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1. Introduction 

A social scientist usually thinks of 
linear regression as a means of esti- 
mating the parameters of a preconceived 
linear model or of testing the validity 
of a particular model within a continuum 
of slightly more general linear models. 

Many survey statisticians have a quite 
different view of linear regression. 
They are interested in describing charac- 
teristics of a finite population. To 
this end, ordinary least squares regres- 
sion performed on multivariate data from 
the entire population would produce some 
useful summary statistics. In practice, 
however, it is too difficult to obtain 
information from the entire population 
and so data is obtained from a sample of 
observations (note: the term "obser- 
vation" will be used to refer to any 
member of the population under study even 
though relevant values for nonsampled 
members are not actually observed). 

The social scientist's view of linear 
regression as given above is called 
m?del~based, the survey statistician,s 
vlew uesign-based (Hansen et al. (1983)). 
According to model-based theory, part of 
the multivariate data -- the dependent 
variable -- is itself a random variable 
generated by a stochastic model. In 
contrast, orthodox design-based theory 
holds that all the data are fixed; the 
only thing probabilistic is the selection 
process that randomly chooses some obser- 
vations for the sample and not others. 
There is no model generating the data. 
There is only a useful way to summarize 
the covariation of multivariate values in 
the finite population. 

There is an alternative school of 
thought in design-based theory we will 
call the Fuller (1975, 1984) school. It 
holds that there is an underlying model 
generating the data, but that the analyst 
knows very little about it. In fact, the 
relationship among the variables may not 
even be linear. Linear regression is 
simply a means of summarizing in linear 
fashion a relationship among the 
multivariate values generated by the 
model. 

There are several software packages 
that perform linear regressions and 
estimate variances in accordance with the 
Fuller school of design-based theory, 
which is more palatable to social scien- 
tists than the orthodox design-based 
approach. Two popular ones are SURREGR 
(Holt (1977)) and PC CARP (Fuller et al. 
(1986)) .  

This paper contrasts the three ap- 
proaches to linear regression. It then 
shows how Fuller school procedures can 
offer protection against certain types of 
model failure from a model-based point of 
view. An illustrative example follows. 
A test for comparing the results of 
ordinary least squares and weighted 
regression is proposed. 

2. The Standard Linear Model and the 
Sample 

Suppose the multivariate values of a 
population of M observations can be fit 
by the linear model: 

y = X~ + ~, (i) 

where y = (Yl, "'', YM)', is an M x 1 
vector of population values for a 
dependent variable; 
X is an M x K matrix of population values 
for K independent variables or 
regressors; 

is a K x 1 vector of regression 
coefficients; and 
E is an M x 1 vector of disturbances or 
errors satisfying E(~) = 0 and Var(~) = 
E(~') = O2IM . 

If one knew y and X, then the best 
linear unbiased estimator of ~ would be 
the ordinary least squares (OLS) 
estimator 

B = (X ' X) -I (x ' y) . (2) 

Unfortunately, y and X-values are only 
known for a sample of m observations 
which has been selected at random in a 

manner that is assumed to be independent 
of ~. 

The best linear unbiased estimator of 
given the information at hand is 

boL S = (X'SX)-I(x'sy), (3) 

where S is an M x M diagonal matrix of 
O's and l's. The ith diagonal of S is 1 
if and only if the ith unit of the 
population is in the sample. 

The variance of boLS2(a variance- 
covariance matrix) Is o (X'SX) -I. An 
unbiased estimator for this variance can 
be determined by estimating u 2 in the 
above expression by 
s 2 = (y - XboLs)'S(y - XboLs)/(m - K). 
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3. The Design-Based Approaches 
In the orthodox design-based approach 

to regression, there is no underlying 
linear model. The goal of linear regres- 
sion is not to estimate ~ in equation 
(i) ; rather, it is to estimate B in equa- 
tion (2) based on a randomly selected 
sample of m observations. 

Let P be a M x M diagonal matrix whose 
ith diagonal is the probability unit i 
was selected for the sample. We can call 
W = (m/M)SP -I the matrix of sampling 
weights. Note that W = S when every unit 
has a probability of selection equal to 
m/M. 

For many sampling designs the weighted 
regression estimator, 

bw = (X,WX)-I(x'wy), (4) 

is a design consistent estimator of B in 
equation (2) ; that is, as m grows arbi- 
trarily large, plimm_ > (b w - B) = 0 with 
respect to the probability space 
generated by the sampling mechanism. 

Fuller (1975) points out that bn, is 
• " 

generally a consistent estlmator of B = 
Q-IR, where Q = IimM_>~(X'.X)/M and 
R = IimM_>~(X'y)/M when Q-± and R exist 
and b w is a consistent estimator of B. 
Often B is referred to as the finite 
population regression parameter, while B* 
is the infinite population regression 
parameter. 

What we have called the Fuller school 

of linear regression assumes the exis- 
tence of a model generating the finite 
population data. It does not assume very 
much about the nature of that model, how- 
ever, only that Q-I and R exist. This 
school of thought employs the laws of 
probability in the same way as the ortho- 
dox design-based school does: through the 
sample selection process exclusively. 

It should be noted that the model-based 
estimator, boL s, equals the design-based 
estimator, b W, when W = S; that is, when 
all the sampled observations have equal 
probabilities of selection. It should 
also be noted that if the model in equa- 
tion (i) holds, then the infinite popu- 
lation regression parameter, B*, will 
equal the model regression parameter, ~. 

4. Design Mean Squared Error Estimation 
In order to estimate the mean squared 

error of b W as an estimator of either B 
or B* under the sampling design, we need 
to know more about the design. 

Suppose the population of M obser- 
vations is divided into H strata (H may 
equal 1). Suppose further that there are 
n h >_ 2 distinct primary sampling units 
(which may involve clusters of the actual 
observations) selected from stratum h. 
Ultimately, mhj (which may also equal 1) 
observations a~e selected for the sample 
from primary sampling unit (PSU) hj. 

This broad framework allows for multi- 
stage random sampling with (perhaps) 
unequal selection probabilities at each 
stage. For simplicity, however, we 
exclude from consideration samples where 
some PSU has been selected more than once 
in the first sampling stage. 

Without loss of generality, ~W can be 
rewritten as bw = Cy*, where y is an m- 
vector containlng only those members of y 
that correspond to sampled observations. 
Let r* be the analogously defined vector 
of residuals (r = y - Xbw). 

For every sampled PSU hj, define D h. as 
a m x m diagonal matrix of l's and 0'~ 
such that the ith diagonal of Dh~ is 1 
if and only if the ith member of ~* cor- 
responds to an observation in PSU hj. 
Finally, let ghj = CDhjr • 

The linearizatlon (or Taylor Series 

linearization or delta method) mean 
squared error estimator for b w as an 
estimator of B* is the matrix 

H n h n h 
mse = Z [ Z ghjghj' - 

h=l n h - 1 j=l 

1 n h n h 

--- (Z ghj) ( ~ighj)']" (5) 
n h j=l j 

This estimator is computed by the SURREGR 
software packages. PC CARP scales mse by 
{(m-l)/(m-K)}. Either way, the result is 
a consistent estimator of design mean 
squared error (in the Fuller school 
sense) as n = Z nh grows arbitrarily 
large under mild conditions; see Shah et 
al. (1977) (note: orthodox design-based 
theory can require finite population 
correction terms which are unavailable in 
SURREGR and suppressible in PC CARP). 

The Law of Large Numbers and the Cen- 
tral limit Theorem can often be invoked 
to test hypotheses of the form HB* = h0, 
where H is an r x k matrix and r S k. 
Under the null hypothesis, 

T 2 = 

(Hb w - h0)' (H{mse}H')-l(Hbw- h0) (6) 

has an asymptotic chi-squared distri- 
bution with r degrees of freedom. When 
n - H - k is not large, a common ad hoc 
alternative to T 2 is F = T2/r which is 
assumed to have an F distribution with r 
and either n - H - K (SURREGR) or n - H 
(PC CARP) degrees of freedom. 

5 .  T h e  E x t e n d e d  L i n e a r  M o d e l  
In this section we will see that the 

use of b W from equation (4) and mse from 
equation (5) can be justified in a purely 
model-based context. This is done by 
extending the linear model in equation 
(i) to allow for the possible existence 
of missing regressors and the likelihood 
that Vat(E) is much more complicated than 
O2IM . 
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Suppose the multivariate values of the 
population of M observations can be fit 
by the linear model: 

y = x~ + z + ~, (v) 

where y, X ~ and E are as before except 
that Var(Ei need not equal a2IM . The new 
vector z -- the putative missing regres- 
sor -- satisfies limM_>~X'z/M = 0. It is 
a composite of all the regressors in a 
fully specified model for y that are 
otherwise missing from equation (7) and 
whose joint effect on y can not be 
captured within X~. 

Under mild conditions, b W is nearly 
(i.e., asymptotically) unbiased under 
the model (as n grows large), but the 
same can not be said for boL S unless 
limM_>~X'Pz/m = 0, which in practical 
terms means that the probabilities of 
selection are unrelated to the missing 
regressors (proofs of these assertions 
are in Kott, 1991). Morevover, mse from 
equation (5) is a nearly unbiased esti- 
mator of the model mean squared error of 
b w under many sampling designs and vari- 
ance matrices for E when z m 0 and is 
reasonable when z ~ 0 (see the appendix). 
The only restriction on Var(E) is that 
E(~iEi, ) be zero when i and i' are 
sampled observations from different PSU's 
and bounded otherwise. This is a very 
mild restric-tion since any covariation 
among observations across PSU's should, 
in principle, be captured by X or z. 

The problem with b w and mse from a 
model-based point of view is that they 
are not very efficient. For example, 
when z in equation ~7) is identically 
zero and Var(~) = a I M, the variance of 
boL s will be less than that of b w- 

Note that even if Var(E) % a2IM , boL s 
is unbiased when z m 0. Moreover, boL s 
may still be more efficient than b w. 
With the gh5 in equation (5) approp- 
riately red~fined, mse could serve as an 
estimator of the variance of boL s under a 
fairly general specification for Var(E). 
More efficient and also nearly unbiased 
(see the appendix or Kott, 1991) is 

n H n h 
mse' = ~ ~ ghjghj', (8) 

n- 1 h=l j=l 

which equals mse when H = i. It is a 
simple matter to get SURREGR and PC CARP 
to produce boL S and either mse' (SURREGR) 
or ((m-1)/(m-K) }mse' (PC CARP). 

Although mse' (and mse for that matter) 
is an estimator for the variance of the 
estimated regression coefficient when 
z m 0, we retain the "mse" notation for 
convenience. 

Whether b W or boL S is calculated, the 
test statistic in equation (6) can be 
employed (with boL S replacing b w and 
perhaps mse' replacing mse as approp- 
riate) to test hypotheses of the form 
H~ = h 0 . 

6 .  An E x a m p l e  
Consider the folowing example syn- 

thesized from data from the National 
Agricultural Statistics Service's June 
1989 Agricultural Survey. In a par- 
ticular state, 17 primary sampling units 
have been selected from among 4 strata. 
These PSU's were then subsampled yielding 
a total sample of 252 farms. Although 
the sample was random, not all farms had 
the same probability of selection. 

We are interested in estimating the 
parameters, ~i and ~2, of the following 
equation: 

Yi = Xli~l + x2i~2 + zi + Ei, (9) 

where i denotes a farm, Yi is farm i's 
planted corn to cropland ratio when i's 
cropland is positive, zero otherwise; Xli 
is 1 if farm i has positive cropland, 
zero otherwise; and x2i is farm i's crop- 
land divided by I0,000. 

Dropping all sampled farms with zero 
cropland from the regression equation 
will have no effect on the calculated 
values bl. w and b2. w (or bl.oL s and 
b2.OLS) It would, however, affect mse 
(and mse') if none of the subsampled 
farms from a particular PSU had cropland. 
Although this phenomenon doesn't occur 
here, it does raise an issue worthy of a 
brief digression. 

Sometimes a social scientist needs to 
perform a regression on a subset of a 
sample. In those circumstances, one may 
need to worry about the impact on mse 

when no member of the subset comes from a 
particular PSU. This problem can be 
avoided by treating all the originally 
sampled observations as if they were in 
the regression data set. Those obser- 
vations not in the subset under study 
could be assigned y and x-values equal to 
0. 

The results of performing both OLS and 
weighted regression on the data in our 
example are displayed in Table i. The 
table contains the square roots of mse 
and mse'. Also displayed is the square 
root of something denoted mse0; this is 
the estimated mean squared error assuming 
that z ~ 0 and that there is no corre- 
lation across observations within PSU's. 
Operationally, mse 0 is simply mse calcu- 
lated as if there were 252 PSU's. The 
ACOV option of PROC REG in SAS (1985) 
will approximately yield this number (the 
value from ACOV needs to be multiplied by 
m/(m-l) for strict equality). 

The ratio of mse/mse 0 is a measure of 
the effect of correlated errors within 
PSU's on the mean squared error of an 
estimated regression coefficent. This 
ratio will be greater than 1 when there 
is such a cluster effect. Similarly, the 
ratio mse/mse' is a measure of the effect 
of stratification on the mean squared 
error of an estimated regression 
coefficent. This ratio should be less 
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than 1 when there is such a strati- 
fication effect (see the appendix). 
There can be cluster effects even when 
z m 0, while there are stratification 
effects only when z i values vary across 
strata. From Table i, we can see there 
is generally much more pronounced cluster 
effects than stratification effects (if 
any). 

7. A Test 
Table 1 reveals that the OLS regression 

coefficients are more efficient (i.e, 
have smaller mse and mse' values) than 
the weighted regression coefficients. It 
remains to test whether these two sets of 
coefficients are really estimating the 
same thing. If that is the case, then 
the OLS estimates are clearly superior. 

One general way to test whether boL s 

and b W are estimating the same parameter 
vector, ~, is to replace y in equation 
(4) by ye = (y', y') ', X by 

xe =[: :] 

and W by 

we is :i 
0 . 

The resulting estimator is beW = 
(boL s ' d' , )', where d = by boL s- 
Calculating mse e is done In a manner 
analogous to mse in equation (5). Note 
that in calculating mse e the elements of 
ye* correspond to observations coming 
from the same number of PSU's (and 
strata) as do the elements of its 
analogue, y*. 

The test statistic in equation (6) can 
be invoked to test whether d is signif- 
icantly different from 0 (with beW 
replacing b W and mse e replacing mse). 
This was done for the data set examined 
in the previous section. The resultant 
value for T 2 was 5.07. Observe that if 
T 2 is assumed to have a chi-squared dis- 
tribution with two degrees of freedom, we 
would not reject the null hypothesis 
(that boL s and b w are estimating the same 
thing) at the .05 significance level, 
although we would at the .I level. 
Alternatively, assuming T2/2 has an F 
distribution with 2 and 13 (17 PSU's 
minus 4 strata) degrees of freedom, the 
null hypothesis would not be rejected 
even at the .i level. 

This is not the end of the story 
however. If one's primary concern is 
robustness to the possible existence of a 
z vector related to the sampling weights 
rather than the efficiency of the esti- 
mated regression coefficients, then the 
fact that the test statistic exceeds its 
expected value under the null hypothesis 
(2 -- if T 2 is chi-squared) would be 

reason enough to prefer b w over boL s. 
Fuller (1984, eq. 17) proposed a 

different test for determining whether 

the difference between b w and boL s is 
significant. His test assumes that the 
errors are independent and identically 
distributed across observations which is 
clearly not the case in our example. 

Table 1-Estimated regression coefficients 
and root mean squared error estimates 

Est. 
Reg. 
Coef. Estimate ~mse Jmse' Jmse 0 

bl'w .3363 .0822 .0781 .0301 
b2. W .8636 1.2389 1.3008 .4764 
bl.oL S . 4460 . 0396 . 0440 . 0192 
b2.oL s -.8791 .4637 .4651 .1688 
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APPENDIX 

The Near Unbiasedness of mse and mse' 
When z = 0 

Let b F = (X'TX)-IX'Ty = CTY*, where T 
can be either W or S. When z - O, b T is 
an unbiased estimator for ~ with varlance 
equal to E (CT~*E* ' C T ' ) . Since 
Var(~*~*') is block diagonal, we can 
infer that 

Var (bin) - 7.~7.4 CmDk4 ~*E* ' D~4C~' . 
- -- .J- _ *_* J , ~  **j **j 

.~.e~ gh~ _ CTUh~r , wnere 
rX= yX UJXXbm" "'If n is large enough for 
e = and r x to-be nearly equal, then it is 
a simple matter to show that E(mse') = 
E(7.T. gh4gh 4') = E(T.7. CTDh4r*r*'Dh4C T') = 
E(7.7. CT~hS~*¢*'DhjC T') = ~ar(bT) . J With 
similar r~asoning, E(mse) can be shown to 
nearly equal Var (bT) . 

The Reasonableness of mse When z ~ 0 

When z W O, both b W and boL S can be 
biased as estimators for ~, but the 
latter is nearly unbiased under many 
sampling designs. Observe that the mean 
squared error of b W is 

MSE(bw) = 

Var(bw) + [Bias(bw) ]2 
H n h ~ 

= CwVar(E¢.)C W + [ 7. 7. fh4] 2 
h=l 9=i 

J 

H n h 
CwVar(E£')C W + [ Y. 7. fh4] 2 

h=l 9=1 
J 

H 

= CwVar(~E')C W + [ 7. (fh - Fh) ]2 
h=l 

, (AI) 

where q2 denotes qq', 
~ 

fhj = (X'WX)-Ix'WDhj[I - (X'WX)-Ix'w]z, 

fhj = (M/m)(X'X)-Ix'WDhjZ, fh = ~'j fhj, 

and F h is the limit of the design expec- 
tation of fh as N h (the number of PSU's 
in h) grows arbitrarily large (note that 
7. F h = 0 since limM_>~ (X'X)-±X'z = 0). 

It is a simple matter to show that 

E (mse) = CwVar ( ~ ~. ) CW + 

H n h n h fh 2 
~. [ Y. fhj 2 

h=l n h - 1 j=l n h 
] . (A2) 

When all the N h are assumed to be 
arbitrarily large, the distinction 
between with and without replacement 
sampling of PSU's is lost and the design 
expectations of the right hand sides of 
(AI) and (A2) coincide. 

Similar to (A2) is 

E(mse') 

n H n h 
CwVar(E~')C W + ..... 7. ~ fhj2- (A3) 

n- 1 h=l j=l 

Clearly, a diagonal element of E(mse') 
will exceed the corresponding element of 
E(mse) when the corresponding diagonal of 
7. fh z exceeds that of Y. (y. fhj2) . This 
tends to be the case when the appropriate 
elements of the F h are not all identi- 
cally zero; that is, when the effect of 
the putative missing regressor, z, varies 
across strata. 
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