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1. Introduction 

The Bureau of Labor Statistics' (BLS) Current 
Employment Statistics (CES) Survey gathers data monthly 
from over 340,000 nonagricultural business establishments 
for the purpose of estimating total employment, women and 
production workers, hours, and earnings. Estimates are made 
for over 1500 industry cells, complementing the demographic 
detail provided by estimates of employment from the Current 
Population Survey. Current monthly estimates of 
employment level and month to month change in 
employment are of primary importance to the users of these 
data. In addition to the CES survey, each state conducts a 
complete count of the employment of its business population 
every quarter following the guidelines of the Unemployment 
Insurance (UI) system. Except for a few industries exempt 
from UI coverage, this complete count is used by the CES as 
a benchmark to which survey estimates are revised and to 
which they are compared to derive a measure of error. 

This paper compares the current estimator, called the link 
relative (LR) estimator, and a proposed estimator called the 
Link 90 (L90) for estimating employment level. The sample 
data collected in the CES survey, often subject to 
considerable nonresponse, are used in this empirical 
comparison. 

The sample of business establishments used in this survey 
is substantially fixed over time and is composed of most 
large establishments, with a less extensive sample of smaller 
establishments. The CES sample is obtained by soliciting 
businesses establishments until a "sufficient" number agree to 
participate, and thus no sampling distribution (or response 
mechanism) can be assumed. Variability is largely due to 
nonresponse, and in the simulation studies to be described 
later, the sample will be fixed and the response mechanism 
will be the sole source of variability between replicates. 

The CES survey and the LR estimator have been studied 
in depth over the last two decades by Royall (1981), Madow 
and Madow (1978), West (1982, 1983), and Woodruff (1982, 
1983, 1989). Newer methodologies which take advantage of 
advances in data processing capabilities are being developed 
for this survey. The proposed L90 is one such estimator, 
which would have been infeasible four or five decades ago 
when the LR was adopted for the CES survey. 

Both the LR estimator and the L90 make use of known 
relationships between employment during adjacent months in 
a business establishment, but the L90 makes fuller use of 
available sample data: To be included in the link between 
two adjacent months, a unit must have responded for these 
months by the time that link is computed. Thus, sample 
units which have data for only one of these two months will 
have their data excluded from the LR estimator, making it 
inefficient for estimating the most current months' 
employment. The L90 solves this apparent inefficiency by 
making direct use of the strengths of the LR estimator and 
designing around its weaknesses. Both estimators use the 
well-documented [West (1982, 1983), Madow and Madow 
(1978)] relationship that the conditional expected value of 
employment in month k for an establishment, given its 
employment in month k - l ,  is proportional to its employment 
in month k-1. 

Considerable research has been done into the LR 
estimator and, in spite of certain problems with it that have 
been pointed out by most of the above authors, nothing 
sufficiently better to justify large-scale operational changes 
has been found to replace it. This research may have similar 
results, but preliminary testing suggests that the proposed 
L90 merits serious consideration. 

Section two describes the flow of CES sample data into 
the BLS and how they are then used to construct a series of 
estimates of total employment for a given month. Section 
three describes and derives the L90. Section four describes a 
simulation study to compare the two estimators. 

2. CES Data Flow 

The CES survey is used to estimate employment level and 
the change in employment each month. Establishments 

report data for the pay period that includes the 12 th of the 
month. Employment level is determined once a year from 
the complete count, or benchmark, of businesses conducted 
by the states' unemployment insurance system. 

An employment link for a basic estimating cell (a 
combination of industry and size categories) for month j is 
the quotient of total employees for month j in the current 
matched sample (all sample units that have data for both 
month j and the previous month, j - l ,  and that have passed 
certain edits) and total employees for month j -1 in this 

matched sample. Denote this link ~i" The LR estimate LR i 
A 

J J 

of employment for a basic cell for month j is the product of 
this link and the LR estimate for the previous month, LRj_ 1. 

A 

Thus LRj = 13j LRj_ 1. By convention, we let j=0 denote the 

benchmark month and LR 0 the benchmark employment for 

the cell. 
The first estimates of employment computed for the 

current month are preliminary figures based on the initially 
available microdata in the current matched sample. These 
are called first closing estimates, based on the 50% or so of 
sample reports received by the closing date for the current 
month. Before the preliminary employment estimates for the 
current month are computed, more complete matched sample 
totals for the previous month are obtained; that is, reports of 
last month's data not received in time to be included in last 
month's first closing estimates are added. These augmented 
matched sample totals are used in recomputing both links 
and LR estimates for the previous month and determining the 
revised estimates for that month. This link uses data from 
about 70% of the sample units. These second closing 
estimates for the previous month are then multiplied by the 
current link to obtain f~rst closing estimates for the current 
month. The extension to third closing estimates is 
immediate: These incorporate data not received by the cut 
off date for second closing estimates and are based on data 
from about 90% of the sample reports. Given this piecemeal 
(over time) arrival of sample data, it would be appropriate to 

place a second subscript, t, on ~j and LRj. For example, ~jt 

would denote the link for month j computed from all 
matched data available at time t. To minimize notational 
clutter, we omit this subscript, trusting that the value of t will 
be clear from context. 
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Note that the LR estimator for month m uses only sample 
data for month m and earlier months and ignores much of the 
nonmatched data. The proposed L90 uses all of the sample 
data which pass the edits, and for second and third closing 
estimates for month m the L90 uses not only past and current 
CES data but also data from months m+ 1 and m+2. 

3. Model and Estimator 

We use two types of information to design an estimator. 
The first type of information is numerical data, which is 
expressed as a row vector, Yi' attached to each unit i in the 

population of N units. This row vector consists of two 
subvectors, A i and T i. The first subvector, A i, consists of 

the auxiliary variables, often defined as those items known 
for all units in the population. The second, T i, consists of 

the target variables, the finite population means of which we 
wish to estimate. These targets are observed for only a 
sample of the population units. Because of nonresponse, a 
subset of the targets is missing for each sample unit, so the 
subset of observed targets varies from sample unit to sample 

unit. In our CES application, A i is a scalar and T i is a 1 x l 

vector. 
The second type of information relevant to estimator 

design is knowledge about the relation between the above 
types of data and the population characteristic we wish to 
estimate. This information is usually expressed through 
modeling. The models may include relationships between 
the study characteristic and the method by which data were 
either observed or missing for a population unit, relationships 
often expressed as sampling distributions or response 
mechanisms. Another useful type of data relationship is the 
one between the data items themselves. Such relationships 
can often be adequately described in terms of the covariances 
between pairs of random variables representing pairs of 
different data items (auxiliary and target variables). These 
covariances are derived from superpopulation models. 

We can represent the observed (responding) targets and all 

the auxiliary variables for the i th population unit as Yi = 

(A i, T i %i ), where )~i is the l x IRi response indicator matrix 

for the 1 x l row vector of target variables T i attached to the 

.th 1 sample unit. The term lRi is the number of variables in 

Yi for which there are responses; necessarily, IRi < l .  Zi is 

constructed from the identity matrix of order l by deleting 
each column j of this identity matrix for which target 

variable j in T i is a nonresponse. Thus Yi contains the i th 

unit's auxiliary variable(s) and only those target variables we 

observed for the i th unit. We let g = (/.tA; g:l.) be the vector 

of auxiliary and target means. The mean of the auxiliary 
variables, l.t A, is known. The mean of the target variables, 

gT' is to be estimated. Letting I be the identity matrix of 

order equal to the number of auxiliary variables (components 

[ ~ 0 ], we can also write of an Ai) and X i = Zi 

Yi =(Ai '  Ti ~ ) =  (Ai' T i ) [ ~  ~i] = (Ai ' Ti)Xi" 

If we add in an error term e i to model the difference between 

realized and expected values of the components of Yi' we 

can write 
Yi = (gA' gT ) Xi + Ei 

where E i ~ (0, Xi~X i) and var(Y i) = Xi~X i. 

Following Woodruffs (1989) paper, we summarize all 
available relevant information (population data, sample data, 
and the stochastic relationships between these data items) for 
all n units in the sample with data for at least one target 
variable in a linear model: 

[Y1 ..... Yn ] = [/'tA' gT][Xl ..... Xn] + [el ..... en] 

where [e I ..... en] , - - [ 0 , ~ y ]  (1) 

or, writing this in a more compact form: 
Y = g X + e where 
e has mean zero and covariance matrix Z y  and 

~ y  is the diagonal matrix of the {XiZXi}, where 

Z is the covariance matrix of (Ai,T i) . 

Any known data relationship,_.s can be included in (1) 
through the covariance matrix 2.,. For the Bureau's CES 
survey, a well-documented superpopulation model places 
strong restrictions on the form of ~.  

The linear relation given by (1) is the summary model. It 
would be possible to compute the generalized least squares 
(GLS) estimator of I.t from this expression and extract the ^ 
gT--components to estimate gT" It is often the case, 

however, that the target variables T i have a conditional 

relationship, E(TilAi), that can be used to improve 

estimation. Auxiliary variables, data items known for every 
unit in the population, are used to adjust for the particular 
sample selected and the responding items in this sample. For 

noninformative sampling designs (Cassel, S~irndal, and 
Wretman, 1977) the sample indicator variables, conditional 
on the sample outcomes of the auxiliary variables, are 
independent of the target variables. Hence, conditional on 
the auxiliary variable outcomes, the sampling distribution is 
irrelevant to estimation of the target variable means for such 
designs. In the case of CES, the sampling distribution is 
unknown because a non-probability design is used. It is 
fortunate and necessary that we can condition on an auxiliary 
variable and thereby compensate for most of the influence 
that the sampling mechanism may have on estimation. 

We adjust for the sample selected by regressing on the 
auxiliary variable, exactly analogous to the univariate 
regression estimator (Cochran, 1977). The least squares 
linear regression estimator of T, a single target variable, on 
A, a single auxiliary variable, is 

^ _ 2 A T = T + ( O T A / O  )[l.t A - N ]  
In the multivariate case, we partition the covariance matrix 
of (Ai,Ti) to reflect the covariances between the auxiliaries 
(to which o~ refers) and targets (to which [3 refers) 

comparable to OTA and o I above, writing it as 

Just as the univariate regression estimator conditions on the 
known auxiliary data, we can transform the target variables 
as 

Z i = [T i - (A  i - ~ A  ) ~ 1  ~ot[3] ~--i" 

The conditional mean and variance of Z i are E(Zi I Ai) = 

~q. Zi and V(Z i I Ai) = Zi ( Z ~ -  Zl3a Z~ 1 Zet[3)~i 
= 7~ Y',• Z i , where the last equality defines Y'8" We then let 

5 i model the difference between realized and expected values 
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of the components of (Z i I Ai), writing 

Zi = ~F 7fi + ~i i. 
Summarizing this over all sample units, we have 

[Z 1 ..... Z n] = ~17 [Z 1 ..... X n] + [~51 ..... ~i n] 

where [~i 1 ..... ~in].. " [ 0 ,  X Z  ] 
(2) 

or, in a more compact form, 
Z = I.t T X + ~5 where 

X = [Xl ..... Xn]' 
~5 has mean zero and covariance matrix ~ z '  

X z is the diagonal matrix of the {X i ~ i  X~}, 

and 

From (2), a GLS estimator for ta.i,, together with its variance, 

is 
^ 1 1 
~t T = Z ~-z  Z' (X ~'--z z ' ) - I  

1 with variance (X; ~7- z X') -1  

Although we don't know Y~z ' it is a function of Y., the 

covariance matrix of (A i, Ti). ~ can be accurately estimated 

by using the Markov superpopulation model, to be defined 
below, that describes CES data. 

For this CES application, one auxiliary variable and four 
target variables were used. The four target variables for an 
establishment in month j are its employment in the previous 

four months, months j -4 ,  j -3 ,  j -2 ,  and j -1 .  The auxiliary 
variable is the establishment's employment in month j -5 .  
Although it is not technically an auxiliary variable, special 
features of CES data flow, explained in the last paragraphs of 
this section, allow us to treat employment in month j -5  as 
such. 

Next we need 52, the covariance matrix of (A i, Ti). The 

model relating the components of (A i, T i) = 

(Ai, Til  , Ti2, Ti3, Ti4) follows: 
For all i, let 

A i = 130 + Xi0 ' 

Til = 131Ai + ~'il' and 

Tlj = 13iTi i_ 1 + Xii for 2 < j < 4. 

The {13j} are unknown constants. The {0~i0,)~il .... ki4 )" 
d "d - j  

1 < i < N} are lid random vectors with mean zero and 
diagonal covariance matrix. The variance of ~'ij exists for all 

j and thus 
xj = E(V(TijlTi,j_I)) = E(V(XijlTi,j_I)) 

exists for all i and j > 1. Let x 0 = 4 be the variance of A i. 

It follows from the above superpopulation model that if 

we denote the diagonal entries of ~ as { 4 '  ~1' ~2' ~3' ~4 }' 

where c 2 = V(Tij) for all i and for 1 _< j <_ 4, then 
.1 

off-diagonal entries are given by 
k-1 
"T--Ir"  

(Y')ik =~21-1 llj=l ~j for l _< i <_ 5, i < k < _ 5 ,  

where the { 13 i } are given above. 

The inverse of this covariance matrix is tridiagonal with 
diagonal entries given by 

2 (~,--1)jj = 1 / xj_ 1 + 13j / xj for 1 < j < 4 (*) 

except for the last diagonal entry, which is 

(~--1)4,4 = 1 / x 4 , (**) 
and immediate off--diagonal entries given by 

('~--1)j,j+ 1 = (~'--l)j+l, j = - 13 j / x j  

for 1 < j < 4 (***) 
All other entries are zero. 

The coefficients {13 i } relate adjacent months' employment 

data and are estimated with the ratios of employment totals 
for those two adjacent months from sample units reporting 

for both months. Recall from section 2 that the links {~i} 
A 

are used to estimate these {[Sj}. The variance of A i, x 0, is 

estimated from the benchmark historical data, and for j > 0, 
A 

is estimated from the {[3 i} by noting that for all i, zj 
q , P  

= E[E((TiI, j - JI31Ti,j-1)21T ,j_l )] is a quadratic in 13 i. In xj 

particular, we have observed from historical CES data t[aat xj 

is approximately at a minimum when 13j = 1 and increases as 

3j moves away from 1 in either direction. For the population 

being considered in the simulation study of section 4, 
2 10,000 and xj =28,000 ~i - 5 6 , 0 0 0  [3 i + 28,060. 
J J 

the estimated links {~i } into this expression, we Substituting 
q d  

A 

obtain the estimates {x i }. The starred equations above yield 

an estimate of ,~,--1, and inverting it produces ~ .  
In our CES application, Ix A is unknown, as is the value of 

A i for some sample units. Fortunately, good estimates of 

both are available for the case of the CES survey, as we next 
explain. Supposing that the current month is March, the 
vector (A i, T i) for establishment i consists of its employment 

values for October through February. A i is the employment 

for October, while T i is made up of the employment for 

months November through February. By March, 95% of the 
sample units will have reported their November employment, 
with similarly high cumulative response rates attained for the 
months preceding November. Given this relatively high 
response for months prior to November, the links for these 
long-past months will be based on about 90% or better of 
the sample units, and the LR estimator will approximately 
reduce to the simple ratio estimator for November and prior 
months. That is, it will do an excellent job at estimating 
total employment for five months or more into the past, and 
in particular it provides a good estimate of I.t A. This 

property of the LR estimator under CES data flow will allow 
us to use the estimated employment for the fifth month back 
as a pseudo-auxiliary variable. 

Because of nonresponse, the auxiliary variable may not be 
available for each sample unit. We use a backwards 
predictor from the target variables that are observed for the 
particular sample unit to impute for a missing auxiliary 
variable. This predictor uses the reciprocals of the same 
links used in the LR estimator, linking backward from the 
responding target closest (in time) to the auxiliary variable. 

For example, consider a sample unit with data missing for 
one and four months ago and available for two and three 
months ago, for which the response vector is (0, 1, 1, 0). 
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Continuing with the set-up of the previous example, this 
sample unit has data for December and January but no data 
for November and February. Suppose this sample unit has 
no data for the auxiliary variable, October employment. We 
use the estimates of the October-November and 

November-December links (say, ~ON al,d ~ND ) to predict 

the unit's auxiliary variable with 1 / ~ON x 1 / ~ND x T D 

where T D is the December employment for the unit. 

Thus, establishment employment from five or more 
months in the past can be treated as an auxiliary variable 
because we can predict the missing employment data, and 
the LR estimator can be used to estimate the auxiliary 
variable population mean. This completes the definition of 
the L90 estimator with four target variables. A L90 with m 
targets is defined in an analogous manner. 

4. A Simulation Study 

A file containing six years of CES microdata from some 
300,000 business establishments is available for research 
purposes. From this file we extracted 27 months (March 
1986 to May 1988) of employment data on 3108 department 
stores for our initial simulation study. We extracted data 
only for those units that had reported their employment for 
all 27 months. To the extent that such conscientious 
reporting is anomalous, these units do not represent the 
actual CES universe. We then stratified them into two 
groups, those reporting fewer than 500 employees in March 
1986 (2911 units) and those reporting more than 500 (197 
units). 

Twenty-seven months is the length of a complete CES 
estimation cycle. A new estimation cycle begins each June, 
at which time a newer set of benchmark employment counts 
becomes available. Estimates which had been computed by 
linking forward from the March two years and three months 
in the past are recomputed by linking forward from the 
newer set of benchmark counts, which refer to the March one 
year and three months ago. From June until the following 
May, the estimates link forward from these benchmark 
counts. The cycle re-starts the following June with the next 
set of newly available March benchmark counts. 

The simulation results are tabulated for June 1987 to May 
1988. During this time interval, the LR estimator used 
March 1986 benchmark counts. Prior to the arrival of the 
1986 benchmark data, LR estimates are computed by linking 
forward from March 1985. After the March 1986 benchmark 
data are available, the employment estimates for April 1986 
through March 1987 are re--calculated by linking forward 
from March 1986 data, using links computed from more 
nearly complete sample data (typically more than 90% 
complete). These re-benchmarked estimates are called 
fourth closing estimates. Based on nearly complete data, 
these fourth closing LR estimates for April 1986 to March 
1987 are quite good, and the L90 does not attempt to 
compete with them. Only the fin:st, second, and t~ ird closing 
estimates for June 1987 to May 1988, which must use less 
complete data, are of interest here, and it is here that the L90 
and LR are tabulated. 

Data arrive in a piecemeal fashion, making it necessary to 
update the three most current estimates of total employment 
each month. Recall that for each sample unit and month we 
have a closing code between one and five. A closing code of 
one (flu'st closing) means that the sample unit's employment 

report for the given month arrived at the Bureau by the 12 th 
of the following month (that is, by the first closing date). A 
code of two means that the report arrived within the month 
after the fin'st closing date (that is, by the second closing 
date). A code of three means that the report arrived during 
the next month (two months late), four that it came in after 

that but before the following March, and five that it came in 
some time after the following March (for all practical 
purposes, a non--respondent). Our use of closing codes of 
four and five departs from actual CES practice: in the 
simulation, a code of four indicates a unit for which data 
arrived three months late, while a code of five indicates one 
for which data never arrived. For example, first closing 
employment estimates for August are computed soon after 
the first of September and incorporate first closing data for 
August, first and second closing data for July, first, second, 
and third closing data for June, and all data not coded five 
for months prior to June. In September, first closing 
estimates for August are computed, second closing estimates 
for July, and third closing estimates for June. These third 
closing estimates are based on nearly complete data. 

The simulation studies attempt to capture the data flow 
and estimation process for June 1987 to May 1988. To 
simulate the process, we used the sample file of 2911 
department stores with March 1986 employment below 500 
as a universe and selected a systematic sample of 485 units 
after sorting the file by March 1986 employment. Recall 
that the CES sample remains substantially fixed over time, 
aside from attrition and replenishment, and does not result 
from any known probability design. This sample was fixed 
for all replications of the estimation process, and simulation 
variability was generated by random generation of closing 
codes for all 27 months and for all 485 sample 
establishments. 

An important problem for CES estimation is delayed 
reporting, especially on the part of large units. This means 
that fn'st closing estimates are often based on data from only 
half the sample units. Second closing estimates are usually 
better because they are usually based on data from 70% or 
more of the sample units. The ,L90 was developed to 
improve first and second closing estimates. 

We used the fixed sample of 485 units in replicating the 
data flow and estimation cycle from March 1986 to May 
1988, generating for each replication fresh closing codes for 
each unit for each of the 27 months. The closing code 
probabilities for three response mechanisms (RM 1 - RM 3) 
are given in Table 1. In the CES survey, small units tend to 
respond before larger units. The random mechanisms used to 
generate closing codes attempt to mimic this phenomenon by 
giving different closing code distributions to sample units 
depending on their March 1986 employment (whether > 200 
or < 200). 

For each replicate of a full set of closing codes on the 485 
sample units, we calculate first, second, and third closing 
estimates for both the LR and L90 for each month from June 
1987 to May 1988. Note that these estimates depend on 
fourth closing estimates computed for April 1986 through 
May 1987, which are also computed for each replicate. We 
can estimate mean square error (MSE) by comparing these 
estimates with the actual population values from all 2911 
units. 

For each response mechanism, we summarize these results 
in a table. Tables 2, 3, and 4 give ratios by month and 
closing of estimated MSE(L90) to estimated MSE(LR). The 
second half of each of these tables gives, for each month, the 
ratio of the revision for the L90 to that of the LR as well as 
the proportion of times this revision was smaller for the L90 
than for the LR. These statistics are explained in greater 
detail below. 

The first response mechanism, RM 1, is an extreme case. 
In practice, units seldom respond to the CES survey this 
slowly. RM 2 is a good approximation to usual response 
behavior. RM 3 is another extreme case, where the 
difference in response behavior between small and large 
firms is more severe than we have observed historically. 

Table 2 summarizes the results of 50 replications of CES 
data flow and estimation under RM 1 (fourth closing 
estimates for March 1986 to May 1987; first, second, and 
third closing estimates for June 1987 to May 1988). The 
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ratios MSE(L90) /MSE(LR)  are tabulated for every other 
month from June 1987 to May 1988, and for fu'st, second, 
and third closing (MSE behavior for months not tabulated is 
essentially identical and is omitted to avoid data clutter). 
This table shows the greatest gain from using the L90. This 
is just as the theory predicts; the L90 thrives on nonresponse, 
compared to the LR. 

Tables 3 and 4 are based on 100 replications of RM 2 and 
RM 3 respectively. The MSE ratios are closer to one in 
these tables, where far less nonresponse is modeled. For all 
three response mechanisms, the number of replications was 
sufficient to assure that a 99% confidence interval for 
MSE(L90) / MSE(LR) did not include the value 1. Note that 
by third closing the MSE of the two estimators is similar. 

The second part of each of tables 2, 3, and 4 summarizes 
ratios of average first-to-second closing absolute revisions 
and relative incidence of small revisions for each month. For 
example, under RM 2 for September 1987, Table 3 shows 
that 60 of the 100 absolute first-to--second closing revisions 
for September 1987 employment estimates were smaller for 
the L90 than for the LR. Table 3 also shows that for 
September 1987 the average absolute revision for the L90 
was 3/4 of the average absolute revision for the LR. 

Table 5 summarizes the incidence of large 
first--to-second closing revisions for each response 
mechanism and estimator. A revision is defined as large if it 
is greater than 1% of total employment. For example, for 
RM 2 we have 1100 first-to-second closing revisions (100 
replications by 11 revisions m no second closing estimates 
for months after May 1988 were computed, so there were 
first- to-second revisions for June 1987 to April 1988 only). 
Of the 1100 revisions, in only one case were both LR and 
L90 large. In 33 cases L90 was small and LR large; in six, 
the other way around. Both produced small revisions in the 
remaining 1060 cases. 

These incidences of large revisions show the most 
extreme differences between the two estimators. In 
summary, for every large L90 revision one should expect 
five or six large LR revisions. 

Table 1. Closing Code Probabilities 

Closing Code 1 2 3 4 5 

Response Employment 
Mechanism Category 

< 200 .30 
1 > 200 .25 

.25 .30 .10 .05 

.25 .25 .20 .05 

<200 .55 .15 .20 .05 .05 
2 >200 .45 .20 .25 .05 .05 

<200 .60 .15 .10 .06 .09 
3 >200 .35 .25 .25 .10 .05 

Table 2. Estimated Mean Square Error Ratios 
and Revision Ratios and Rates by Month 

Response Mechanism 1 

MSE by 
closin~ 

first 
second 
third 

Jul 87 Sep87 Nov 87 Jan 88 Mar 88 May 88 

• 60 .68 .51 .38 .68 .48 
• 95 .98 .86 .97 .76 .66 
• 97 1.04 1.01 1.01 .86 .91 

Revision 
ratios 
rates 

• 67 .64 .62 .56 .80 
.64 .70 .72 .74 .62 

MSE by 
closing 

first 
second 
third 

Table 3. Estimated Mean Square Error Ratios 
and Revision Ratios and Rates by Month 

Response Mechanism 2 

Ju187 Sep87 Nov 87 Jan 88 Mar 88 May 88 

• 67 .90 .79 .65 .87 .88 
• 88 .89 .91 .97 .85 .92 
• 98 .97 .99 .99 .93 1.03 

Revision 
ratios 
rates 

• 62 .60 .57 .66 .62 
• 74 .75 .76 .71 .78 

Table 4. Estimated Mean Square Error Ratios 
and Revision Ratios and Rates by Month 

Response Mechanism 3 

MSE by 
closina 

v 

ftrst 
second 
third 

Ju187 Sep87 Nov 87 Jan 88 Mar 88 May 88 

.74 .93 .75 .69 .75 .83 

.98 .93 .94 .89 .67 .87 
• 99 .97 .98 .96 .86 1.0 

Revision 
ratios 
rates 

• 53 .60 .58 .69 .57 
• 87 .80 .72 .69 .84 

Table 5. Incidence of Large Revisions by Estimator 

LR 
Response Response Response 

Mechanism 1 Mechanism 2 Mechanism 3 

L90 
Large 

Large Small Large Small Large Small 

30 15 1 6 2 7 

Small 90 415 33 1060 44 1047 

Total 120 430 34 1066 46 1054 

L90 

Totals Across Mechanisms 

LR 
Large Small Total 

Large 33 28 I 61 

Small 167 2522 I 2689 

Total 200 2550 2750 

5. Conclusions 

This paper develops a concrete application of a 
multivariate estimation technique, for minimizing the 
negative effects of nonresponse in sample surveys. The 
technique makes use of the multivariate relationships 
between different data items to develop an estimator, the 
L90, for the Bureau's Current Employment Statistics survey. 
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This work extends some theoretical estimation work, 
Woodruff (1989), to estimation under the far greater 
complexities of CES data flow. 

These complexities introduce parameter estimation 
problems for which workable solutions were found 
(section3). These solutions may themselves be of 
theoretical interest, as they extend slightly the definition of 
auxiliary variable (and covariate), or rather muddy the 
difference between target and auxiliary variables. 

If the bottom line is the reduction of mean square error, 
then the L90 is an improved CES estimator. It makes better 
use of both the available data and the known relationships 
between data items and results in a reduction in variance and 
closing revisions. Unlike the LR, it also provides us with a 
measure of its variability. 

The current CES estimator, the LR, has been in use since 
the 1940's. It is simple and intuitive, and it does an excellent 
job, despite minor shortcomings. It is, in fact, a special case 
of the L90 estimator with T i consisting of a single target 

variable. Its shortcomings can yield to the revolution in 
computing power that has occurred in the decades since the 
LR was developed. The L90 estimator would have been a 
computational impracticality at the time the LR was adopted 
by the CES survey. 

The testing described in the simulation section of this 
paper is still preliminary. Results are encouraging, but 
similar results need to be obtained for many industries and 
size classes. Other factors not considered here were the 
effects of sample imbalance and other response mechanisms. 
Finally, the LR and the L90 need to be run in parallel and 
compared in monthly production runs of CES estimates. 

The L90 provides greater flexibility than the LR for 
coping with several recurrent CES estimation problems. 
Some of the problems are these: 

1) Response probabilities strongly correlated to the 
quantities being measured. The effect of these correlations 
on bias in the estimates can be reduced by adapting the L90 
along the lines given in Woodruff (1989). 

2) The need for estimates of precision of published CES 
estimates. Because the L90 is a GLS estimator, GLS 
methodology gives an estimate of its variance. 

3) Adaptability of the estimator to varying rates of data 
flow. It is easy to vary the number of target variables in the 
L90 by estimation cell to achieve an optimal fit. This may 
prove efficient as improvements in data collection increase 
f'u'st closing response rates. 

4) Ability of the estimator to measure sudden economic 
shifts. The L90 is better at picking up such changes than the 
LR. 

Some considerations for further research include these: 
1) Bias adjustment for the LR and the L90. Both 

estimators appear to be unbiased under a fixed universe. 
Most of the historically observed bias in these estimators 
probably comes from births and deaths in the population of 
business establishments. 

2) The effect of introducing probability sampling 
techniques on the series of CES estimates. 

3) The magnitude of revisions of the L90 in cases where 
those of the LR are large. 
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