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1. Proportional Hazards Models 

The Cox proportional hazards model assumes that lifetime 
data are independently distributed with hazard function given 
by 

h{(tlx(t) } = h o (t) exp{x(t)/p}, 

where x(t)is a vector of (possibly time dependent) covariates, 
assumed to be non-stochastic, and h 0(t) is the hazard 
function at x(t) = 0. This model has been very popular in the 
fitting of failure data, both in biometric and in reliability 
applications. One of the reasons for its popularity is that the 
unknown parameter, 8, can be estimated without putting a 
parametric structure on h 0 . This is due to the fact that the 
conditional distribution of the lifetimes, given the failure times 
of the sample, does not depend on h 0 explicitly. Therefore, 
a partial likelihood analysis is possible. 

However, this model is certainly not assumption-free. The 
true model can differ from the classical proportional hazards 
model in a number of ways. Some of these are: 

- non-linearity of the exponential argument, 
- missing variables, 
- hazard functions not proportional, 
- observations not independent. 

As well, when the data are right-censored due to withdrawal 
from the study, it is usually assumed that the mechanism 
generating the withdrawal is unrelated to the censored 
portion of the hazard function. 

Many of the consequences of misspecifying the model in 
the case of independent observations have been dealt with 
in the literature; see Lin and Wei (1989) for some recent 
references. Of particular note are Struthers and Kalbfleisch 
(1986), where the asymptotic biases under a wide class of 
models are explicitly derived, and Lin and Wei (1989) who 
propose a method for estimating the covariance matrix of the 
estimated parameters, when the model is misspecified. 

We consider here a slightly different setting. Suppose the 
sample has been drawn from a population using a complex 
design, such as is commonplace for large-scale population- 
based surveys. For example, consider a large-scale health 
survey, with a stratified multi-stage design. Some of the 
design parameters may be related to the true hazard func- 
tion, but are not explicitly part of the model being fitted. This 
could include, for example, environmental factors which are 
related to the geographic regions being controlled in the 
sample design, but which are not explicitly measured. As 
well, many of the important covariates may not be included 
in the survey. For example, in a study on cancer mortality, 
not all the risk factors are even known. Unearity of some of 
the covariates could also be violated for many of the quanti- 
tative factors, such as number of cigarettes smoked per day. 
Independence may be violated. For example, for family data, 
risk of heart disease may be correlated within families. In 
general, the model being fitted is at best an approximation. 

All these will affect the biases, variances and estimates of 
variance of the parameter estimates. 

These same comments also apply to non-survey contexts. 
Many studies which include family data do not explicitly 
recognize the possible impact of the intra-family correlations. 
Nested designs can suffer from correlations at each level of 
nesting. 

However, even when the model assumptions have been 
violated, fitting the proportional hazards model can have both 
descriptive and analytic value. Every effort should be made 
by the analyst to avoid violation of the assumptions, so that 
the model is at least approximately true. Scott and Wild 
(1989) quantify this approximation error in the case of logistic 
regression. A similar definition may be used here, so that the 
approximation error would be the difference (or ratio) of the 
true hazard given x(t) to the hazard implied by the model. 
The hazard implied by the model in the case of a finite 
population is the value of the hazard function at 8 = B, 
where B is the estimated parameter when all the finite 
population has been observed (with the appropriate censor- 
ing). 

When the approximation error is small, fitting the wrong 
model will still be useful analytically. Even, when the 
approximation error is not small, some users may find that 
the model has descriptive value as being the best fit to some 
simple model in what may be a very complex setting. For 
example, the parameter value can give an indication of the 
change in relative risk when a covariate is changed. For 
some data analysts, it may be easiest to think in terms such 
as: (Approximately) how much reduction of a risk factor is 
required in order to reduce the hazard by 50%? These types 
of statements are used for public education of the risk of 
smoking or of high blood pressure. 

We will describe a design-based procedure to estimate 
the parameters of the proportional hazards model and their 
estimates of variance. The estimation of variance employs 
methods not previously discussed in the literature. We also 
give the results of a simulation study, comparing the pro- 
posed procedure with other estimators when certain model 
assumptions have been violated. 

2. Parameter Definition and Estimation 

For a sample of size N, the partial likelihood function, 
conditional on the observed failure and censoring times is 
given by: 

• . Y~ ( t~ )  h { t~  Iz~ ( t~ )  } 
I 

where t 1 . . . . .  tN; t i is the failure time of the i-th unit; 

°,-{ 1 if the i-th unit is an 
observed failuze, 

0 if the i-th unit is censored; 
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i if t~ tj 

Yj(t) = 0 if t > tj. 

To maximize the partial likelihood function we determine 
B such that 

'~ [ S (z) ( t i , S) 
i~16i Z l ( t i )  - = 0 ,  (2.1) 
"= L S(°) ( ti " B) 

where 

1 • 
S (°) ( t , B )  = "N'~2-~ Yi ( t ' )  e x p { x  1 ( t ) /B} ,  (2.2) 

i N 

S (~) ( t ,S)  = N~Tc=z Y i ( t )x~( t )exp{x~( t ) lB} "  (2.3) 

The solution to (2.1) defines the finite population para- 
meter, B, which depends on the Y i(t)'s and the &i's. We 
consider B to be the finite population parameter of interest, 
based on N observations, and which we wish to estimate 
from a sample of size n. The estimation procedure replaces 
the summations in (2.1), (2.2) and (2.3) by weighted sums, 
using the sampling weights, {w i }. We scale the weights so 
that ]~ w i = 1. The weights are constructed so that the 
weighted sums are approximately unbiased and consistent 
estimates of the corresponding means over the finite popula- 
tion. In particular, the estimating equations for b, the 
estimator of B, are 

n Ix (z) ( t i  , b )  = O, (2.4) 
w~6 i[~(t~) - (o~ (t~,b) 

i=i 

where 

(o) (t,b) = ~ wlY i( t) explz~( t)/b}, 
i=i 

(2.5) 

(1) ( t ,b )  = ~ wtYi( t ) x l (  t )exp{x,  ( t) lb}, 
i - 1  

(2.6) 

The estimator b which is the solution to (2.4) is referred to as 
the pseudo-maximum likelihood estimator; see Skinner 
(1989). 

3. Variance Estimation 

We are interested in obtaining the design-based variance 
of b - B. In Binder (1983), a general method is given for 
deriving the variance of parameter estimators which satisfy 
estimating equations of the form: 

n 

O(b) = ~ wiu1(b) = 0. (3.1) 
i=l 

Using Taylor linearization, the design-based variance of b in 
(3.1) is given as: 

J-zVu J-Z , (3.2) 

where 
V= = Var{O(B) }, 

j = a O' (B)  

cgS ' 

(3.3) 

(3.4) 

N 
U(B) = ~ ui(B) = O. 

i-1 
(3.5) 

Binder (1983) gave conditions under which (3.2) is the 
asymptotic variance for b. For example, Chambless and 
Boyle (1985) derived the design-based variance for the 
discrete proportional hazards model suggested by Prentice 
and Gloeckler (1978) using this approach. 

^ 

In our case, however, the form of U(b) does not conform 
to the expression given in (3.1), since the q's of the pseudo- 
maximum likelihood equation are functions of weighted 
sums, where the sums depend on the ti's. Therefore, we 
need to adapt the derivation for the variance of b. We shall 
still consider variances based on Taylor series expansions, as 
opposed to other methods of variance estimation; see, for 
example Rust (1985). 

The method we use is to find an alternative expression to 
the partial likelihood equations, given by (2.1), which has the 
form given by (3.5), and which is asymptotically equivalent 
to (2.1). Once this is found, the variance given by (3.2) may 
be used. In fact, Lin and Wei (1989) derived such an 
expression in the case of independent sampling. We 
summarize their results for the pseudo-maximum likelihood 
equation given by (2.4). 

Expression (2.4) may be rewritten as 
n 

i = l  

eo 

/ (z) ( t  b) d ~ ( t )  = 0 ,  
(o~ (t b) 

0 (3.6) 

where 
n 

( t )  = ~ wiG i ( t )  , 
i - l  

= II if tzt i and 8; = 1 
Gi(t) [ 0 otherwise. 

We define 
N 

G ( t )  = ~ G i ( t )  . 
i - 1  

and take a Taylor series expansion of (3.6) around 
~(0) =S(0), ~(1) =S(1) and (~=G. The first order Taylor expan- 
sion of the left-hand side of (3.6) is 

343 



n 

~, w~8 ~x~ (c~) 
i=1 

0e 

/ 
0 

S(~) ( t ,  b) 
S (°) ( t, b) 

dG( t) 

+/ 
o 

~(o) ( t , b )  S (~) ( t , b )  ldG( c) 
J 

_ f S (I) (t,b) dG(t) . 
S (°) ( c, b) 

o (3.7) 

Since, ~(o), ~(1) and (~ are consistent estimates of S (°) , S (1) 
and G, respectively, the remainder terms are negligible. 
Therefore, expression (3.7) is asymptotically equivalent to 
U(b) in (3.1), where u i (b )  is 

8~[x~(t i) - s(~ ( c~'b) 
[ S (°) (tl,b) 

w 

- / Yi(t)x~(t)exp{xl(t)/b}] 

e =  

+ f Y~ ( t )  s ~) ( c , b )  exp(z~ (t) ~b} 1 
Jo dc;; -d j ( t ) . 

(3.8) 

To estimate the variance of 0(b), it is necessary to substi- 
tute estimates of S (°), S (1) and G into (3.8). This results in 
0 i (b)  defined as 

~(~) (t~,b) 
6i Xi ( ti) - S(o) ( ti,b) 

- ~-~ 8jwj Y'~(tj) ~x'[((tJ)exp{x~ ( t j )  'b} 
~=I o) ( tj , b) 

+ £ 8jwj Yi (tj) ~(z) (tj,b) exp{x~ (tj)/b} 
~=~ $(o) ( cj, b) 2 

(3.9) 

Using these values for 0 i (b) ,  V u in expression (3.3) can 
be estimated using design-based methods. The matrix J is 
estimated by taking the derivative of (2.4) with respect to b. 
The variance of b is then given by (3.2). 

4. Simulation Study 

To assess the performance of the variance estimator, we 
performed a simulation study and computed the coverage 
properties of the implied confidence interval, assuming 
approximate normality of b - B. Note, we have shown that 
0 is asymptotically equivalent to the weighted sum of the 
u i's, so that asymptotic normality would result from condi- 
tions similar to that in Binder (1983). 

We let z 1 , z 2 and z 3 be independent standard normal 
random variables. Also bin I and bin2 are independent 0-1 
random variables with p =0.5. We generated a population of 
N= 5000 lifetimes using hazard function 

h(t) = exp{z I } + 0.5bin I . 

The largest 2500 observations were right-censored. We 
notice that this model is not a proportional hazards model. 

The population was then stratified using size variable 
exp{z 1 + 0.5z 2 }. Five strata were obtained and samples of 
size n =500 were drawn using stratified random sampling. 

Two methods of stratification and sample allocation were 
used. In the first case, the sample allocation was based on 
Neyman allocation, and the stratification was chosen to 
minimize the variance of the estimated mean of the stratifica- 
tion variable. The resulting strata sizes were 2319, 1473, 798, 
342 and 68, with corresponding sample sizes 107, 105, 110, 
110 and 68, respectively. 

In the second case, five equally-sized strata were deline- 
ated, based on the ranking of the stratification variable. The 
sample allocation was equal within strata. 

We fit the proportional hazards model using the two 
variables: z I + 0.5z3, and bin 2. For each case, we gener- 
ated 2000 stratified samples. We computed three variances 
for each sample: 

- the design based variances given in Section 3; 
- the usual model-based variance using unweighted 

estimates and the model-based information matrix; 
- the "robust" variance suggested by Lin and Wei (1989). 

This last estimator uses the same linearization as our 
method, except that it is based on unweighted estimates and 
assumes simple random sampling with replacement in the 
variance calculation. 

The population parameter values for the N = 5000 units of 
the population were B1 - 0.622 and B2 - 0.041. Table 1 
gives the average values of the parameter estimates over the 
2000 simulations. 

TABLE I. Expected value of parameter estimates 
based on 2000 simulations 

Unequal Equal 
Allocation Allocation 

B, B= B, B= 

O. 624 O. 037 
0 . 6 2 4  0 . 0 3 7  

WeiBhted 0. 625 0. 046 
Unwei&hted 0. 679 -0. 011 

The standard deviations of the sampling distribution of the 
parameters estimates were also calculated. These are given 
in Table 2. 

TABLE 2. Standard deviation of parameter estimates 
based on 2000 simulations 

U n e q u a l  E q u a l  
A l l o c  a t . i o n  A l l o c  a t . i o n  

BI  B z B ,  B z 

Weishted 0.071 0.145 0.059 0.012 
Unweighted 0.045 0.094 0. 059 0. 012 

From Table 1, we notice that the unweighted estimates 
exhibit larger biases, as would be expected. From Table 2, 
we see that the variances of the parameter estimates are 
smaller with an equal allocation design. This shows that 
optimal stratification and allocation with an imprecise 
stratification variable can lead to poorer results. 

For each of the 2000 samples, we also computed the z- 
score based on b - B using the three different variance 
estimation methods. P-P plots of the are given in Figures 1 

to 6. Figures 1 to 3 are for the unequal allocation case and 
Figures 4 to 6 are for the equal allocation case. The z-scores 
for both fitted variables are given on the same plot. 
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Figures 1 to 3 show the superiority of the design-based 
methods in the case of unequal allocation. This is due to the 
biases inherent in the unweighted procedures. For the equal 
allocation case, where the estimators are all unweighted, the 
model-based method (Figure 5) is inferior to the other two 
methods. It appears that in this case the model-based 
variance estimates tend to be too large, giving a relatively 
conservative test. This is possibly due to the fact that the 
stratification has reduced the variance of the estimators. 

5. Summary 

This simulation study has shown that the design-based 
approach to estimating variances, using Taylor linearization 
methods may perform at least as well as the model-based 
methods. For the case of equal allocation, the procedure 
suggested by Lin and Wei (1989) performed as well as the 
design-based method, for the case of the simulation study. 
This could be due to the fact that there was no intra-cluster 
correlation present, so the independence assumption was 
valid, even though there were missing variables in the model. 
It seems, though, that the design-based approach can be 
used effectively in a wide set of circumstances. 

The method suggested for obtaining the linearization 
shows that the general procedure suggested by Binder 
(1983) can be extended to handle models such as we have 
discussed. 
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