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Almtract 

The signal extraction approach to repeated sample surveys is potentially an effective way to reduce high variances in 

conventional sample estimators arising from small sample sizes. A signal plus noise model of labor force estimates from the 

Current Population Survey is formulated as a structural time series model with explanatory variables where variance-covariance 

information from the survey sample is used to place restrictions on the time series model. This model is fit to a statewide series. 

Model-based estimates are compared to the observed sample data and the effect of controlling for sampling error is explored. 
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1. INTRODUCWION 

The application of signal extraction techniques to time 

series produced by sample surveys has attracted the interest of 

researchers in statistical agencies as a potentially cost effective 

way of improving the reliability of these estimates, see, e.g., Bell 

and Hillmer (1987), Binder and Dick (1989), Pfeffermann 

(1989), and Tiller (1989). This approach originated in the work 

of Scott and Smith (1974) and Scott, Smith and Jones (1977) 

which demonstrated that the efficiency of survey estimators 

could be improved upon by recognizing that the population 

series is itself stochastic. 

This paper applies this basic approach to statewide labor 

force data from the Current Population Survey (CPS). The C"fxd 

is a nationwide monthly sample of about 59,000 households 

designed to produce estimates of the labor force status of the 

population. While low variance estimates of key labor force 

variables are produced for the nation as a whole, at the state 

level these same variables are subject to much higher variance. 

In section 2 of this paper, a signal plus noise model of the 

observed CPS data is formulated. Section 3 casts this model in 

state-space form and uses the Kalman filter (KF) to derive an 

optimal estimator of the underlying signal. Section 4 discusses 

the method used to estimate the unknown parameters. Section 5 

applies the model to labor force data from a CPS state sample. 

2. SIGNAL PLUS NOISE MODEL 

The observed CPS labor force estimate, Y(0, is represented 

as the sum of two independent processes, the true population 

value (signal), 0(t), and the sampling error (noise), e(0, 

Y(0 = 0(t) + e(0. (2.1) 

Given a model for 0(t) and design-based information on the 

covariance structure of e(t), the observed sample series may be 

decomposed into its signal and noise components. The basic 

approach of this paper is to represent the signal by a structural 

time series model with explanatory variables (Harvey 1989) and 

to represent the noise as an ARMA model (Bell and Hillmer 

1987). 

7_1 The Signal 

The signal is modeled as a time series decomposed into the 

form 

0(t) = Mx(0 + T(0  + S(t) +I(0. 

These components are described in more detail below. 

(2.2) 

1. Regressor Component: 

This component represents that part of the signal that can 

be explained by a set of observable economic variables, largely 

independent of the sampling error in the observed series, 

Mx( t ) -  X(t) p(t) (2.3) 

where X(0 is a 1 x k vector of the variables with a k x 1 

coefficient vector, ~ 0 .  The coefficients may be treated as either 

fixed or stochastic. In the latter case, ~ t )  is modeled as a 

random walk where v/3(t ) is a vector of mutually independent 

random shifts, 

~ t )  = ~ t -1 )  + v ( t )  (2.4) 

t 2 . . .  2 
E (v0(0 v0(t)) = Diag (G~I, ,GO) -  

2. Trend Component: 

This component is represented as a local approximation to 

a linear trend, 

T(t) = T(t-1) + R(t-1) + VT(t) (2.5) 

R(t) = R(t- 1) + VR(t). 

The two white noise disturbances, VT(t ) and VR(t), are mutually 

2 2 
independent with variances O and G , respectively. A 

v v 
T R 

variety of common forms emerge as special cases. If R(t) = 0, 

the trend follows a simple random walk in levels. A fixed linear 

trend results if both variances are zero. 

3. Seasonal Component: 

The seasonal component is the sum of six trigonometric 

terms associated with the 12 month frequency and its 5 

harmonics, 

6 

S(t) = ~ S.(t) (2.6.a) 
J j = l  

where each of the individual terms {S.(0} is subject to a white 
J 
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2 
noise shock, v (t), assumed to have a common variance, or_, 

S S 
J 

S.(t) = cos co S.(t-1) + sin co S.*(t-1) + v (t) 
j j j j j S 

J 
S*.(t) = -sin co S (t-1) + cos co S*(t-l) + v* (t) 

l j j j j S. 
J 

co = t r j / 6 .  
J 

2 
A positive value for o"  Permits the seasonal pattern to evolve 

(2.6.b) 

(2.6x) 

over time while a zero value results in a fixed seasonal pattern. 

4. Irregular Component: 

The irregular is a residual not explained by the regression 

or time series components. It is assumed to follow a stationary 

AR process, 

2 2 
a (L) I(t)= E (vi( t))= cr I vI(t)' I 

w h e r e ,  

aI(L) = 1 - a  L L ..... a 1 Lp 

AR operator. 

(2.6.d) 

L p is a stationary 

2.2 NoiJe 

The noise component of the observed CPS estimate 

represents error that arises from sampling only a portion of the 

total population. For our purposes, we focus on those design 

features that are likely to have a major impact on the 

variance-covariance structure of e(t). 

One of the most important features of the Ct~  is the use of 

a 4-8-4 rotating panel (Bureau of the Census 1978). Since this 

system provides large overlaps between samples one month and 

one year apart, we can expect e(t) to be strongly autocorrelated. 

Moreover, when a cluster of housing units permanently drops out 

of a rotation group, it is replaced by nearby units, resulting in 

correlations between nonidentical households in the same 

rotation group (Train, Cahoon and Makens 1978). 

Finally, the dynamics of the sample error will also be 

affected by the composite estimator. This is a weighted average 

of the current sample estimate and an estimate of change that 

occurred in the 6 rotation groups common to both months 

(Bureau of the Census 1978). 

Another important feature of the Ct~ is its changing 

variance due to sample redesigns, changes in sample sizes, and 

changes in the population values. To capture the autocorrelated 

and heteroscedastic structure of e(t), we may express it in 

multiplicative form (see Bell and Hillmer 1989) as 

e(t) = ~(t) e*(t) (2.9.a) 

with e*(t) reflecting the autocovariance structure, assumed to 

follow an ARMA process and ~(t) representing a changing 

variance over time, as shown below 

-1 
e*(t) = ~ (L) a (L) v (t) (2.9.b) 

e e e 

2 2 
~ 0  = o" (t) / cr (2.9.c) 

¢ ¢ *  

where, 

(L) = a stationary moving average operator of order q 
e e 

¢~ (L) = a stationary autoregressive operator of order p 
¢ e 

oo 

2 2 
cre*=Crv ~ gk" 

e k=0 

The weights {gk} are computed from the generating function 

-1 
g(L) = ~ (L) a (L). 

e ¢ 

3. STATE-b~ACE S Y b ~ E ~  AHD THE ~ HLTER 

For estimation and signal extraction, the component signal 

and noise models are put in state-space form. The signal and 

noise are the state variables, Z(t), whose evolution over time is 

described by the transition equation, 

Z(0 = F Z(t-1) + G v(0 (3.1) 

with covariance matrix, 

E (v(0 v • (t)) = Q 

and the state variables are transformed into the observed sample 

series, y(t), by the observation equation 

y ( t ) -  H(t) Z(t) (3.2) 

where the system matrices F, G, Q and H(t) are m x m, m x £, g 

x t, and 1 x m .  

As shown in the complete paper in equations 3.3 - 3.7, 

each component model has its own state-space form which can 

be combined to form the overall model. 

Z ( t )  = [ Z~l(t), ZT(0, Zs(t), Zi(t), Ze , (0  ] 
(mxl) 

F = block diagonal % ,  F T, F ,  F I, Fe,)  

(mxm) 

G 0 

G =  I1_ _ _  , 

(mx 0 I O e .  / 

o I(nxl)J 

G p = block diagonal (Gff % ,  G S, G I) 

H( t ) = [ H/l(t), H T, H S, H I, ~(t) He,  ] 
( l x m )  

Q = block diagonal (Qff QT' QS' QI' Qe *)" 
(~x0 
The signal and noise components are given by 

0(t) = H0(t ) Z(0, e( t)= He(t) Z(t) 

w h e r e ,  

H0(t ) = [ X(t), I-I T, H S, H I, 0m_ n ] 

H ( t ) = [ 0  , ~ t ) , 0  1. 
e m-n n-I 

The KF produces an estimate of the signal which is 

(3.8) 

(3.9) 
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optimal with respect to the model assumptions and from the 

point of view of survey sampling is also a design-consistent 

estimator. Assume the system matrices for a particular model of 

the observations, F, G, H and Q are given and that the 

disturbance, v ,  and initial state vector, Z 0, are multivariate 
t 

normal and independent of each other. It follows that the 

distributions of Z(t) and Y(0 given sample values up to t-1 are 

themselves normal, 

(Z(t)/y(t- 1)) -- N (Z(t/t- 1), P(t/t- 1)) (3.10.a) 

(y(t)/y(t-l))-- N (y(t/t-1), fit/t-l)). (3.10.b) 

Their means and variances are given by the prediction equations 

of the KF, 

Z(t/t-1) = F Z(t-l/t-1) (3.11.a) 

P(t/t-1) = F P(t-1/t-1) F t • + G Q G (3.11.b) 

y(t/t-1) = H(t) Z(t/t-1) (3.11.c) 

f(t/t-1) = H(t) P(t]t-l) H(t) • . (3.11.d) 

Upon observing y(t), the posterior means and variances of 

the conditional normal distributions are given by the KF update 

equations, 

Z ( t / t ) -  Z(t/t-1) + K(t) y(t) (3.12.a) 

P(t/t) = (1 - K(0 H(t) • )  P(t-1/t-1) (3.12.b) 

y(t/t) = Y(0 (3.12.c) 

f(t/t) = 0 (3.12.d) 

w h e r e ,  

K(0 = P(t/t-l) H(0 / f(t/t-1) 

N 

Y(0 = y(O - H(0 Z(t/t-l). 

Given the model assumptions, each component of the estimator 

Z(t/t) has minimum mean square error. 

The posterior means and variances of the signal and the 

noise are given by, 

N 

0(t]t) = 0(t/t-l) + h(t) y(t) (3.13.a) 

e(t/t) --- e(t/t-1) + (1 - h(t)) y(t) (3.13.b) 

Var 0(t / t)= H0(t ) P(t/t) H_;(t) (3.13.c) 

Var c0/t) = H (t) P(t/t) H • (t). 
e e 

The estimator of the signal, O(t/t), being a linear combination of 

minimum mean square error components, has itself, the 

minimum mean square error property. 

The weight h(0 varies between 0 and 1, the closer it is to 

1, the more 0(t/t) is shrunk towards the sample estimate Y(0- 

The equation below indicates what governs this shrinkage: 

V a r [ 0 (  t ) / 0 ( t - l ) ]  + A 

h(t) = 
2 

o" (0 + B + Var[ 0( t ) /0( t -  1 )1 + A 
e 

w h e r e ,  

Var [0( t ) /0( t - l ) ] -  

k 6 
X2(t) 2 2 2 2 2 

X . a + a  + a  + 2 a + a  
1 v v v S v 

i= l  ~. T R j = l  j I 
1 

A = Var [HoF Z(t-1/t-l)] = H F P(t-1/t-l) F • H • 
0 0 

(3.13.d) 

(3.14) 

2 2 2 
O ( t ) = y ( t ) c r  

e v 
e *  

B = Var [H F Z(t-1/t-1)] = H F P(t-l / t- l)  F p H t 
e e e 

The amount by which 0(t/t) is adjusted toward y(t) depends 

upon the size of the model-based variance of the signal, Var 

2 
[8(t)/0(t-1)], relative to the sampling error variance, o" (t). As 

e 

2 
cr (t) - - >  0, h(t) - - >  1. 

¢ 

Therefore, 0(t/t) is design consistent. 

The KF produces the minimum MSE estimator of the state 

vector, Z(t), based on all sample data through time t, in a 

recursive manner. Smoothing produces minimum MSE estimates 

for each point in time. The basic type of smoothing (fixed 

interval) used in this paper is described by Maybeck (1979). 

4. ESTIMATION OF THE SIGNAL P A R A M l z - I ~  

Given knowledge of the parameters of the noise model, we 

can estimate the unknown signal parameters by maximum 

likelihood. Assuming the disturbance vector v(t) is multivariate 

normal, the innovation form of the likelihood function is 

computed via the KF. The parameter space must then be 

searched to locate the maximum value of the likelihood. The 

quasi-Newton approach, discussed by Dennis and Schnabel 

(1983, pp. 111-29) and implemented in the IMSL subroutine, 

DUMINF (IMSL 1987), was used to maximize the likelihood. 

5.0 A STATE U N E ~ Y M E N T  RATE E X A M I K ~  

In this section, we describe an application of the signal 

plus noise model to an unemployment rate series collected from 

a state C t ~  sample, covering the period from January 1976 to 

December 1989. 

5.1 Modeling the Signal 

In modeling the unemployment rate series at the state level, 

three explanatory variables are available for inclusion. These 

are: 

i) UI claims rate - the number of unemployed workers 

claiming unemployment insurance (UI) benefits as a 

percent of total nonagricultural employment. 

(ii) EP ratio - total nonagricultural payroll employment 

as a percent of the population. 

(iii) Entrant rate - the number of unemployed entrants 

into the labor force as a percent of the labor force for 

the nation as a whole. 

The rationale for including the above variables is discussed 

by Tiller (1989). Stochastic trend and seasonal components are 

added to account for residual variation in the signal. 

5.2 Modeling the Sampling Error 

To model e(t), we must first develop design-based 

estimates of its variance and autocovariances. Once this is done, 

the autocovariance structure is approximated by an ARMA 
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model whose coefficients are used as the parameters of the noise 

component of the state-space model. 

1. Variance Estimates: 

To assess the reliability of national CPS statistics, the 

Census Bureau (1968) uses the method of generalized variance 

functions (GVF). This approach fits variance curves to groups 

of statistics for which variance estimates have been directly 

computed. For state level statistics, variance estimates were not 

directly computed. The parameters of the G'VF ' s were 

developed indirectly, as discussed by the author in the complete 

paper. 

2. Autocovariance Estimates 

In principle, autocovariances can be directly computed 

using the same design-based techniques as for variances. In fact, 

this has never been done for state level CPS statistics and only 

rarely done at the national level. This study draws upon 

autocovariances, specific to a state, developed from preliminary 

work by Art Dempster and Steve Miller. Their approach 

exploits the availability of state level time series data for the 

eight C t~  rotation groups. Each of these groups may be treated 

as independent subsamples. Variability across subsamples, when 

averaged over time, provides the basis for estimating the error 

covariances. 

Given the state autocorrelations, the next step is to develop 

their ARMA approximations. An ARMA (1, 12) model was fit 

to the autocorrelations. For more details, consult the author's 

complete paper. 

5.3 F.mimation Resalts 

This section presents the results of applying the signal plus 

noise model to monthly statewide C t~  unemployment rate data 

covering the period from January 1976 to December 1989 (168 

observations). To assess the importance of modeling the noise 

component, an alternative model was estimated that did not 

explicitly take it into account. 

Part A of the table presents the specification and parameter 

estimates for the basic unemployment rate model with and 

without accounting for the CPS error structure. Identical 

regressor variables were used in each case with fixed coefficients 

since the variance of their white noise disturbances were 

estimated to be very close to zero. Accounting for sampling 

error does affect the values of the coefficients but not by a 

substantial amount. Binder and Dick (1989) reported similar 

results in a related study. 

Both models have a trend level that follows a simple 

random walk, a stochastic growth rate not being necessary with 

the presence of regression variables. Also, both models have a 

stochastic seasonal component of the same general form. When 

sampling error is accounted for, the variance of the irregular 

component goes to zero and it drops out of the model. When 

sampling error is ignored, it is necessary to include a first-order 

autoregressive irregular term to account for residual 

autocorrelation. 

Part B of the table presents the results of diagnostic testing 

performed on the standardized imlovations generated from the 

Kalman filter. Conditional on the parameters, these innovations 

should behave as normally distributed white noise variables. For 

a discussion of the individual tests, see Harvey (1989). 

Examination of the test results give no reason to question the 

adequacy of the model when the CPS error structure is explicitly 

accounted for. If the CPS error is ignored, one might expect the 

innovations to be both autocorrelated and heteroscextastic. In 

fact, the table indicates the presence of heteroscedasticity and 

non-normality in the innovations. That there is no evidence of 

autocorrelation when sampling error is ignored is not surprising 

since conventional time series modeling is flexible enough to 

absorb the autocorrelated portion of the error into the irregular 

and possibly into the seasonal component as well. Of course, 

confounding the source of the autocorrelation could lead to 

inappropriate inferences about the behavior of the time series. 

Figure 1 compares the smoothed signal from the model that 

accounts for sampling error with the CPS. The signal is 

considerably smoother than the C I r .  Elimination of the 

sampling error from the Ct~  by signal extraction removes about 

46 percent of the variance of month-to-month change. 

Figure 2a plots the GVF standard errors for the CPS (black 

line) and the standard errors for the smoothed signal accounting 

for sampling error (grey line) and ignoring sampling error 

(dashed line). The CPS standard error shows a considerable 

amount of variation, rising to a peak of about .7 percentage 

points in the recession years of the early 1980s and dropping to 

around .4 percentage points in recent years. While a declining 

unemployment rate accounted for part of this drop, the most 

important factor was a 62 percent expansion in the number of 

assigned households for the state during 1984/85. 

Looking at the behavior of the standard error for the 

smoothed signal estimated from the model accounting for CPS 

error, we see that it has been considerably below the CPS, 

averaging about 50 percent less and has shown much less 

variability. However, there has been a clear upward trend in the 

ratio of the signal to the CPS standard error (figure 2b) primarily 

due to the sample expansion. 

The direct impact of sample expansion on the model 

estimates may be illustrated by the behavior of the weight given 

an individual C t~  observation in the Kalman filter update of the 

signal estimate (see equation 3.14). Again, focusing on the 

model that includes sampling error, figure 2c shows that these 

weights increased about 40 percent or so since 1984. Putting 

more weight on more precise sample estimates is a reflection of 

the design-consistency property of the estimator. 

When a model ignoring sampling error is used to estimate 

the regression, trend and seasonal components of the signal, 

major inefficiencies occur. As can be seen from figure 2a, the 

standard error of the smoothed signal (dashed line) is almost 

constant except at the end points. It lies below the signal 

estimated from the model accounting for sample error prior to 
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sample expansion and above afterwards. Turning to figure 2c 

we see that estimating the signal from a model ignoring 

sampling error (dashed line) produces a very stable weighting 

pattern for the individual CPS observations. The model 

overweights the CPS in the early years and underweights it in 

the later years. 

While the signal extraction approach appears to result in 

substantial gains over the sample estimator, there are reasons to 

believe these gains are overstated. The model-based variances 

do not account for uncertainty in the estimated signal and noise 

parameters and the model of the signal is only an approximation, 

and hence is subject to misspecification bias. 

SUMMARY 

A signal plus noise model was formulated and fit to a state 

CPS unemployment rate series. While it appears that the 

model-based approach produced substantial gains over the CPS 

sample estimator, a considerable amount of additional work is 

necessary before any finn conclusions can be drawn. 

The author thanks Art Dempster and Steve Miller for 

providing error covariance estimates and Tom Evans for 

preparation of the text and tables. 

The views expressed in this paper are those of the author 

and do not necessarily represent the policies of the Bureau of 

Labor Statistics. 
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Table 

Parameter Estimates and Teat I)iagnoafi~ 

A. Parameter Estimates 

Ignoring Sampling With Sampling 

Error Error 

Regression Coefficients (t-values) 

UI claims rate .592(6.8) 

EP -.314(-6.1) 

Entrant rate 1.207(11.2) 

Time Series Components 

Trend 

2 
Level (or ) 

V 
T 

.020 

2 
Seasonal (or ) 

v 
S 

-3 
.412 x 10 

Irregular 

2 
Vadance ( o r )  

v 
I 

.224 

Coefficient (cg L 1) .358 

Likelihood -143 

.610(7.1) 

-.286(-6.2) 

.987(8.9) 

.013 

-3 
.337 X 10 

-111 

Test Statistics 

B. Diagnostics 

Ignoring Sampling 

Error 

With Sampling 

Error 

Ljung-Box [- 12] 

Ljung-Box [-24] 

Heteroscedasticity w/Time 

Bera-Jarque Normality Test 

Skewness 

Excess kurtosis 

Post-Sample Pred. Vat. Test 

Post-Sample Bias Test 

8.51 

18.40 

3.55* 

10.01" 

-.14 

1.20 

.27 

.04 

9.07 

14.33 

1.17 

2.59 

.32 

.15 

.45 

.08 

*significant at the 5% level 
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