to 
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standard normal variates using the sample 
univariate distribution functions. The 
quantitative variables and the Bernoulli 
variables are transformed by two slightly 
different algorithms. For a description of the 
transformation methods, see Sullivan (1989). 

3. MASKING 

3.1 Masking the Normal Data Vectors 

The masked set of transformed data vectors are 

computed by adding a normally distributed error 
vector to each transformed vector of normal 
observations. Each error vector has mean zero 
and a covariance matrix approximately equal to a 
multiple of the covariance matrix of Z(t) . 
Hence, the masked data are 

Z t = Z t + u t , t=l, 2 ..... n (3.1) 

where u*(t) is a vector of random variables with 
mean 0 and covariance matrix approximately 
equal to a multiple of m(ZZ) , where 

n 
-i 

mZZ = n E ZIZ.. (3.2) 
j=l J J 

Each u*(t) is a function of u(t) , a normal 
random vector having mean zero and near identity 

covariance matrix. For each u(t) , we define 

u (t) as 

* 1/2 (3 3) 
u t = a UtTzz 

where T'(ZZ)T(ZZ) = P(ZZ) , P(ZZ) is the 
correlation matrix of the transformed data, and 

> 0 . The value of ~ is specified by the 
user. Then the initially masked data set is 

. , 1/2 
Z t = Z t + u t = Z t + ~ UtTzz , 

(3.4) 
t=l, 2 ..... n . 

To insure that the transformed data vectors 
are adequately masked, we perform a distance 
check on the initially masked data. For each 

Z(t) , let the statistical distance between 
Z(t) and Z*(j) be denoted by d(tj) , for 

j=l, 2 ..... n . Let d[tj(1)] be the smallest 
of the n distances and let d[tj(2)] be the 

second smallest of the n distances. 
If the distance between Z(t) and Z*(t) , 
d(tt) , is too small relative to the other 

, Z* distances (t) is declared to be inadequately 
masked. Then, a new u(t) is created with 

Z* increased magnitude and a new (t) is 
recomputed. The distance check is again 
performed, and the process is repeated until the 
masked vector satisfies the distance 
requirement. The procedure only makes one 
remasking pass through the data. It would be 
possible to modify the program to make additional 
passes. 

After the pass through the data to modify the 
error for the distance criterion, the masked Z- 
data are back transformed into masked X-data. 
Then an iterative procedure is used to improve 
the agreement between the correlation structure 

of the transformed variables and the correlation 
structure of the original variables. The error 
terms are adjusted in an attempt to achieve 
nearly identical correlations between the masked 
and original data. Details of this iterative 
process are provided in Sullivan (1989). 

3.2. Back transforming the data to original scale 

Let Z* = [Z*(1), Z*(2) ..... Z*(p)] be the 
matrix of masked, transformed data, where 

Z = ( Z  j lj' Z2j ..... Znj) (3.5) 

is the vector containing the masked observations 
for the j-th transformed variable. To begin the 
back transformation, consider each vector of n 
observations, Z*(j) , separately. First, we 
define R*(j) to be the vector of ranks of the 
n observations of Z*(j) , with the rank "n" 
being assigned to the largest value. We create a 
normalized version of the elements of u*(j) by 
multiplying each u*(tj ) by 

n *2 - 1/2 [ ( n - l ) - 1  E ] 
t=l utj 

The normalized vector form of u*(j) is denoted 
by u +(j) . Further, we let D*(j) be the 
vector of normalized and adjusted ranks of 

Z*(j) . The t-th element of D*(j) is defined 
to be 

* -I* + 
Dtj = n [Rtj + ~(utj) ] , (3.6) 

for t=l, 2 ..... n , where R*(tj) is the rank 
of the t-th observation of the j-th variable 
and ~ is a continuous function mapping 

u+(tj) into (-i, 0). The ~[u+(tj)] values are 
perturbations to keep the D (tj) values from 
being the simple ranks divided by n . After 
these computations are performed for all p 
variables, we have 

D = (DI, D 2 ..... Dp) , (3.7) 

where D*(j) = [D*(Ij), D*(2j) ..... D*(nj)]" 

and D(tj) ¢(0, I) for t=l, 2 ..... n , and 
j=l, 2 ..... p . 

To convert the D*(tj) values to X*(tj) in 

the original scale, let P(0k) be the mean of 

the k-th original Bernoulli variable. The masked 
Bernoulli value for X(tk) , t=l, 2 ..... n , is 

Xtk = 0 if Dtk c (0, i- P0k ) 

= I if Dtk e (I - P0k' l) 

(3 .8 )  

3.3. Back Transforming Classification Variables 

The only remaining computation is to convert 
the sets of Bernoulli variables, created for the 
purpose of masking the classification variables, 
back to their categorical values. To mask the 
classification variable X having r 
categories, the Bernoulli variables W(tl) ..... 
W(t,r-l) are created for each response, X(t) 
(see Section 2.1). These responses to the 
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Bernoulli variables are masked and denoted by 
W*(tl), W*(t2) To determine W*(t,r-l~ 1 , X*(2) ..... 
masked categorical values, X ( ) 
X*(n) we first define Z*(tj ) as 

Ztj = Wtj for j=l 

j -1  
=[i- z ] 

i=l Ztj Wtj 

(3.9) 

for j=2 ..... r-i . 

Then X*(t) is defined as 

X = C. if Z = 1, t=l ..... n , 
t J tj 

where C(j) is the j-th category of the 
variable X . 

In the computer algorithm, additional 
iterations are carried out to improve the 
agreement between the structure of the masked 
data and the correlation structure of the 
original variables. 

4. EXAMPLE 

(3.10) 

We use the masking algorithm to mask a 
computer generated data set. The data set 
included a Poisson variable with parameter 
A = 1.8 , a standard normal variable highly 
correlated with the Poisson variable, and a 
classification variable having categories {I, 2, 
3, 4}. Large values of the Poisson and normal 
variables were associated with the first category 
of the classification variable, and small values 
of the normal and Poisson variables were 
associated with the fourth category of the 
classification variable. 

We will use the masked data set to study the 
correlation structure of the data sets within 
subgroups of the classification variable. The 
normal and Poisson variables are positively 
correlated with each other and nearly 
uncorrelated with the chi-square variable. 
However, the data were generated so that the 
correlation structure is very different in 
different subgroups defined by the classification 
variable. We will demonstrate that in such cases 
the correlation structures within categories of 
the classification variable are not retained 
through the mask. That is, the masking operation 
preserves global second moment properties, but 
higher order properties may be distorted. 

The computer generated data set consisted of 
300 observation vectors. Each vector contained a 
normal, a chi-square, a Poisson and a 
classification variable. The original data set 
has four variables, but the analysis vector has 
six variables, because the classification 
variable is transformed into three Bernoulli 
variables. In the masking operation, the 
variance of the error term, defined by the value 
of ~ in (3.3), was set to 0.3. 

In discussing the results of the mask, the 
variables X(1), X(2), X(3), and X(4) 
correspond to the standard normal, chi-square, 
Poisson and classification variables, 
respectively. We refer to the masked analogues 

X* , X* , X* of these variables as (I) (2) (3), and 
x*(4) . 

4.1. Cross tabulation of the classification 
variable 

We begin by considering Table 4.1 which 
contains cross tabulations for the original and 
masked classification variables, X(4) and 
X*(4) . In masking the classification variables, 
we did not guarantee that the frequencies for the 
categorical values of the original variable are 
the same as those of the masked variable. 
However, we see from the table that the 

Table 4.1. Frequencies for the original and 
masked classification 

X 4 

X 4 1 2 3 4 Total 

1 64 4 4 9 81 

2 4 19 3 4 30 

3 5 3 37 8 53 

4 8 7 6 115 136 

Total 81 33 50 136 300 

corresponding marginal row and column proportions 
are very similar. We also note that, of the 300 
categorical values that were masked, 65 or 21.67% 
switched categories in the mask. The algorithm 
created a new set of responses which differs 
substantially from the original set. 

4.2. Examination of overall correlation structure 
and cross correlations 

We continue our analysis of the masked data 
set by examining the correlations of the 
quantitative variables, X(1), X(2), and 
X(3) . Let R(XX) be the sample correlation 
matrix of the original quantitative variables, 
R(X*X*) be the sample correlation matrix of the 
masked variables and R(XX*) be the sample cross 
correlation matrix between the original and 
masked quantitative variables. The correlation 
matrices of the original and masked data sets are 

1 -0.0964 0.8137) 

RXX = -0.0964 1 0 0462 

0.8137 0.0462 1 

i -0.0895 0.7941 ) 

R~ = -0.0895 i 0 0468 

0.7941 0.0468 1 

We see that the correlation structures of the 
original and masked data sets are nearly 
identical. 

The sample correlations between corresponding 
variables in the original and masked data sets 
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are 

(r * , r * , r * )= (0.750, 0.758, 0.722) 
XIX I X2X 2 X3X 3 

The correlations are close to the target 
correlation of 0.74. 

4.3. Comparisons within subgroups of the 
classification variable 

We investigate the effect of masking the 
classification variable by looking at the 
structure of the quantitative variables within 
subgroups of the classification variable. 

We begin by considering the means and standard 
deviations of the normal, chi-square and Poisson 
variables within the four subgroups of the 
classification variable. The subgroup means and 
standard deviations for both the original and 
masked data sets are found in Table 4.2. The 
frequency counts for each category, given in 
Table 4.3, are the number from which the 
descriptive statistics were computed. 

Table 4.2. Category means and standard deviations 
for the normal, chi-square and Poisson 
variables 

Category 

Variable I 2 3 4 

X I 

X I 

0.764 0.261 0.369 -0.658 
(0.810) (0.628) (0.725) (0.848) 

0.728 0.321 0.398 -0.661 
(0.833) (0.776) (0.718) (0.846) 

X 2 

X 2 

1.232 0.450 0.652 1.148 
(1.489) (0.694) (0.794) (1.483) 

1.163 0.646 0.659 1.168 
(1.466) (0.834) (0.863) (1.569) 

X 3 

X 3 

2.975 1.933 2.358 0.882 
(1.193) (0.980) (1.039) (0.870) 

2.827 2.242 2.340 0.912 
(1.212) (1.061) (1.287) (0.839) 

Table 4.3. Frequency counts for categories of 
the original and masked 
classification variables 

Category 

Variable I 2 3 4 

X 4 81 30 53 136 

X 4 81 33 50 136 

As expected, we observe more disparity between 
corresponding variable means and standard 
deviations of the two data sets for subgroups 
having smaller frequency counts. For example, 
the subgroup means and standard deviations for 
the fourth category are very similar for the chi- 
square and Poisson variables, and nearly 
identical for the original and masked normal 
variables. The corresponding original and masked 
variable means and standard deviations for the 
second category differ much more than those of 
the fourth category. All differences are small 
relative to the standard errors. 

Let us now investigate the correlation 
structure of the quantitative variables. Before 
giving the four correlation matrices 
corresponding to original data values within the 
subgroups of the classification variable, we 
explain why these matrices will differ. 

The chi-square variable, which is the square 
of the normal variable, is nearly uncorrelated 
with the normal and Poisson variables. Within 
subgroups of the classification variable, 
however, the chi-square variable is correlated 
with the normal and Poisson variables. Within 
the first category, the chi-square variable is 
positively correlated with the other two 
variables. This follows from the fact that 
records belonging to the first category have 
large positive Poisson and normal values and, 
hence, large chi-square values. Records in the 
fourth category are associated with small values 
of the normal and Poisson variables. Hence, the 
chi-square variable is negatively correlated with 
the normal and Poisson variables in the category 
"4" subgroup of the classification variable. 
Though not interpreted easily, the correlation 
structures for the second and third categories 
also differ from the correlation structure of the 
entire data set. The four correlation matrices 
corresponding to data vectors belonging to the 
four categories of the classification variable 
are exhibited below, where R[XX(j)] denotes the 
correlation matrix of data vectors for which 
X(4) = j . 

We anticipate that the correlation matrix for 
the j-th subgroup of the original data set will 
differ from the correlation matrix for the j-th 
subgroup of the masked data set for the following 
reason. In masking a data set, the algorithm 
adds error vectors to the transformed data 
vectors. The error vectors have a covariance 
matrix which is a multiple of the covariance 
matrix of the total data. That is, a transformed 
data vector which belongs to the first subgroup 
of the classification variable has an error 
vector added which has the same covariance as an 
error vector added to a transformed data vector 
belonging to the fourth subgroup. Hence, the 
correlation matrix for the original data in the 
j-th subgroup will differ from the correlation 
matrix of the masked data belonging to the j-th 
subgroup because the original correlations within 
subgroups are not equal to the overall 
correlation. 

We give in Table 4.4 the correlation matrices 
for the original data and for the masked data for 
the four categories. 

In this discussion of subgroup correlation 
matrices, we have demonstrated that a user of a 
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Table 4.4. Correlation matrices of original and 
masked data by category 

Cat. Original Masked 

1.00 O. 88 O. 70 
0.88 1.00 0.64 
0.70 0.64 1.00 

i.00 -0.33 0.57 
0.33 1.00 -0.18 
0.57 -0.18 1.00 

1.00 0.74 0.70 
0.74 1.00 0.58 
0.70 0.58 1.00 

I 
I.00 -0.78 0.73 
0.78 1.00 -0.45 
0.73 -0.45 1.00 

!.00 0.31 
31 1.00 
84 0.32 

I! 
.00 -0.01 
01 1.00 
65 0.37 

1.00 0.09 
0.09 1.00 
0.97 -0.05 

I 
i.00 -0.33 
0 33 1.00 
0 55 -0.04 

0.84 
0.32 
1.00 

0.65 
0.37 
1.00 

0.97) 
-0.05 
1.00 

0.55! 
-0 04 
1.ooj 

microdata release masked by our algorithm cannot 
be guaranteed that a non-random subset of the 
masked data will be statistically representative 
of the same non-random subset of the original 
data. Specifically, we focused on subsets 
defined by categories of a classification 
variable in the data set. We also saw that if 
the frequency count of the subgroup is relatively 
large, the subgroup mean and standard deviation 
of the masked data set tend to be similar to the 
original subgroup mean and standard deviation. 
However, we cannot expect the same agreement from 
the subgroup correlation matrices of the original 
and masked data sets. In general, when a data 
set is masked by our algorithm, statistical 
relationships between variables within a non- 
random subset are not preserved. In such cases, 
the sophisticated user can recover the correct 
covariance matrix using measurement error 
techniques. See Fuller (1987). Our example was 
extreme in that we constructed it to have very 
different correlation structures in different 
subsets. 
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