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1. FEASIBLE CONTINGENCY TABLES 

1.1 In t roduc t ion .  Given a contingency table of 
non-negative reals in which the in terna l  ent r ies 
do not sum to the corresponding marginals, there 
is often the need to adjust in ternal  ent r ies to 
achieve a d d i t i v i t y .  In many app l i ca t ions ,  the 
ob jec t ive  is to have zero ent r ies  in the 
o r ig ina l  table remain zero in the revised tab le 
and pos i t i ve  entr ies remain pos i t i ve .  Not a l l  
two-way contingency tables can be adjusted to 
achieve a d d i t i v i t y  subject to these cons t ra in ts ,  
and in Fagan and Greenberg (1987), the authors 
presented a procedure that  wi I 1 determine 
whether a given table can be so adjusted, and 
such adjustable tables were cal led feas ib le .  In 
Section 4 of th is  report we discuss comparable 
procedures for  three-dimensional tab les .  

In general, given a feas ib le  tab le ,  one seeks 
a derived table which is close. The notion of 
"close" is not unique, and for  every c r i t e r i o n  
of closeness a d i f f e ren t  dervied table may be 
obtained. Four of the most c i ted c r i t e r i a  of 
closeness are: (a) Raking, (b) Maximum 
L ike l ihood,  (c) Minimum Chi-Square, and (d) 
Weighted Least Squares. In an e a r l i e r  paper 
Fagan and Greenberg (1988) the authors provide 
algori thms which, when applied to a feas ib le  
tab le ,  converge to a revised table opt imiz ing 
the respective measure of closeness for 
( a ) - ( c ) .  Since an optimum revised table for  
weighted least squares can be solved exact ly  in 
closed form, that ob ject ive funct ion was not 
t reated in deta i l  in the e a r l i e r  paper. 

In that  paper each measure of closeness was 
couched as a non- l inear  funct ion to be minimized 
subject to l i near  marginal cons t ra in ts .  
S tar t ing  with the primal ( o r i g i n a l )  ob ject ive 
funct ion we formed the dual which we 
maximized. Maximizing the dual funct ion is an 
opt imizat ion problem amenable to i t e r a t i v e  
coordinate descent methods. These techniques 
y ie lded i t e r a t i v e  algorithms converging to a 
so lu t ion of tile dual problems and subsequently 
to the o r i g i n a l .  
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goodness-of - f i t  measures defined by the 
r-divergence s t a t i s t i c .  This one parameter 
ly of s t a t i s t i c s  was introduced by Read and 
sie (1988) and for spec i f ic  values of the 
meter, one obtains each of the ob jec t ive  
t ions (a) - (d)  above. We use techniques 
la r  to those employed e a r l i e r  to derive 
rithms which converge to best f i t  tables for 
power-divergence s t a t i s t i c s .  
n Section 2 we introduce the power- 
rgence s t a t i s t i c ,  show how i t  re lates to the 
ie r  goodness-of - f i t  measures and formal ize 
ob ject ive  funct ions to be minimized. In 

ion 3 we set up the dual funct ion to be 

opt imized, employ cyc l i c  coordinate descent to 
derive a lgor i thms,  and provide a few exalnples 
and summary remarks. In section 4 we discuss 
f e a s i b i l i t y  for  three-dimensional tables and 
provide examples. 

Tables are adjusted to reconci le data when 
marginals and in terna l  ent r ies  ar ise frown 
di f fe ren t  sources. Internal  ent r ies  are 
adjusted when marginals are considered more 
re l i ab le  --  for  example, marginals may be 
derived from 100% census data whereas in terna l  
ent r ies  may ar ise from a sample. One 
app l ica t ion  of raking at the Census Bureau is to 
weight responses to the census long-form which 
was mailed on a sample basis. Marginals were 
obtained from the f u l l  census count and in ternal  
ce l l s  are weighted to be comparable to marginal 
d i s t r i b u t i o n s .  An excel lent  discussion of these 
procedures is contained in a series of four 
papers: Fan, Woltman, Miskura, and Thompson 
(1981); Thompson (1981); Kim, Thompson, Woltman, 
and Vajs (1981); and Woltman, Miskura, Thompson, 
and Bounpane (1981). Five recent papers 
re la t i ng  to table adjustfnent for est imat ion and 
weight ing are: Copeland, Peitzmeier,  and Hoy 
(1987); Alexander (1987 and 1990)); Lemaitre and 
Dufour (1987); and Oh and Scheuren (1987). 
Addi t ional  informat ion and b ib l iography in table 
adjustment is contained in Fagan and Greenberg 
(1988). Detai ls  omitted from th is  paper due to 
space l i m i t a t i o n s  are contained in Fagan and 
Greenberg (1990) from which th is  paper is an 
ex t rac t .  

1.2 Feasible Tables. By a table we mean a 
t r i p l e  A = { ( a  . ) , r , c }  of arrays of non- 
negative reals w~c~re ( a i j )  is an RxC matr ix ,  
r = (r I . . . . .  rR), c = (c I . . . . .  Cc), and 

R C 
Yri= Zc 

i ~ l  j : l  j 

We say that A is add i t ive  i f  

C 
a i : r i=1 .R 

j = l  J I ' ' "  
R 

a i = c j = l  . . .  C . 
i = l  j J ' ' 

That table A is said to be feas ib le  i f  there 
ex is ts  an RxC matr ix (b~)a,nJd such that bi~j = 0 i f  
and only i f  a i j  = 0 B = {(bdei~v!,r,c,} is 
add i t i ve ,  and we say that B is ed from A. 
That i s ,  A is feas ib le  i f  and only i f  there 
ex is ts  an RxC matr ix j(xi<) such that  J-(bi<) = 
(x i ja i j ) ,  satisfying" 

x i j a  i = r i=1 . . .  R 
( I )  ( i , j  ~V j i ' ' 

x i j a i j  = cj j = l  . . . . .  C 
(2) (i , j )cV 
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(3) x. >0  ( i , j ) ~ V ,  1j 

where V : { ( i , j ) l ( i , j ) c R x C  and a . .~  0} .  
1j 

2. DERIVING TABLES OPTIMIZING THE POWER- 
DIVERGENCE STATISTICS 

2.1 C r i t e r i a  fo r  Optimal Derived Tables. Given 
a feas ib le  tab le  A, one seeks a der ived add i t i ve  
tab le  B "c lose" to A. In Fagan and Greenberg 
(1988) we discussed four measures of closeness" 

(ml)" Z b i ~n(b i /a ) 
(i , j  )~V j j i j  

(m2)" ~ -a. ~n(b /a i  ) 
( i , j ) ~ V  1j i j  j 

(m3)" ~ ( a i j  - b i j ) 2 / b i j  
( i , j ) c V  

(m4)" ~ ( a i j  b i j ) 2 /  
(i , j ) cV  - a i j  ' 

which are the ob jec t i ve  func t ions  subject  to 
cons t ra in t s  ( 1 ) - ( 3 )  f o r ,  r e s p e c t i v e l y ,  rak ing,  
maximum l i k e l i h o o d ,  minimum Chi-Square, and 
weighted least  squares. Background fo r  these 
p a r t i c u l a r  func t ions  is discussed in Fagan and 
Greenberg (1988).  Each of these func t ions  can 
be used as a goodness -o f - f i t  s t a t i s t i c s  to 
observe how c lose ly  an observed d i s t r i b u t i o n  
resembles an assumed d i s t r i b u t i o n .  Our use of 
these goodness -o f - f i t  measures is somewhat 
d i f f e r e n t .  Given a non-add i t i ve  tab le  A f ind 
the c losest  add i t i ve  tab le  - -  based on each 
goodness -o f - f i t  measure. In tha t  paper, we 
presented a lgor i thms which can be used on an 
a r b i t r a r y  non-add i t i ve  t a b l e ,  which may have 
zero c e l l s ,  to obtain a derived tab le  fo r  each 
measure of g o o d n e s s - o f - f i t .  We replace b .  by 
a i j x i j ,  and rewr i te  the expressions above a 1J 

(91)" ~ a . x .  ~n x . .  
( i , j ) ~ V  1j 1j 1j 

(92)" Z - a  ~n x . 
( i , j ) ~ V  1j 1j 

- I  2 
(g3)" Z a i j x i j ( x i j  - i )  

( i , j ) ~ V  2 
(g4)" ~ a i j ( x i j - Z )  • 

( i , j ) ~ V  

In Read and Cressie (1984), the authors 
present a general ized,  one-parameter fami ly  
goodness -o f - f i t  measure - -  the power-divergence 
s t a t i s t i c  - -  which we wr i t e  as" 

d (A B) - 2 ~ a i [ (a  /b )(%-i 
' - (%((%+1) ( i , j ) ~ V  J i j  i j  ] 

fo r  (%~0,-1. I t  is not hard to see that  d I equals 
m 3, and d_ 2 equals m 4, (assuming, w i thout  loss 
of g e n e r a l i t y ,  tha t  

a . .  = ~ b 
( i , j ) c V  i j  ( i , j ) c V  i j  )" 

. we wr i t e  d as" Le t t ing  x i j  = b i j / a l j  

f ( x ) :  2 Z a i ( x - (%- I )  
(% (%(m+1)(i , j ) cV J i j  " 

We def i  ne 

fo (x )  : l im f(%(x) : -2 ~ a i j ~ n x i j  
- -  (%+0 - ( i  , j  ) ~V 

which is twice 92" We also def ine 

f _ l ( X )  = lira f (x) : 2 ~ a i x ~nx 
- -  (%+-1 ( % -  ( i , j ) ~ V  j i j  i j  ' 

which is twice g l "  Measures f o  and f - I  are 
t rea ted  in Fagan and Greenberg ( 1 9 8 8 ) ,  so we 
assume (%~0,-i in th i s  repo r t .  

Let S denote the region def ined by the 
cons t ra in t s  ( i ) - ( 3 ) .  The Hessian of f (x) 

(% - -  

v 2 f ( x ) :  diag (2a . . x . - ( (%+2) )  
x (%- 1j 1j 

is  pos i tve d e f i n i t e  so f is a s t r i c t l y  convex 
func t ion  over S. The se~ S is a convex set so 
every local  minimum of f over S is a global 
l~inimum and there is at mo~t one. 

Let T be the set of vectors s a t i s f y i n g  ( I ) ,  
(2) and 

xi j >__0 (i , j )~V 

and l e t  L be the boundry points of T, tha t  i s ,  L 
cons is ts  of vectors s a t i s f y i n g  ( I ) ,  (2) and 

x i j  = 0 fo r  solne ( i , j ) ~ V .  

Every point  of L is a l i m i t  point  fo r  S 
and f is continuous over S, so for  z~L, we can 
def in~ 

f (z) : l im f (~k) 
(% - -  (% 

~k÷Z 
oo 

where { x  }k is a sequence in S converging to 
z. Hen--Kce, =I f is def ined and continuous over 
a--ll of T. I f  wemdefine 

f (x)"  T÷RU{-} 
O& - -  

Note tha t  

Ii ! if >o 
f (z) = -(% I)  i f  (%<0 

(% -- i va i j  ( z i j  - 
((%+1) (i 3)~ 

The set T is closed and bounded and f is 
cont inuous,  so f has a minimum over T. For(% 
(%> - i ,  the minimum occures at an i n t e r i o r  point  
oT t h i s  region,  so is a local minimum and hence 
global minimum. 

To f ind the global minimum of f over S, i t  
su f f i ces  to use standard op t im iza t ion  techniques 
fo r  a convex func t ion  wi th l i nea r  c o n s t r a i n t s .  
In the next sect ion we form the Lagrangian, set 
up the dual func t ion  which we proceed to 
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maximize, and f i n a l l y  i n te rp re t  the resul ts  in 
the primal problem. 

2.2 Forming the Dual Function 

To solve the primal problem ( P ) "  
a 

Minimize f (x) over S, 
a - -  

we form the Lagrangian by incorporat ing con- 
d i t i ons  ( I ) a n d  (2) in to the primal to obtain 

R 
k ( x , ,  ~ ) =  f (x) + Z ~i( Z a x - r  ) 

a ' a - -  i = l  ( i , j ) ~ V  i j  i j  i 

C 
Z >'j( Z a x - c ) . 

j=l  ( i , j)~V i j  i j  j 

We minimize L ( x , ~ , ~ ) a s  a fUnCatliOesOf x_~ ~, 
and ~ and solve Ofo-~ c F i t i c a l  x "n erms 
of u-and ;~ which we replace in--[ (x ,u,~)  
resu--Iting-in the dual funct ion"  a 

H (u ~) : Min {L (x,~ ~)} . 
a --'-- x>O a ' 

Note that H (~,~) is a funct ion ofu and >, 
which we max~nTize, thus so l v i ng - - t he  --dual 
problem lhhee nla)<imum of H~( , ,X )equa ls  the 

inimum" of corresponding~f-~(~) constrained 
by ( I )  and (2). Adding the contr i t ion that x>O 
in terms of ~ and ~ when maximizing H (~,;~) 
y ie lds  the -value--of x that minimizes f over 

- -  a 

S. 
To f ind the minimum of L ( x , , , ~ , ) s u b j e c t  to 

x>O, for  each ( i , j ) ~ V  we fo r~ 

@La : [ - 2 / ( a + l ) ] a i j x i j  
~)X. i j  

- ( a+ l )+a i j  (~i+;~j) " 

Sett ing th is  expression to zero y ie lds  

X.  • 
13 

- (a+ l )  : [ ( a + l ) / 2 ] ( u i + ~ j )  . 

Since xij>O we have [ (a+ l ) /2 ] (~ i+ ;~ j )>O , and 

x i j  : [ [ ( a + l ) / 2 ] ( ~ i  +;~j) ] 
- l l ( a + l )  

Replacing these values in L (x ,~,~)  for  x i j  a 
and s impl i fy ing  y ie lds"  

Ha(~,_~):(2/a) Z a i [(  (a+ l ) /2 )  ( ,  +~ j ) ] a / ( a+ l )  
( i , j ) c V  j i 

R C 
- ~ , i r i  - ~ } , j c j - [2 /a (a+Z) ]  ~ a . .  

i = l  j = l  (i , j )~V 1j 

Our ob jec t ive  is to solve the Dual 
( D ) "  Maximize H (~,~) subject to 

a a 

[ ( a + l ) / 2 ] ( ~  i +;~j )>0. 

Probl era, 

Note 
since P 

that  the funct ion H (~,~) is 
is a convex problem aRd the set 

concave 

W : {(u,>.)" [ (a+ l ) / 2 ] (~ i+X j )>O (i , j )~V}  

is a convex set.  Thus, any local maximum 
of H is a global maximum and a l oca l  maximum 
of H a does ex is t  whenever f has " imum. In 
fact  a i f  x* is the minimum ~ of f over S, then 
there exis-t (~*,~*)  in W such tha~ (u* ,~*)  
maximizes H (~-,~T where for  al I (i-~j)~V 

a 

.+ . ) ] - I / ( a + l ) > o  x~j = [ [ ( a + l ) / 2 ] ( ,  i ;~j 

That i s ,  (~*,~*)  solves D i f  and only i f  
x* solves -P --. Our ob°Jective in the next 
s--ection is ~o f ind points (~* ~,*) to solve D . - -  ' - -  a 

3. DEVELOPING ITERATIVE PROCEDURES 

3.1 Cycl ic  Coordinate Descent. Given an 
funct ion F(x__) to opt imize,  one can sometimes 
employ an i t e r a t i v e  descent procedure. Descent 
with respect to the coordinate x i means that one 
minimizes F as a funct ion o f  x i leaving a l l  
other coordinates f i xed .  T h e c y c l i c  coordinate 
descent algor i thm minimizes F c y c l i c a l l y  with 
respect to each coordinate var iab le Luenberger 
(1984). The funct ion F is minimized with 
respect to x I f i r s t  and then with respect to x 2 
and so for th  through x n. We derive an i t e r a t i v e  
procedure based on cyc l i c  coordinate descent to 
maximize H (~,~) over W . 

We begiR by taking par t ia l  d e r i v i t i v e s "  

@Ha _ ~. aij [((a+1)/2) (, i  +},j ) ]-1/(a+l)_r" 
~ i  (i , j )~V l 

~Ha _ ~ a i j [  ( ( a + l ) / 2 ) ( ~ i + x j ) ] - I / ( a + l ) _ c  
~ j  ( i , ) ¢ V  J 

for  i=1 . . . .  R and j=1 . . . . .  C. 
Set t ing each equal to zero, the ob jec t ive  is 

to f ind the unique ~i and ~ that  are zeros of 
the respect ive funct ions J 

@Ha @Ha 
~ i  (~ i )  and ~ ( x j )  . 

Our i t e r a t i v e  procedure to f ind (~*,_~*) to 

maximize H (u,~) over W is ( in p r i nc i p l e )  as 

Ioi I " i fo l lows.  I n i t i a l i z e  ~ and X (0) f ind 

~- +1) as a function of X- k) Jand find x(k+l) 

as a function of ~ i ( k + l ) . J I n  pa r t i c  l a r ,  we le t  
Ik+l) ~. be the unique zero of 

~Ha 
~)ui ( ui ): 

a i j  [ [  ( a + l ) / 2 ) ]  (~i +x~k) ) ] - l ( a + l ) - r i  
( i , j ) c V  

such that  [ ( a + l ) / 2 ] [ u i ( k + l ) + ~  j 
~k+l) be the unique zero of 

(k)]>O and le t  
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aH~ 
~i .  (~'j) : 

3 
k+l) -1/(el+l)  

a i j [ ( (e l+Z) /2 )  ( , .  ) ]  -c. , 
( i , j ) ~ V  +XJ 3 

(k+l) ]>O. The [ [ ( e l+ l ) / 2 ] [ " i ( k+Z )+xJ  (k) (k) s u c h  that  

sequence of vector pairs (~ ,_X ) wi I 1 

converge to a vector pair  (~__*,X__*) such that 

H (]a*,X*) is maximum (subject to 
el  - -  _ _  

[ ( el+l )/23( ]J#+ X* )>0) 
J 

and hence such that i f  

x*.  : [ [ ( e l + l ) / 2 ] (  * + ,) ]- I / ,el+l , I1 
1j ~i ~'j ' 

then x* minimizes f (x) over S. That i s ,  the 
solutTon of the d~]aT problem, D is used to 
obtain the so lut ion of the primal ~roblem, P . 

Detai ls  of cyc l i c  coordinate descent elare 
discussed in Luenberger (1984, p. 228) and as 
appl ied to table adjustment problems in Fagan 
and Greenberg (1985). To f ind the unique zeros 
of 

aHel aHel 
~ i  (~ i )  and ~ (Xj) 

3 

we use Newton's method wi th in  each i t e r a t i o n  of 
cyc l i c  coordinate descent and the composite 
algor i thm is below. We w i l l  not present the 
de ta i l s  of the der iva t ion  here, but they fo l low 
c lose ly  along the l ines presented in Fagan and 
Greenberg (1985). 

3.2 I t e ra t i ve  Procedure to Maximize H (]a X) 
el ' for  el~O,-I 

I0)  : 1/(el+Z) (o) i )  I n i t i a l i z e  ~. = xj 

2) 
u l k + l ) :  ulk) + 

}k) ~ k ) - i / ( e l + l )  
2(y~ a i j [ [ ( e l + Z ) / 2 ] ( , .  +x )]  - r  i )  

V 
,_ 

-~ aTj [ [  (el+l) /2],}k-) +~!k) ] -(el+2)/(el+l) 
V 3 

2 ' )  Let ,~ = Max { - [ ( e l + l ) / 2 ] x ! k ) } .  
( i , j ) c V  J 

Ik+l) 
I f  [ (e l+ l ) /2 ]~ .  -~<__0, set 

I k) (k): [ la.  + 2X/(el+1)]/2 and go to 2) 
~i 

3) Repeat steps 2) and 2') for  i=1 . . . . .  R. 

4) 
 qk+l): + 

3 J 

2(Z a i j [ [ ( e l + l ) / 2 ] ( ~ .  +X )] 
V 

- I / (e l+ l )  
-c j )  

~a. 
v l J  

"" ( .  [ [ ( e l + l ) / 2 ] ( u l k + l )  X k ) ) ] - (e l+2) / (e l+ l ) .  

4 ' )  Let u = Max { - [ (e l+ l ) /2 ]u~ k+ l ) }  ~ . 
( i , j ) ~ V  i 

I f  [ (e l+ l ) /2 ]~ Ik+ l ) -~<O set 

~k) ~k)+2~/ I) ] /2  and go to 4). = [~ (~+ 

5) Repeat steps 4) and 4')  for  j=1 . . . . .  C. 

6) Increment k and return to step 2) else 
terminate i f "  

(k) and x. (k)  (a.)  the sequence of values ]Ji 3 
converges for  a l l  i and j 

(b.)  the sequence of values la (k) or x (k) 
gets too large or too ciose to z~ro 

(c . )  the program begins to osc i la te  between 
steps 2) and 2') or 4) and 4')  

(d.)  the number of i t e ra t i ons  becomes 
excessively large.  

When terminat ing for  c r i t e r i o n  (a) above, the 

values ]ai(k) and Xj (k) w i l l  converge to 

* and x* and 
~i j '  

x*.  = [ [ (e l+L) /2) (  * + >,)]-I/~el+l)'" 
1j ~i j 

for  ( i , j ) ~ V  w i l l  minimize f over S. There w i l l  
not be an optimal over S iQ~ one must terminate 
for  condi t ions (b),  (c) or (d).  Under these 
condi t ions one t y p i c a l l y  has an optimal on the 
boundry, L, and th is  does not t e l l  us very much. 
The algor i thm w i l l  converge for  a l l  el>-l, for  a 
feas ib le  tab le .  

3.3 Examples. In Fagan and Greenberg (1988) 
the authors introduced Table 1 (below) and found 
the adjusted tables under raking, maximum l i k e -  
l ihood,  and minimal Chi-Square, (correspond- 
ing to f fo r  el = - I , 0 , I ,  respec t i ve l y ) .  We 
now discuss the adjusted tables based on Table I 
for  various other el . 

0 1 2 3 4 
1 4 5 6 7 
0 0 0 1 2 
3 6 7 8 9 
4 7 8 9 10 

3 4 4 5 b 
Table 1 

4 
5 
2 
5 
5 

2i 

(a) For el = -4 the solut ion appears to be on 
the boundary of S and we cannot f ind i t  
using the algor i thm above. We terminate the 
algor i thm for  th is  example when el = -4 
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for reason (c) above. The algorithm 
osci lated between 4) and 4 ' ) .  

(b) For m=-3, the adjusted table is in Table 2- 

0 .431 .817 1.201 1.551 
.408 1.034 1.097 1.221 1 241 

0 0 0 .672 1 328 
1.122 1.209 1.036 .985 649 
1.471 1.327 1.550 .922 231 

3 4 4 5 5 
Table 2 

4 
5 
2 
5 
5 

21 

(c) For m= 2/3, the adjusted table is below 

1.318 .816 .924 .936 1.006 
0 0 0 1.136 .864 

.857 .949 1.037 1.048 1.108 

.824 .960 1.041 1.559 1.116 

3 4 4 5 5 

5 
2 
5 
5 

'2i 
Table 3 

3.4 Remarks 

(a) This algorithm wi l l  converge to a solut ion 
of D and hence of P for a rb i t ra ry  m and 
arb i t ra ry  table A i f  tmne funct ion f (X)_ has 
a minimum at a posi t ive x* . 

m 

(b) Algorithm steps 2') and 4') ensure that the 
solut ion remains pos i t ive ,  that is ,  

W 

[ (m+ l ) /2 ] [u  +X*]>O. 

(c) For m>-l, for every feasible table A, the 
function f (x) has a minimum at a posi t ive 
x* , so th#s-algori thm wi l l  f ind i t .  

J 

(d) For an arb i t ra ry  m and arb i t ra ry  table A, 
i f  f (x) has a posi t ive minimum at x* , 
then f~(x) w i l l  have a posi t ive minilnum-at 
some y_~ Tor al l  ~ in a neigborhood of m . 
In fac t ,  y* w i l l  be a continuously 
d i f f e ren t i ab le  function of m . 

(e) Read and ~ressie (1988) remark that they 
favor m= -~ as a desirable measure of 
goodness-of - f i t .  No te  that for m=-~ , a l l  
feasib le tables have a so lu t ion.  

4. THREE-DIMENSIONAL TABLES 

The preceeding sections of th is  report were 
couched in terms of two-dimensional tables as 
were our ea r l i e r  reports on th is  top ic ,  see 
Fagan and Greenberg (1984,1985 and 1988). 
V i r t ua l l y  al l  procedures and algorithms that can 
be applied to two-dimensional tables also can be 
applied to tables of higher dimension af ter  
minor modi f icat ions.  In par t i cu la r ,  the problem 
set-up and algorithms in Sections 2 and 3 have 
v i r tua l  ident ical  counterparts in three- 
dimensions for feasible tables.  

The de f i n i t i on  for table f e a s i b i l i t y  also 
goes over to three-dimensions (and higher) and 
procedures to determine i f  a three-dimensional 
table is feasible are s imi lar  to those for two- 
dimensions; Fagan and Greenberg (1985). The 
only exception to th is  rule is that in the 
ea r l i e r  work one sets up a l inear  programming 

problem which has the structure of a 
t ransportat ion problem, see Luenberger (1984). 
In three-dimensions, one does not have the 
corresponding t ransportat ion problem, so one 
must st ick with the more  general l inear  
programming problem throughout. With that 
understanding, i f  the l inear  programming problem 
has a so lut ion,  Lemmas I,  2 and 3 and Theorem I 
in Fagan and Greenberg (1987) hold completely in 
three-dimensional tables.  Accordingly, one can 
apply the corresponding i t e ra t i ve  procedures to 
determine whether an arb i t ra ry  three-dimensional 
table is feas ib le.  

Due to space  l im i t a t i ons ,  we confine 
ourselves to providing a few example to show the 
contrast between two and three-dimensional 
tables.  A complete discussion of three- 
dimensional tables is contained in Fagan and 
Greenberg (1990). 

For s imp l i c i t y  we represent a 2x2x2 three- 
dimensional table by 

a l l l  a121 

a211 a221 

a011 a021 

Level 1 

al01 a l l2  a122~ alO0 

a201 a212 a2221 a202 

ao01 a o 1 2  a022 ao02 

Level 2 

a l l0  a120 

a210 a220 

aOlO a020 
Level 3 

alO0 

a200 

ao00 

where Level 1 plus Level 2 add to the tota l  
leve l ,  Level O. 

Below, we see that Table I is feasib le,  with 
an addi t ive counterpart in Table i "  

I 1 | 2  i i I 2 I 3 
I I | i i I 2 1 2 3 

. . . . . . . . . .  

~2 1 1 3  1 2 3 3 3 6 
Level 1 Level 2 Level 0 

Tabl e 1 

3/2 1/2 I 2 
1/2 1/2 I i 
. . . . . .  j ,  

2 I 3 
Level I 

1/2 1/2 I 1 2 1 ~ 3 
i /2  3/2 2 1 2 3 

-1 2 13 3 3  16 
Level 2 Level 0 

Table 1' 

Below we display Table 2 which is not feasible" 

11L2 
I I I 

~2 1 13 
Level I 

1 1  1 , 
1 1 2 

1 2 1 3  
Level 2 
Table 2. 

3 

3 3 1 6  
Level 0 

For i f  Table 2' were addi t ive then b122<I (being 
a summand of b102=l so b122<I, blo2=T), b121>l 

= b120 = 2), but b12 is a (because. b122 + 1~1 I 
summand of b021 a cont rad ic t ion.  
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b111 ~121 
b211 221 

b122 b122 
b212 b222 

2 1 1 2 
Level 1 Level 2 

Tabl e 2' 

1213 
2 1 3 
= :  

3 3 1 6  
Level 0 

This example exhibi ts a sharp d is t inc t ion  
between two and three dimensions• In two 
dimensions, every table hav ing al l  pos i t iv  e 
entr ies is feasible;  whereas Table 2 is a non- 
feasible table in three dimensions with al l  
entr ies posi t ive• I t  is also in terest ing to 
observe that there is no non-negative addit ive 
table with marginals as shown in Tab|e 3. 

x x 3 x x I I 3 4 
x x I x x 3 3 i 4 

1 3  4 1 3  4 4 4  8 
Table 3 

This is in contrast to the fact that in two 
dimensions every table with posi t ive marginals 
has at least one non-negative solut ion• 

V. SUMMARY REMARKS 

In th is  report we extend ear l ie r  work and 
show how to adjust a rb i t ra ry  non-additive 
feasible tables into addit ive tables minimizing 
the power-divergence s t a t i s t i c  introduced by 
Creesie and Read (1984). We provide examples 
and theoret ical  background for the procedures 
introduced. These methods can be easi ly 
extended to tables of dimension greater than 
two. In addit ions, we present procedures for 
determining when three-dimensional tables are 
feasib le.  The algorithms presented for th is 
purpose extend d i rec t l y  to tables of dimension 
greater than three. Background issues for table 
adjustment and a bibl iography are presented in 
the authors' ear l ie r  papers Fagan and Greenberg 
(1985, 1987, and 1988). 

* This paper reports the general results of 
research undertaken by Census Bureau s ta f f •  The 
views expressed are a t t r ibutab le  to the authors 
and do not necessarily re f lec t  those of the 
Census Bureau• 
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