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1. INTRODUCTION 

When the minimization of mean square error (or 
variance) is a primary criterion for chosing an estimator of 
means or totals, then second moment estimates are often 
necessary too. Some examples of this are composite 
estimators where the component weights are functions of the 
component variances, generalized least squares estimators 
where an estimate of a covariance matrix is required, and the 
normal EM-algori thm where the sufficient statistics are 
functions of first and second moments. In summary, 
estimation of first moments is often intertwined with 
estimation of second moments. In cases where variances are 
not required in the first moment estimators, it may be 
necessary to estimate the variance of these first moment 
estimators, and this will require second moment estimates. 

The variances of second moment estimators are 
generally functions of population fourth moments and thus 
these second moment estimators can be very unstable. In 
some cases data relationships expressed by superpopulation 
models can impose restrictions on variance/covariance 
structure and suggest variance/covariance estimators, which 
themselves have relatively small variance. We consider a 
case where this information takes the form of a Markov 
superpopulation model which specifies that the expected 
current value of an item for a population unit is a function of 
the realized value of that item in the immediate past. For 
example, a manufacturer's expected output this year may be 
roughly proportional to his actual output last year. Such 
relationships can be expressed in terms of regression 
superpopulation models, and these models imply restrictions 
on the covariance matrix of the random variables that 
describe this longitudinal data. These restrictions can reduce 
the number of parameters and second moment terms that 
need to be estimated. 

This paper expands on two other papers by 
Woodruff (1989) and Johnson and Woodruff (1990). Both 
these papers apply one of the covariance matrix estimators 
analyzed here to generalized least squares estimation of finite 
population means and totals in the Bureau of Labor Statistics' 
(BLS) Current Employment Statistics (CES) survey. 

The CES survey is the Bureau's largest employment 
survey. It measures total national employment each month in 
about 1500 industry cells. Every month, the Bureau publishes 
estimates of total cell employment for past reference months 
based on all the CES survey data that is available for survey 
reference periods one, two, and three months in the past. Due 
to delayed reporting, this short time between reference date 
and initial publication date (one month) means that initial 
CES employment estimates may be based on relatively few 
sample units (often only about half) and as time passes and 
more data arrives, substantial revisions to these initial 
estimates are sometimes necessary. An estimator developed 
for the CES survey which depends on the model based 
covariance matrix estimator studied here can substantially 
reduce these revisions. 

To summarize the data flow, we can say that within 
one month of the reference date about half the units have 
responded, within two months this proportion is about three 
quarters, and within three months it is about nine tenths. 

All the sample data that is available for the m most 
current months for the n sample units in an estimation cell 
can be summarized in an nxm matrix, M, with missing 
entries, where an entry is missing if a given sample unit (row 

of M) did not have data for a given reference month (column 
of M). 

In the next section, a regression superpopulation 
model for M is described. This model is similar to the 
superpopulation models considered by Royall and 
Cumberland (1981a). An improved estimator of employment 
level in the CES survey, Johnson and Woodruff (1990), 
requires the variance/covariance matrix, 2 ,  defined in this 
model. This paper describes an estimator of 2 based on the 
regression superpopulation model (REM estimate) and 
compares it empirically with the estimator of ~ from the 
Normal EM-algori thm (NEM estimate). Little and Rubin 
(1987) give a clear and complete description of the Normal 
EM-algori thm (NEM). For more detail on the EM-algori thm 
see Beale and Little (1975) or Dempster and Laird (1977). In 
the simulation study, absolute error of the two estimators is 
compared. 

The REM estimate of 52 uses additional stochastic 
structure beyond the multivariate normality from which the 
NEM is derived. Thus, it is not surprising that the REM has 
smaller absolute error than the NEM for estimating ~ .  
However, the size of this reduction in absolute error is 
surprising. 

Although this application of a regression 
superpopulation model to derive the REM covariance matrix 
estimate may be of marginal interest in itself, this REM 
estimate is an important component of the GLS estimator 
(Link90) described in Johnson and Woodruff (1990). In 
addition, it is computationally far cheaper than the NEM 
estimate since it does not involve iterative recomputations, 
possibly several hundred, to convergence. 

2. THE NORMAL EM ALGORITHM AND THE MODEL 
ENHANCED ALTERNATIVE 
In this section we describe the Normal 

EM-algori thm (NEM) and a model enhanced alternative for 
estimating a covariance matrix when some addition 
stochastic structure is used (REM). Let the available data be 
summarized in the matrix, M. Suppose further that M is the 
result of two processes. Under the first process, an nxm 
matrix is generated where the rows of this matrix are the 
outcomes of iid random vectors. Under the second process, 
certain components are deleted from the matrix that was 
generated by the first process (nonresponse). We further 
assume that these two processes are stochastically 
independent (i.e. nonresponse is independent of the sample 
measurements). 

This missing data mechanism is called ignorable 
nonresponse and it is an essential assumption underlying the 
EM-algorithm. Although it does not hold for the CES data, 
some conditional properties of the CES data suffice to make 
ignorability a good enough approximation. 

Then M can be modelled as the element by element 
product of two matrices, M - (Zl,Z2,Z 3 . . . . . . .  Zn)'XR where 

the {Zi} are iid m-dimension column vectors, each 

Z i - N ( g , Z ) ,  and R is an nxm matrix of zeros and ones. The 

(i,j) th component of R is zero if the jth component of Z i was 

deleted and one otherwise. Thus a zero entry in M denotes a 
missing datum (item nonresponse). The unknowns, ~t and 2 ,  
are to be estimated via the EM-algorithm. 

If there were no missing data (R.is all ones), the 
sufficient statistics for (~t,~) when the {Z i} iid normal are 

the realizations of: 
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n n 

~ ~-~ 
T 1 -  Z i and T 2 - } Z.Z: where the 

d ~--d  1 1 

i = 1  i = 1  

{Zi }n i=l  are from a simple random sample of size n from a 

population of N units. 
A 

Then E(T1) = n g  and E(T2) = n(Z + gg'). g = 
A ^  

(1/n)T1 and ~ = (1/n)T 2 - gg' are the maximum likelihood 

estimates of ( g , Z )  for the complete data case. 
When data are missing, the EM-algorithm proceeds 

as follows. For each vector Z i with missing values let Zil 

denote the missing components and Zi2 denote the observed 

components. Then, without loss of generality, Z i = (ZI1,ZI2)'. 

Note that for arbitrary patterns of missing values this block 
partition of Z i does not hold, and the expressions to follow 

would then be preceded and followed by indicator matrices 
of zeros and ones. This is a notational complexity that 
contributes nothing to the understanding of the 
EM-algorithm, so this notational complexity is omitted. Let 
^ 

g(1) be the vector' of column means computed from the 
available data (nonzero entries) in each column of M. If the 

i th column mean derived this way is imputed for each 

missing entry in the i th column of M then let ~1)  be the 
MLE estimator of ~ from this imputation for M (i.e. 

, A A 
1)=(1/n)MoM ° - g(1)lt(1)' where M ° denotes M with 

these column means imputed for the zeros). Given these 
A ^ 

initial estimates, g(1) and ~1),  impute values for Zil as Zil 

= E(Zi l lZ i2 ,~(1) ,~ l ) ) -  ~1(1)+ ~ 2 ( 1 ) ~ 2 ~ ( 1 ) ( Z i 2 -  g2(1)), 

[ ~ l ( q ) ~ 2 ( q  ) ]  ^ ^ ^ 
where ~q)  = L J ~ l ( q  ) ~,~2(q ) and g(q) = (gi(q)'lt~(q))" for 

q-1,2,3, etc. Thus ~ 1 (q) is an estimated covariance matrix 
A A 

of Zil, and g 1 (q) is an estimate for the mean of Z il,  etc. Zil 

estimates the contribution of Zil to T1. 

The predicted contribution of Zil to T 2 is ZilZil  = 

E(ZilZi l lZi2,~( l ) ,~l))  = ~ l ( l ) -  ~2(1)Y. 21(1)~-21(1)+ 

A A f ~ M ~  A 

ZilZil  and ZilZi2 = E(ZilZ[21Zig,g(1),~l)) = ziA 1Zi2" 

These contributions to the i th term in T 1 and T 2 are then 

inserted for the missing parts of the i th term for each l_<i_<n. 
A A 

Let T 1 and T 2 denote these imputations for T 1 and T 2. The 
A A 

next iterate MLEs for (g,Y~) are g(2) = T1/n and ~2)  = T2/n^ 
A ^ A A 

- g ( 2 ) ~ ' ( 2 ) .  With these new values, (g(2),~2)), we 
re-impute the above conditional expected values to get new 
^ ^ A 
T 1 and T 2 and the next iterate MLEs, (g(3),~3)). This 

^ 
process continues until convergence of the g(q) and this 
occurs when 

A ^ ^ 
max Ig(q)j-~t(q-1)jl<e for some e where g(q)j is 
1 _<j_<m 

A 
the jth component of ~(q). This describes the NEM. 

If this process converges after q iterations then ~q)  
is the NEM estimate of ~.  

The estimator for ~ which uses some additional 
structure is described next and refered to as the REM 
estimate of ~ .  To derive this estimator for ~ ,  we first 
describe the additional structure, which models the 
relationships between the components of a Z.. Now let Z.. be 

1 1j 
th 

the j component of Z i (as opposed to the above usage 

where the second subscript is used to denote a partition of 
m 

Zi). For each i, let the {eij}j =1 be pairwise uncorrelated 

m with expected value zero. Let {13j}j=l be unknown 

constants. Then suppose for each i, Zil = ~1 + eil and Zij = 

3jZij-1 + eij for j = 2,3,.. m. This is the regression 

superpopulation model and this model implies that the 
off-diagonal entries of ~ can be written as: 

J 
b k j _  (y2 l-I for k<j_< m where the {cy 2} are 

t=k+l 

diagonal entries of this covariance matrix (i.e. ~2 V(Zik), 
the variance of Zik, for all 1 __ i _< n and 1 _< k _< m). 

Note that this ~ can be written as the element by 
element product of ~1 and Y~2 where: 

1 ~22 "'" ~2m 
~22 1 "'" ~3m j 

Z 1 = . . . with ~ ij = YI 13 k 
• • • k=i  

[~2m ~ 3 m  " ' "  1 

and 52 2 = . 

If [3 i "- 1 for all i then 2 =  Z 2 (i.e. m parameters to 

estimate). 

G ?  cy~ for all i then 2 =  ~ 2  1 ( & m+l If 
1 

parameters to estimate). 
When neither of these simplifications is appropriate, 

note that ~.-1 is the tri-diagonal matrix with diagonal entries 
(1/'cj) 2 - (~j+l/'Cj+l) for 1 < j < m and for j=m, (the last 

diagonal entry) 1Pc m, where '~1 = ~2 and "cj = (y2j _ 13j2cyj2_l 

for 2 < j < m. The (j,j+ 1)th and (j+ 1,j)th off-diagonal entries 

of ~--1 for l<j<m are -(13j+1/~j+1). All other entries of ~7 -I 
are zero. 

Y~ will be estimated by first estimating ~--1 and 

then inverting to get the model based ~.  By the results in the 
paragraph above, it suffices to estimate the pairs (xj,[3j) for 

j-1,2,3 . . . .  m. For j>l  "cj is the expected value of the 

conditional variance of Zli-o given the realization of Zi~_l 
"3 

[ E(V(ZijlZij_I)) ], and I: 1 is the variance (unconditional) of 

Zil. For j>l  13j is the regression coefficient of Zlj on Zij_l 
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and [51 is the expected value of Zil.  A robust estimator for 

13j is Zsj/Zsj_l for j>l  where Zsj is the sum of the Zij over 

the rows of M which have data in both columns j and j-1.131 

is estimated with the sample mean of Zil over the rows of M 

which have data in column one. Denote these estimators as 
A (~j}. 

Estimate "c i with the error sum of squares of the 
A 

regression of Zij on Zij_l  for j>l .  Then ~j 

=(1/[nsj-1]) (Zij - [3jZij_l )2 for j>l 

i~s. J 

^ ~ Z i l -Z .  1 )2" and x 1 = (1/[n s -1])  ( 
1 

ies  1 

n is the number of rows in M with data (nonzero entries) in 
S. 
J 

both column j and column j-1.  n is the number of rows 
s 1 

with data in column one. s. is the set of rows in M with data, 
3 

in columns j and j-1.  s 1 is the set of rows in M with data in 

column one. Z 1 in the mean of Z il over the rows in M with 

data in column one. 
This completes the description of the REM estimate 

of ~ .  The REM estimate of g is derived by applying the 

NEM with ~ REM used in place of ~q)  in the (q+l) st 
iteration for each q. 
3. SIMULATION STUDIES 

Two simulation studies were done, one with data 
from a Normal random number generator and a second with 
data that was slightly skewed. 

a) Under Normality (Table 1) 
The first data matrix, M, is generated exactly 

according to the superpopulation model given in section two. 
m-3,  n=30, [31= 500, 13j= l+(j/100) for j=2, and 3; for all i, 

N(0,~ z)~ where ~_ - 10,000.  The variance of eij for El j -  

each i and j is 225 and thus G~ - 10,629 and ~ = 11,501. 

From M, the entries were deleted independently at random 
with probability of deletion for an entry equal to .4. With a 
fixed M, 80 replicates of this deletion of the entries of M 
were used to compare the NEM and the REM. For each 
replicate, absolute error for both covariance matrix 
estimators was computed. The number of iterations till 
convergence were computed for the NEM. These absolute 
errors and iteration counts were averaged over the 80 
replicates of the random deletion process. 

These estimates of absolute error for the NEM and 
the REM estimates of Y~ are given in table one together with 
the estimates of simulation variance, Sim Var, which 
measures statistical significance for the tabled entries. 
Simulation variance is the estimated variance of these 
average absolute errors, where the 80 individual replicate 
absolute error estimates constitute the sample (n-80) used to 
estimate simulation variance. 

In summary, these results show that the REM has 
roughly one third the absolute error of the NEM covariance 
matrix estimator. 

Iterations for the NEM were halted when the sum of 
A 

the absolute differences between the components of ~t(q) and 

A 
g(q-1)  is less than .02. The average over the 80 replicates of 
iterations until convergence is given at the bottom of each 
table. 

b) Under approximate ;(2. (Table 2) 
Table two summarizes a simulation which parellels 

the table one simulation except that the rows of M are no 
longer Normal (but still iid). The first column of each row is 

Zil = ~/ 5000 ;~2(1) + 500 - ~/ 5000, where Z2(1) is a 

central Chi-square random variate with one degree of 
freedom. The noise terms {eij} are independent and 

distributed as 50(u(0,1) - . 5 ) ,  where u(0,1) is a uniform 
random variate on the unit interval. The {13j} are the same as 

in a) (table one). 

Table 1. Average Absolute Error (in thousands) of the Covariance 
Matrix Estimators over the 80 Replicates. 

Abs Err Sim Var 

10.8 10.9 
NEM 11.0 

11.2 .65 .66 .69 
11.3 .67 .70 
11.5 .73 

3.0 3.1 
REM 3.2 

3.2 .043 .044 .047 
3.3 .046 .049 
3.4 .053 

AVERAGE ITERATIONS FOR NEM 26.1 

Table 2. Average Absolute Error (in thousands) of the Covariance 
Matrix Estimators over the 80 Replicates. 

Abs Err Sim Var 

12.2 .89 .88 
12.2 .87 NEM 

12.3 12.6 .93 
12.6 .92 
13.0 .97 

REM 
3.3 3.4 3.5 .036 .039 .041 

3.4 3.5 .042 .044 
3.6 .048 

AVERAGE ITERATIONS FOR NEM 25.0 

In both a) and b), the REM provides a much better 
estimate of the covariance matrix. In both cases, the absolute 
error in estimating ~ using the REM is less than one third 
the absolute error of the NEM estimate of ~ .  

4. CONCLUSIONS 

Two criteria of comparison for the NEM and the 
REM were considered, the error in estimating the covariance 
matrix and the speed of convergence. When the regression 
superpopulation model described in part two holds, then the 
REM makes good use of this additional information to both 

speed convergence (instantaneous for REM ~ ) and greatly 
reduce the error in estimating ~.  

Results for estimating g were not tabluated here but 
the REM was no help in reducing the error in estimating g. 
Recall that the REM estimate of ~t is derived by applying the 

NEM with ~ REM in place of ~q).  This is another example 
of a comforting property of composite estimators: in general, 
when their MSE is considered as a function of the 
component weights, this MSE is very flat in a fairly large 
region around the optimal weights (functions of ~).  

Although the variance/covariance estimator 
suggested here may be of limited value for estimating the 
vector of means (except for speeding up convergence), it can 
be useful for improving the estimates of variance for these 
estimators of the means. 

In the introduction, it was noted that this REM 
covariance matrix estimate finds an important application in 
the Bureau's CES survey. The REM estimate of ~ is used to 
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derive the conditional covariance matrix estimate that is used 
to estimate the optimal weights in an estimate for total 
employment at the BLS. 

Although there are some small differences between 

the ~ REM and the estimator of 52 examined in Johnson and 
Woodruff (1990), this paper on the EM-algorithm may be 
considered an appendix to the J/W paper. 
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