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1.0 Introduction 
Computerized record linkage is bringing together data 

from separate sources relating to the same entity. An 
entity could be a person, a medical doctor, a business or 
another defined unit. Two potential errors are associated 
with the linkage process. The first is the linkage of records 
that correspond to different entities, and the second is the 
failure to link records that correspond to the same entity. 

This is an empirical evaluation of the size of the two 
types of errors before and after the linkage is executed 
using data from the National Medical Expenditure Survey 
(NMES), and the gains in terms of the additional number of 
links if one relaxes the control over the two types of errors. 

2.0 Background 
Medical care recipients are not always a reliable source 

of information on their medical expenditures. They either 
over- estimate or underestimate the expenditures or in 
many instances don't know the cost of medical services. A 
concrete example of those who cannot report adequately 
their medical expenditures are Medicaid recipients. 
Provided that this assumption is true, national medical 
expenditure estimates based on household reported data 
will be biased due to response error or nonresponse on the 
part of the interviewee. In order to compensate for this 
response error and to address the issue of missing data, 
NMES collected expenditure data from a sample of both 
household respondents and their medical providers. The 
assumption being that medical providers such as doctors 
have accurate records for utilization and expenditures for 
their patients. 

The Household component (HHS) of NMES collected 
detailed data on the occurrence of health care related 
events, utilization of medical services, and associated 
expenditures. A subset of the HHS respondents was 
selected for the Medical Provider Survey (MPS). The 
targeted subset were those individuals who were most 
likely to misreport or not possess adequate knowledge 
about their medical expenditures (Cohen, DiGaetano and 
Brick, 1989). This targeted group consisted of persons 
who had: 

o Hospital related care including inpatient stays, 
outpatient and emergency visits, and clinic visits 
excluding visits to a school or company clinics; 

o Medicaid eligibility that completed the first round of four 
which were conducted with the household respondent; 
and, 

o Medical providers associated with an admission to 
nursing homes, and facilities for the mentally retarded. 

To allow for methodological comparisons on reporting 
differentials between household and medical provider 
reported data at the person level, the MPS survey also 
included a 25 percent sample of all NMES HHS dwelling 

units. Consequently, this Medical Provider Survey was 
designed to obtain medical provider 1 reported-charge 
data for household reported medical care events. 

A computerized matching algorithm developed at 
Statistics Canada referred to as CANLINK 2 (Canadian 
Linkage System) was used to match the HHS and MPS 
data bases. This matching algorithm pairs medical events 
as reported by the household respondents to the medical- 
provider's records collected for the same person. A 
decision is made as to whether the medical events for this 
person match (H o --the null hypothesis) or do not match 
(H 1 - the alternative hypothesis). If they are classified as a 
matched pair, then expenditures reported by the medical 
provider are moved to the household data base, and are 
used to get national estimates for medical expenditures. 

3.0 Matching Household to Medical Providers 
The matching algorithm requires that each pair of 

records from each data-base be considered for matching. 
In order to decide whether the pair of records refers to the 
same entity (e.g. the same doctor visit) a set of common 
but independently obtained data fields are compared, one 
at a time. The result of each comparison is an outcome. 
An outcome could be an agreement, a partial agreement, a 
missing data status, or a disagreement. A set of 
probabilities is attached to the outcome. If there is more 
than one common data field being compared, the 
probability of the vector of outcomes is the product of the 
individual probabilities. This probability associated with a 
given vector of outcomes indicates the likelihood that the 
medical event reported by the household respondent and 
the medical event reported by the provider are the same 
event - in which case expenditure for that event will be 
extracted from the medical provider data base to the 
household data-base. 

The probability for a given vector of outcomes depends 
on the individual probabilities of outcomes, but initially it 
does not depend on the values of the common data fields 
in the two data-bases. These individual probabilities of 
outcomes are based on a representative pretest sample of 
the matching algorithm. Since they do not depend on the 
actual values of the data fields being compared, they are 
called prior probabilities. Analogously, posterior 
probabilities of vectors of outcomes are estimated 
conditioned on the actual values of the common data 
fields. The posterior probability can be obtained after the 
matching algorithm has been completed. 

For the HHS and the MPS data bases ten common data 
fields (n= 10) were used: (1) the medical provider 
identification number; (2) date of the visit; (3) medical 
condition; (4) place of visit; (5) reason for the visit; (6) 
length of a hospital stay; (7) a repeat visit indicator, for 
those cases where there are multiple similar visits with the 
same fee, such as allergy shots, hypertension checks, and 
psychiatrist visits; (8) X-ray services (9) surgical services; 
and (10) throat culture test. 

Table 1.0 provides the list of common fields which were 
chosen for comparison, a brief description of the rules, and 
the possible outcomes that the matching rules 
encompassed. The description of the rule basically 
depicts the result of the comparison. For example, if both 
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the person and the medical provider indicated that surgery 
was performed, then the outcome for this event and for this 
data field is an "agreement" that the person had surgery. 
However, if the provider reported that no surgery was 
performed, while the household reported surgery, the 
outcome would be a "disagreement". In addition, Canlink 
also allows the user to specify levels of partial agreement. 
For example, if both the respondent and the medical 
provider agree that there was an inpatient stay but they do 
not agree on the length of stay, the algorithm allows the 
user to consider it as a partial agreement by assigning to 
that outcome a probability that is lower than the probability 
of a complete agreement, but a higher probability than is 
given for a complete disagreement between the common 
data fields. 

Table 1. Canlink Matching Rules 
RULES DESCRIPTION OF THE RULE 1 OUTCOMES 
1. Repeat Visit aºlt is (not) part of repeat visit series 

Indicator b.Repeat visit indicator is missing 
c. Otherwise 

2. Place of visit aº Same place of visit 
b. Place of visit is missing 
c. Otherwise 

3. Reason for visit aº Same reason for visit 
b. The reason is missing 
c. Otherwise 

4. X-rays service aº Received (did not) X-Rays 
b. Missing data 
c. Otherwise 

5. Throat culture aº Received (did not) throat culture 
b. Missing data 
c. Otherwise 

6. Surgical Service a. Had (did not) have surgery 
b. Missing data 
c. Otherwise 

AGREE 
MISSING 
DISAGREE 
AGREE 
MISSING 
DISAGREE 
AGREE 
MISSING 
DISAGREE 
AGREE 
MISSING 
DISAGREE 
AGREE 
MISSING 
DISAGREE 
AGREE 
MISSING 
DISAGREE 

7. Length of stay aº Length of stay> O, and number of days AGREE 
hospitalized are equal 

b. Length of stay=O & length of stays PA2 
is equal. 

c. Difference of +- 1, or 2 days PA3 
but not missing or 0. 

d. Missing and not 0, or PA4 
difference > 2 days & not missing 
or  zero) 

e. Length of stay =0 or 1 day PA5 
f. Length of stay =0 and 

either missing or stay > 1 day DISAGREE 
8. Medical a. 3 digits ICD-9 exact match AGREE 

condition b. Collapsed 3-digits ICD-9 match PAl 
ICD-9 codes c. Match on letter code PA2 

d. No letter code agree DISAGREE 
9. Date rule aº Exact match AGREE 

b. Difference of + 1 day PAl 
c. Difference of 2 to 6 days and same RR 2 PA2 
d. Difference of 7 days and RR is equal PA3 
e. Difference of 14,21,28 days and same RR PA4 
h. Difference is _+ 1 day and RR is 1 PA5 
e. Difference is 2 to 6 days and RR is 1 PA6 
j. Difference is > 15 days and RR is equal PAT 
k. Difference is _ 1 and RR is -1 PA8 
I. Difference is 2 to 7 days and RR is -1 PA9 
m. Difference is > 15 days and RR is -1 PAl0 
n. HHS missing date and RR is not 0 PAl 1 
o. Date is different, and RR is _+2,+_3 DISAGREE 

10. Medical a. Have the same provider AGREE 
Provider ID b. Missing data MISSING 

c. Otherwise DISAGREE 

1. Household reported data was compared to medical provider dataº 
2. RR is the relative inten/iew round for the HHS respondent and for which the 

provider reported expenditure information. 
3. PAl is the ith level of partial agreement. 

3.1 Matching Household and Medical Provider Pairs 

In theory the matching algorithm requires that every 
record from the Household data base be compared to 
every record in the Medical Provider data base. This 
strategy, although complete, would require a very large 
number of comparisons, the vast majority of which would 
be non-matches. For the matching of household and 
medical provider data, that number of pairs exceeded one 
billion. An alternate strategy was developed to make the 
size of all potential links more manageable. All records 
from each of the two data bases, the Household and the 
Medical Provider, were "blocked" by person. That 
restricted the records to be paired only if they were 
reported by or regarding the same person. Within this 
subspace of potential pairs, the number of potential links 
still exceeded one million. Based on examination of the 
data, about 75 percent of these potential links had no 
chance of being linked because they had no chance of 
being a pair relating to the same entity, or because they 
had competitors with much higher weights. Those links 
were dropped from consideration because their 
probabilities of being the same entity indicated that they 
were a definite non-link; and, because dropping them 
meant a significant reduction in computer cost when using 
CANLINK. Thus the number of pairs that were considered 
for linkage after the initial comparison between the two 
data bases was 253,569. 

The matching algorithm is iterative. In the first phase 
paired records are compared, person by person according 
to set comparison rules. The probability of an outcome 
during this phase is a global scoring measure irrespective 
of whether the values, of the field such as whether a 
hospital stay was two days or three days, agree or 
disagree. It is also a measure estimated or based upon a 
pretest sample. A decision is made as to whether the pairs 
of records are definite, possible or rejected matches. The 
probability of outcomes are adjusted to reflect the number 
of times an outcome occurred among the definite links of 
the household and medical provider reporters. 

In the second iteration these new probabilities of the 
outcomes are used; frequency weights which are measures 
of the likelihood of certain values for given fields occur are 
introduced. The matching algorithm is activated again and 
further cuts in the data are made. Again the probabilities 
of the outcomes are updated to incorporate not only the 
proportion of times a field agreed but on which value it 
agreed. For example if a person and a provider reported 
that there was a length of stay, and the length of stay was 
two days, these new probabilities will incorporate both 
pieces information: the actual agreement on a hospital 
stay and the agreement that it was two days. Additional 
iterations are made until the probability of outcomes 
stabilizes. For NMES it took only one additional iteration to 
converge. 

Given this process, the concept of posterior 
probabilities of outcomes can be attributed to any one of 
these three phases. The one of most interest is of course 
the last one since it depicts the critical errors associated 
with the matched linked file that is used for identifying 
medical expenditure data to be moved. 

3.2 Errors During the Matching Process 
This linkage process is subject to two types of errors: 

(1) an erroneous non-match, by failing to link records that 
correspond to the same medical event (rejecting H o when 
H o is in fact true); and (2) an erroneous match, by linking 
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two records that correspond to two different events 
(accepting H o when it is false). Those are the type land 
the type II errors ( a and/~ respectively). Two thresholds 
are computed to control for these two types of error. The 
decision process is based on a weight (a score based on 
the probabilities) that is given to each pair of records. If 
the weight for a pair is above the upper threshold, the pair 
is classified as a match; if the weight is below the lower 
threshold, it is considered a non-match; and, if the weight 
is between the two thresholds, it is considered a possible 
match. The definition of an optimal linkage rule is one 
which achieves specified values of a and/~ errors while 
minimizing the number of pairs classified as possible links 
(Felligi and Sunter, 1981). Note that if a and/~ are low and 
the number of possible links is zero we have achieved the 
optimal linkage between the two data bases. 

In this paper, the objective is to examine the variations 
in the thresholds levels and in the number of definite, 
possible, and rejected links as a function of a and/3. In 
addition, error levels which were set a priori, a and/3 
respectively, are compared with the critical error levels ~z 
and/3, which are achieved after the linkage of the data- 
bases is completed. These error levels are relevant in the 
sense that they can help us evaluate the reliability for this 
matching algorithm of the HHS and the MPS data bases. 
The computation of the critical error levels is done using a 
computer algorithm outside CANLINK after the subspace of 
the 253,569 potential links is identified. 

In order to meet these objectives, we: (1) determine the 
thresholds C 1, C 2 for given values of a and/3 based on the 
set of all possible permutations of the n-tuple vector of 
outcomes, X. This process is executed prior to the actual 
matching of the data bases; (2) compute the critical error 
levels, a and ~, using the prior probabilities of outcomes; 
(3) compute the critical error levels, a and/3, using the 
posterior probabilities of an outcome vector for the 
different iterations of the matching algorithm; (4) measure 
the effect of the prior and posterior probabilities on the 
values of the upper and lower thresholds; and (5) assess 
the procedure of setting thresholds based on the 
permutation of outcomes which are determined by the 
comparison rules, and separate from the data bases. In 
addition we want to examine changes in the number of 
definite, possible, and non-matches while varying levels of 
a and/~, in an attempt to achieve an optimal linkage rule. 

4.0 Definitions and Terminology 
Let O.. denotes the outcome of comparing the jth data 

J 
field on both files, then: 

D Disagreement 
M Missing 

Oj - PAm m partial levels of agreement, or 
A Agreement 

These results of the comparison of all common data 
fields are defined as an n-tuple vector, X, where n is the 
number of attributes (common data fields) and where each 
component of the vector is the outcome from a 
comparison of the attribute in the data files: 

X = (O1, 0 2 ...... On) .  

O i is a vector of length k, and k varies with each data field, 
j; so, k= 1, 2 n. When comparing the household data to , o . .  j .  

the medical provider data, n--10. 

Let Pini, denote the vector of prior probabilities of an 
outcome (n i = 1,2,..k) given H o, assuming that the 
common data fields are independent: 

P(X=x I Ho) = ]I Pinj i = 1,2.., 10 nj = 1,2 .... k. 

A similar definition applies if H 1 is true. 
Once the vector of outcomes has been determined, the 

matching algorithm estimates how likely it is that a pair of 
medical records refers to the same event by comparing 
corresponding fields one at a time to see whether the 
values agree or disagree. 

The statistic that is used to quantify the strength of a 
match between the household reported event and the 
medical provider counterpart, is the "log of the odds ratio". 
The odds ratio is defined as the ratio of the probability of 
the pair of records being truly matched, to the probability 
of the records being truly unmatched: 

Log2(odds ratio)= LoLg.~[P(X=x I H 0 is true)] 
[P(X=xIH 1 is true] (1) 

If the odds ratio is less than one, it will argue for classifying 
the pair in the truly unmatched set (U); if it is greater than 
one, it is more likely that it is a match, and it is classified in 
the matched set (M). The log transformation of the odds 
ratio is used to simplify the computational aspect of this 
process. 

The odds ratio can be computed for each of the 
outcomes, and for the n-tuple vector of outcomes, X, 
assuming that: (1) each of the data fields is independent, 
and (2) some prior probabilities for each of the outcomes 
occurring can be determined 3. The result of the log 
transformation of the odds ratio for the vector is called a 
"weight", denoted by T(x). 

The total weight is compared against two threshold 
values C 1 and C 2. If the total weight is above the upper 
threshold, [C2,oo ), it is assigned the status of a "definite" 
match (accepting Ho). If the total weight is below the lower 
threshold, (-oo, C1] , it is assigned the status of a definite 
non-match. Finally, if it is between the two thresholds (C 1, 
C2) it gets a temporary status of possible match which is 
resolved during the linkage process or manually. 

4.1 Determining Thresholds for Set Values of a and/3 
In the first stage of this analysis we examine the 

changes in the value of the thresholds C~ and C 2 as a 
function of different levels of errors, a and/~. 

Let's denote the number of possible outcomes by nj, 
nj= 1,2 .... k, where the value of k varies with the number of 
possible outcomes for each data field. The total number 
of configurations that the vector of all possible outcomes 
could take is: n 1 * n 2 * .... * n k. Given this set of potential 
vectors, X, the type I and the type II error can be expressed 
as follows: 

a = P(T(x) < = C 1 I Ho is true) = ~'hi= 1 Mx(i) (2) 
/3 = P(T(X) > = C2 I H1 is true) = ~'ni= s Ux(i) (3) 

Where Mx is the product of the individual probabilities of 
outcomes given that H o is true, Ux is the product of the 
probabilities of outcomes assuming H 1 is true; and where: 

h is the highest value of i with T(x) < = C1; 
s is the smallest value of i with TO() > - C2; and, 
n is the number of outcomes. 
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The determination of C 1 and C 2 is done by solving 
equations (2) and (3) for fixed values of a and ~ using the 
set of permutations of the outcomes of the 10 rules defined 
in Table 1 and the different probabilities of outcomes 
adjusted after each phase of the matching process. 

4.2 Deriving Thresholds for Matching the HHS and MPS 
A SAS program was developed to determine the values 

of Mx, Ux, and T(X) (lan Whitlock, Westat, 1989) 4. This 
program was enhanced so that different threshold values 
are computed as a function of different values of a and/3. 
For given sets of error levels the number of definite, 
possible, and rejected links is computed using the space of 
all possible permutations of the decision rules defined by 
the user. This is actually a way of determining thresholds 
prior to matching of the data bases, using the distribution 
of the vector of outcomes. 

Table 2 summarizes the results. The objective is to 
investigate the possibility of relaxing the requirements on p 
to gain more links. Once the number of definite links have 
been identified at an acceptable level of/3, the strategy is 
to increase a so that we minimize the number of possible 
links between the HHS and the MPS. Additional links 
implied knowledge on expenditure information reported by 
the provider for the medical events. 

In addition, estimates of the number and the proportion 
of pairs classified as possible links were important to 
obtain since they can be resolved in one of two ways: (1) 
by relaxing the restrictions on both error levels; or (2) by 
manual intervention. The first was more desirable since it 
implies that CANLINK could in a systematic fashion provide 
more links, and minimize subjective and time consuming 
decisions encountered when the process is done manually. 

Table 2 shows that for a fixed a, as/3 is incremented 
the number of possible links decreases, the number of 
definite links increases by the same magnitude, and the 
number of rejected links does not change. The number of 
definite matched pairs increased by 2,773 when we 
allowed the probability of including a match that should 
not be one to increase from one to four percent. 

Table 2. 

Error Levels Threshold Values Number of Permutations 
a ,8 C 1 Cz ,  Definite Possible Rejected 

0.010 0.010 -22.6 30.8 4,473 6,053 10,210 
0.025 17.4 5,868 4,658 
0.040 5.6 7,246 3,280 

0.025 0.010 -3.5 30.8 4,473 3,838 12,425 
0.025 17.4 5,868 2,443 
0.040 5.6 7,246 1,065 

0.040 0.010 5.6 30.8 4,473 2,773 13,490 
0.025 17.4 5,868 1,378 
0.040 5.6 7,246 0 

Conversely, if one fixes/~, and lets a vary, the number 
of possible links decreases, the number of rejected links 
increases, and the number of definite links does not 
change. In this case, the number of undecided cases has 
decreased but we do not get any additional definite 
matches. Thus the tradeoff between the a and/3 can be 
translated as increasing the number of definite links versus 
increasing the number of rejected links. 

This behavior is clear from the theory noted in the 

previous section. The change in the allowable error of one 
type while holding the other fixed affects only one of the 
thresholds; thus it is equivalent to classifying the possible 
links as either matches or as non-matches. 

Table 2 also shows the magnitude of the two types of 
errors and the respective threshold values when the two 
errors are equal. At that point, no possible matches exist, 
and the space of all potential pairs is divided into the 
"Matched" and the "Unmatched" set. Thus using the 
distribution of the vector of the decision rules, the 
equilibrium is reached at the cut-off points C 1 = C 2 = 5.6, 
with a = .04 and ~ - .04. Since both errors are at 
acceptable levels the search process for thresholds is 
determined a priori at that equilibrium point. At that 
equilibrium, 35 percent of the pairs are classified as 
definite matches while the remaining permutations were 
rejected. 

5.0 Critical Levels of Errors, a and ~, During Matching 
Reliability of the matching algorithm for the household 

and the medical provider survey may be defined as the 
proportion of false matches and erroneous non-matches. 
In general, the number of unmatched pairs is larger than 
the number of the matched pairs. Therefore it is desirable 
to make a smaller than/~. In the hypothesis testing 
context, we impose a small a and we exercise no control 
over p although we know that it is larger than a. 

In this matching project, an optimal decision is one that 
controls for both types of errors, and minimizes the 
number of possible matches, and maximizes the number 
of definite matches. The larger the number of definite 
matches the greater is the ability to obtain expenditure 
data from the medical providers that was thought to be 
more reliable than household reported data. In order to 
compute the magnitude of these errors in reality, as noted 
above, there is a need to define the space of potential links 
that CANLINK separates into the three groups of definite, 
rejected and possible links. The first and most inclusive 
space of potential links is the set of all possible pairs that 
can be created: 

HHS X MPS = F = { (a,b): a e HHS, be MPS}. 

This number of potential pairs within this most inclusive 
definition is over one billion pairs. This space is too 
inclusive since it allows for events that are certainty non- 
matches to be considered for matching. For example 
visits to the doctor reported by one household respondent 
are allowed to match to doctor visits reported by another 
household respondent's doctor. As noted above, it is more 
realistic to block the events on both data bases so that 
potential pairs are considered only for the same persons. 
The new restricted space of one million potential links can 
then be defined as: 

F* = {(a,b): a e HHS, b e MPS, and both a and b are 
reported by or about the same person}. 

As the matching algorithm proceeded, it was found that a 
large number of potential links had a weight that was 
smaller than -50. These pairs were deemed to be non-links, 
and were therefore eliminated from the matching process. 
As expected this strategy improved the efficiency of the 
system by considering a much reduced set of links for 
further processing. Moreover the inclusion of these non- 
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matches could give us a false sense of a very low/3. The 
practical need is to estimate/3 for those cases that have 
some chance of matching, not for those cases that have 
known but minuscule chance of matching. Thus the 
subset that is used to identify all definite links between the 
two data bases is: 

1"** = {(a,b): a E HHS, b ~ MPS, and both a and b are 
reported by or about the same person, and their 
total weight > -50}. 

Critical error levels are computed. A critical error level 
~, is the probability of obtaining a value of the test statistic 
as extreme, or more extreme than the one actually 
observed when H o is true. A similar definition applies for 
the critical error level of ~. The critical error levels give a 
measure of what actually transpired during the matching 
process using the subspace of potential links that were 
considered for matching. Since CANLINK is an iterative 
matching algorithm the critical error levels can be 
evaluated after each iteration. For the matching of the 
household and the medical provider data there was an 
initial evaluation based on the distribution of the vector of 
possible outcomes, and three iterations, with the last 
iteration providing the actual critical error levels. 

In Table 3 the critical error levels and the thresholds 
are computed first using the distribution of all possible 
outcomes for the different decision rules (the first four 
columns). Then the critical error levels for each of the 
iterations in the matching process, noted as "B", "C" and 
"D", are displayed. The subspace of potential pairs in this 
case is 1`*, with a minimum weight of-50, and the number 
of potential pairs is I£*1 = 253,569. 

Table 3 

Prior Probabilities Thresholds 1 Posterior Probabilities 

Or p CI C z a s a,, Crl) ~,, ~,, ~,, 
0.01 0.010-22.6 30.8 0.025 0.016 0.008 0.014 0.021 0.021 

0.025 17.4 0.076 0.082 0.082 
0.040 5.6 0.130 0.136 0.135 

0.025 0.010 -3.5 30.8 0.050 0.035 0.027 0.014 0.021 0.021 
0.025 17.4 0.076 0.082 0.082 
0.040 5.6 0.013 0.136 0.135 

0.040 0.010 5.6 30.8 0.068 0.055 0.055 0.014 0.021 0.021 
0.025 17.4 0.076 0.082 0.082 
0.082 5.6 0.130 0.136 0.135 

1. These thresholds were set a-priod based on the distribution of the 
outcomes 

These results indicate that both a and ~ vary after each 
iteration, but the variation is at acceptable levels. The 
posterior probability of a non-match when it should be a 
match, ~ ,  increases by two-fold or a little less after the 
first iteration, but converges to the prior probabilities by the 
third iteration. The greatest difference is for the a =0.04. 
The actual value by the end of the process is 0..048, which 
is a small and acceptable increase. Although a is stable, 
is much higher than estimated a priori: it is between 1.4 to 
3.38 times higher for different values of (x. The second and 
the third iterations show little change in the values of ~, 
indicating that the process converged. 

Since the matched set in practice was identified by 
setting the thresholds at C 1 = C 2 = 5, the estimates of 

critical error levels for the matched set are a =.048 and 
-.135 respectively. This is an indication that we were able 
to control for the two errors in matching. There are about 
five percent of the pairs which did not match and should 
have (~), and 14% of the pairs that matched but should not 
have ~). 

If the objective was to force the two types of errors to 
be at certain levels, the thresholds would need to be 
different. The thresholds satisfying the a and/3 a priori, 
are compared to those determined based on the 
distribution of the vector of outcomes (Table 4). This table 
shows that in order to obtain the same levels of errors set 
a priori the thresholds need to be adjusted considerably. A 
higher lower bound (C1) is needed to achieve an a of 0.01. 
On the other hand, to achieve an a of 0.025 or an a of 
0.04, C 1 should have been lower: -4.6 not-3.5 and 4.4 and 
not 5.6. This information could be useful if one wishes to 
increase the number of definite classifications, and reduce 
the amount of indecision identified by the algorithm. 

Table 4. 

Prior Thresholds I Thresholds 

a ~ C 1 C z C1 (D} C2(D) 
0.010 0.010 -22.6 30.8 -17.1 41.1 

0.025 17.4 29.8 
0.040 5.6 25.6 

0.025 0.010 -3.5 30.8 -4.6 41.1 
0.025 17.4 29.8 
0.040 5.6 25.6 

0.040 0.010 5.6 30.8 4.4 41.1 
0.025 17.4 29.8 
0.040 5.6 25.6 

1. These are thresholds computed prior to production 

To control for/~, the probability of linking a pair that should 
not be linked, the upper threshold should have been 
uniformly higher. For .8=0.01 it is 1.3 times higher, for 
/3=0.025 it is 1.7 times higher, and for ~ =0.04 it 4.5 times 
higher than the thresholds set a priori. This explains the 
higher level of the ~ than was estimated based of the prior 
cut-offs. 

Table 5 examines the number of links that were 
classified as acceptable, possible, or rejected. The first set 
of numbers was obtained using the thresholds determined 
a priori, and the second set were computed using the last 
set of thresholds [CI(D ), C2(D)]. It is clear that if the 
objective was to match while controlling for fixed type I 
and type II errors, the number of definite links would be 
lower than expected and the number of rejected links 
would be higher. Moreover the table indicates that as/~ is 
set at a higher level, from 0.01 to 0.04, the number of 
definite matches increases by 48,704 using the prior cut-off 
points, and it increases by 25,259 when using the posterior 
cut-off points. 

When a changes from 0.01 to 0.04 the number of 
rejected links increases in smaller but significant 
proportions: 33,349 using the prior cut-off and 24,240 
using the posterior cut-off points. Also the weight that will 
lead to the point of equilibrium where the number of 
possible links is zero, is 15 when using the posterior cut-off 
bounds and not the 5 that we set a priori. This number 
was obtained from examining critical error levels curves 
and identifying the intersection point. 
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Table 5 

Links/on Prior Cut-off 
Rejected Possible Definite 

Links(d)/Posterior Cut-off 
Reiected Possible Definite 

112,928 82,053 56,588 119,496 91,486 42,587 
54,946 85,695 72,773 61,300 
33,349 107,292 66,227 67,846 

133,710 61,271 58,588 132,250 78,732 42,587 
34,164 85,695 60,019 61,300 
12,567 107,292 53,473 67,846 

146,277 48,704 58,588 143,736 67,246 42,587 
21,597 85,695 48,533 61,300 

0 107,292 41,987 67,846 

6.0 Matches of Medical Events after Linkage 
The previous sections indicated that both the 

probability of matching when it is a non-match, and the 
probability of a non-match when it should be one are 
relatively low for upper and lower thresholds of 5. This 
measure, although useful, does not supply the whole 
answer to the question of how well the matching algorithm 
worked. 

During the matching process we did not distinguish 
between the type of events per se, such as doctor visits, 
outpatient visits, emergency room encounters, and hospital 
stays. For matching purposes all records were in one data 
file. It was important to check that the linkage was actually 
done for the same person by the same provider and for 
similar types of visits. Using the link file, Table 6 
summarizes the number of linkages that were correctly 
linked on this dimension and those that were misclassified. 
The definition of correctly classified implies for example, 
that doctor visits were matched to doctor visits. Otherwise 
they are considered as misclassified. 

Table 6 

Number of Events Classified 
Medical Encounter C o r r e c t l y  Incorrectly 

Doctor Visits 31,758 (99.8%) 67 (0.2%) 

Outpatient 6,642 (98.0%) 209 (2.0%) 

Emergency Room 3,779 (94.0%) 119 (6.0%) 

Hospital Stays 3,416 (91.0%) 339 (9.0%) 

The misclassification cannot always be attributed to the 
matching algorithm. It can be a result of a respondent 
error in identifying the place where he/she had a medical 
encounter. In general, most of the cases seemed to have 
been matched for a similar encounter. However, 
encounters to emergency rooms and hospitals that are in 
the misclassified column should be examined to ensure 
that they are not due to the matching algorithm since they 
are less likely to be misclassified by the respondents. 

7.0 Conclusions 
The Canlink matching algorithm was used to match 

data from two surveys, concerning the same ent i ty-  the 
same person. The first was a survey of household 
respondents and the second was a survey of their medical 
providers. Researchers (Winkler, Felligi and Sunter, 

Kirkendall) have discussed at length the two types of 
errors, the need to control for these errors and the various 
definitions of what is an optimal decision rule. In this 
study we have investigated empirically the size of these 
two types of errors before and after the matching algorithm 
was executed, and we have analyzed the gains in terms of 
the additional number of links gained if one relaxes the 
control on the types of errors. The results indicate 
differences in using the prior and posterior probabilities. If 
the objective to fix the two types of errors one has to 
examine the posterior probabilities and use posterior upper 
and lower bounds. However, if the objective is to match 
two data bases and maintain reasonable and acceptable 
levels of the two type of errors, as was the case for NMES, 
determining the thresholds based on the distribution of the 
vector of outcomes a priori worked. 

Additional issues for future research are whether we 
could have increased the number of definite links if we 
added or changed the variables identifying the entities in 
each of the file, or change the rules to allow for more 
detailed comparison of the data fields. 
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1. A medical provider is any Medical Doctor (D. 0.) who provides direct patient 
care; any other medical provider providing care under the supervision of an 
M.D. or a D. O; any person providing home health services. 

2. CANUNK is also known as "GIRLS'-- Generalized Iterative Record Unkage 
System. 

3. The probability of an outcome for a given data field is usually based on 
experience or on a sample matching test that is done prior to production. 

4. The program was not written for NMES, and has not been published. 
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