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1. Introduction 
Genera l i zed  var iance funct ions are often 

employed when large numbers of estimates are to be 
published from a survey. Generalized variance 
functions lessen the volume of published reports 
where presentation of each standard error estimate 
would essential ly double the size of the tabular 
presentations. In addition, generalized functions may 
facilitate secondary data analyses which were not 
conducted in the initial publications. Generalized 
variance functions may also provide more stable 
estimates of variance by diminishing the variability of 
the individual variance estimates themselves. 

In this paper we will study some generalized 
models for the standard error of proportion estimates 
from the 1988 National Household Survey on Drug 
Abuse. A log-linear model based upon the concept of 
a design effect will be developed. The final model will 
be evaluated against the simple average design 
effect model. 

2. General Models 
Wolter (1985) summarizes many of the most 

commonly used models for generalized variance 
functions. In this paper, we will be concerned with 
standard error estimates of proportions estimated 
from an unequally weighted multistage sample 
survey. In developing our model we will use the 
concept of a design effect (DEFF) popularized by 
Kish (1965). The design effect is the ratio of the 
design-based variance to the variance that would 
have been obtained from a simple random sample 
(SRS) of the same size. For an estimate, ~, we have 

DEFF (~) = Var(~)/S 2(~) (I) 

where Var(~)is the,, designed-based variance of the 
est imate and S' : (~)  is the SRS variance. For 
proportions, the SRS variance is 

2 
S (p) = p (l-p)/n (2) 

where n is the sample size used to compute p. The 
design effect summar izes the effects (due to 
stratification, clustering and unequal weighting) on the 
variance of a complex sample design. 

One simple model is to calculate an average 
design effect for specific analysis domains or types of 
outcome. The average design effect is then used as 
follows to approximate the standard error estimate 

I/2 

SE(P)appx = [DEFFave*[P(1-p)]/n] (3) 

where 

p = the estimated proportion 

n = the sample size used to calculate p 

DEFF 
ave 

= the average DEFF for the 
domain of interest 

SE(p) = the approximate standard 
appx error of p. 

An alternative generalized variance model for 
proportions is obtained via direct regression model- 
ling. The following relation for an individual design 
effect estimate serves as an inspiration for the theo- 
retical model: 

DEFF = Var(p) / [p(l-p)/n] . 

Taking the log (base 10) of both sides of the above 
relation leads to a parsimonious model for the 
variance or standard error of a proportion, which can 
be expressed in terms of the following log-linear 
model: 

log[SE(p)] = ~0 + ~llog(p) + ~21og(l-p) 

+ ~31og(n), (4) 

where 
p = estimated proportion 

SE(p) = design-based standard error 
estimate for the proportion, 

n = number of respondents in the 
subgroup under investigation 

/30' /31' ~2' ~3 = regression coeffi- 
cients for the inter- 

cept, log(p), 
log(l-p), and log(n), 
respectively. 

More complicated models which allow for separate 
slopes and intercepts by analysis domain and type of 
outcome were also explored. 

3. The Data 
l ~e  1988 National Household Survey on Drug 

Abuse is a stratified multistage unequally weighted 
area household sample. In conjunction with the initial 
analysis of the data, several thousand estimated 
proportions and their design-based standard errors 
were calculated. These estimates consisted of 17 
drug categories (e.g., marijuana, inhalants, cocaine, 
cigarettes, alcohol, etc.); 3 recency-of-use categories 
(ever used, used in past year, and used in past 
month); and 3 past year frequency-of-use categories 
for alcohol, cigarettes and marijuana (used at least 
once, used 12 or more times and used once a week 
or more). The proport ions were est imated for 
domains defined by age, race and sex. 

All of the estimates were available for use in this 
study. However, individual prevalence estimates for 
which the design effect was outside the range of 1-3, 
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or for which the relative standard error (RSE, the ratio 
of the standard error of the estimate vs. the estimate 
itself) was greater than 50%, were removed prior to 
the modell ing process. Such extreme values for 
design effects and RSE's may reflect instability in the 
Taylor series estimate of the design-based variance 
(most often result ing from small sample sizes). 
These variance estimates were regarded as spurious 
and, therefore, were not included in the modelling 
process. With spurious estimates removed using the 
above rule, a total of 2,354 proportion estimates were 
used. 

The des ign-based var iance est imates were 
produced using RTI's survey data analysis software 
package SUDAAN (Shah, et. al 1989). SUDAAN 
uses a Taylor  ser ies l iner izat ion approach for 
v a r i a n c e  e s t i m a t i o n .  For the NHSDA,  wi th 
replacement selection of the primary sampling units 
was assumed. 

4. Results 
A table of age, race, and sex-specific average 

design effects appears in Table 1. A total of 36 cells 
are represented in the table, corresponding to 
marginals and cross-classifications of 4 age groups 
and 2 sexes for the total population (14 cells); 2 sex 
and 4 age group marginals within each of 3 race 
categories (18 cells); 3 race marginals; and 1 overall 
design effect for the total population. 

The design effects of Table 1 can be used to 
calculate approximate standard error estimates using 
equation (3). Both domain-specific and overall design 
effect models for obtaining approximate standard 
error estimates were included in our evaluation, as 
discussed in Section 5. 

Table 2 presents a summary of the log-l inear 
regression model fitted to the NHSDA data. The fit 
exp la ins  most of the var iat ion in the data,  as 
witnessed by an R-squared value of 96.9%. Notice 
that the three slope coeff icients associated with 
log(p), log(I-p), and log(n) are significantly different 
from 0.5 (or -0.5 for log(n)). This yields a significant 
improvement over a simple random sampling (SRS) 
model, where all three coefficients would be either 0.5 
or-0.5. The SRS model only explains about 77% of 
the variation in standard error estimates. 

We initially expected that separate domain effects 
may be needed to account for differential average 
cluster sizes across domains. Therefore, other more 
complicated versions of the log-linear model, such as 
those containing domain and recency-of-use effects, 
were investigated. While some of these effects were 
statist ical ly signif icant, only modest gains in the 
amount of additional variation explained by them 
were obtained. Part of the effect of cluster size may 
be accounted for by the slope for log(n) being 
different from the SRS value of-0.5. As will be seen, 
the above speci f icat ion of the log- l inear model 
represents a concise, easy-to-use, yet relatively 
accurate, summary of the variation in standard error 
estimates. In addition, the simple regression model is 
generalizable to any domain and drug prevalence 
rate from the 1988 NHSDA not included in this 
exerc ise .  The re fo re ,  only the pa rs imon ious  
specif ication of the log-linear model survived for 
further investigation. 

Once the regression coeff ic ients have been 
est imated (using lest squares methodology, for 
example), one can then substitute new values of p, 
( l -p ) ,  and n into the fitted model to obtain the 
predicted, or approximate, standard error of the 
prevalence rate via the following formula: 

b 0 b I b 2 
i0 * p * (l-p) 

= , (5) 
SE (p) appx -b 3 

n 

where bp, b 1 , b 2, and b~ are the fitted regression 
coeffic=ents for the intercept, log(p), log( l -p) and 

log(n), respectively. Note that the model does not 
produce estimates which are symmetric about 0.50, 
or 50%, due to the specification of both p and (l-p), 
and the result ing di f ference in their regression 
coefficients. 

To serve as a "control" model, we have calculated 
approximate standard errors under simple random 
sampling assumptions. Namely, 

= Ip (l-p) 
SE (p) appx n 

where p, n, and SE(P)aoo x are defined as with model 
(3).  Such a modeTris use fu l  in e v a l u a t i n g  

improvements provided by other, more sophisticated, 
models which attempt to account for the complex 
sample design. 

5. Evaluation 
To reiterate, the following models were evaluated 

Average design effect 
• overall 
• domain-specific 

• Log-linear model 

• SRS control model 

Two measures were used to evaluate the above 
models with respect to their predictive ability. The 
first of these, the model R-square statistic, is defined 
as 

i00 - [ SS (Predicted - Actual) 
[ SS (Total) 

* i00 } 

where 

Predicted 

Actual 

SS(Predicted - 
Actual) 

= the predicted standard error 
from one of the models 

= the design-based standard 
error 

= t h e  s u m  of s q u a r e d  
d e v i a t i o n s  b e t w e e n  
p r e d i c t e d  and a c t u a l  
standard errors 
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SS(Total) = t h e  s u m  of  s q u a r e d  
dev ia t i ons  between the 
actual (i.e., design-based) 
standard errors and their 
mean 

R-square measures how well the predicted values 
correlate with the actual ones. Specif ical ly,  it 
represents the proportion of variation in standard 
error estimates "explained" by the model under 
consideration. 

Another measure used to evaluate the models is 
the absolute relative difference (AND), which is 
expressed as 

I Predicted - Actuall 

Actual 
* I00 

where "predicted" and "actual" standard errors are 
defined as above. The mean AnD for the set of 
estimates quantifies the average distance (without 
regard for direction) between actual and predicted 
standard errors, expressed as a percentage of the 
actual standard errors. Smaller values for the mean 
AnD indicate a better fit. For each model described 
in the previous section, we have calculated mean 
ARD's for 1 ), the entire set of estimates, and 2), non- 
overlapping subsets of the estimates (specifically, age 
categories 12-17, 18-25, 26-34, and 35+). 

Traditional "learning set vs. test set" methods 
were also employed to provide an objective evalua- 
tion of the models. In the first stage of such an 
evaluation, a set of prevalence estimates, known as 
the "learning set", is used to fit the models. In this 
study, the learning set estimates consisted of those 
prevalence rates and corresponding standard errors 
described in Section 3 

At the second stage, the f i t ted models are 
compared by studying their behavior on a new set of 
estimates, called the "test set". Here, the test set 
consisted of another large set of 1988 NHSDA 
estimates. Estimates in the test set also related to 
drug prevalence and usage, but contained either new 
domains (e.g., population density) or new analysis 
variables (e.g., amount of drugs used per week, 
methods of cocaine administration) that were not 
included in the learning set described earlier. A total 
of 2,592 prevalence estimates were included in the 
test set. 

The learning set models were evaluated on the 
basis of how well their predictions fit the actual, 
design-based standard errors for estimates in the test 
set. The measures of goodness of fit (i.e., model R- 
square, mean AnD, and age-specific mean AnD) 
were used to compare model-specific predicted vs 
actual (design-based) standard errors in the test set. 
Thus, for each of the models under consideration we 
have 12 measures of its performance" its R-square for 
both the learning and test set, as well as its total 
sample and age-specific mean AnD for both the 
learning and test sets. In this way, we could evaluate 
the predictive ability of our original learning set 
models in situations similar to those that may be 
encountered by future users of a database. 

As a final note on goodness-of-fit measures, the 
domain-specific ARD's were limited to categories of 
age, primarily since age was the only domain which 

appeared consistently in both learning and test sets, 
thus yielding the only possible domain-specif ic 
comparisons between them. 

The results of the evaluation are shown in Table 
3. As expected, both the learning and test set R- 
square's were larger for the domain-specific average 
design effect (DEFF) model than for the overall 
average design effect model. Specifically, domain- 
specific DEFF R-square values were approximately 
94% and 90% for learning and test sets, while the 
overall DEFF R-square's dropped to 90% and 86% 
for the learning and test sets, respectively. 

Just as the R-square values dropped in the test 
set for both average DEFF models, the mean 
absolute relative differences (AnD's) increased. As 
anticipated, total sample and age-specific mean 
ARD's were universally smaller for the domain- 
specific DEFF model, in both learning and test sets. 
Overall, the mean ARD's for the domain-specific 
DEFF model ranged from 11% (learning set values) 
to 26% (maximum test set values); such values 
ranged from 15% to a maximum of 34% using the 
overall DEFF model. 

Table 3 also conta ins the goodness of f it 
measures for the log-linear model. Note that the R- 
square values for the log-linear model, 97% and 93% 
(learning and test datasets) are slightly larger than the 
values for the domain-specific average DEFF values 
(94% and 90%, respect ively).  Also, the mean 
absolute relative differences (AnD's) for the log-linear 
model are close to the values for the domain-specific 
average DEFF model. The mean ARD's for the learn- 
ing data set are slightly smaller for the domain- 
specific average DEFF model, while for the test 
dataset the log-linear model mean ARD's are slightly 
lower. 

Results for the control model, using simple 
random sample assumptions to obtain predicted 
standard errors for both learning and test sets, are 
also presented in Table 3. This model is provided to 
serve as a reference, against which we can evaluate 
the i m p r o v e m e n t  p r o v i d e d  by o the r ,  more 
sophisticated, models. R-square values for the 
control model are 77% and 84% for the learning and 
test sets, respectively. AnD values range from 19% 
to 22% in the learning set, and from 21% to 24% in 
the test set. Recall that R-square values were greater 
than 90% for the log-linear model, and ARD's were 
one-third smaller than the SRS mean ARD's. 

6. Conclusions 
We conclude that, for these data, the domain- 

specific average DEFF model (equation 3) and the 
simple log-linear model (equation 5) both provide 
adequate generalized standard error models. We 
were surprised that the log-linear model including only 
effects for log(p), log(I-p), and log(n) preformed so 
well. We expected domain effects would be required 
in the model to account for differential average cluster 
sizes by domain for this multistage sample design. It 
appears that the slope for log(n) in the model being 
different from the SRS value of -0.5 accounts for most 
of the cluster size effect. 

To further see this point, a model predicted design 
effect equation can be constructed by dividing the 
predicted variance by the SRS variance, p(1-p)/n. 
This yields 
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.062 .i09 .0668 
DEFF = 1.2753 p (l-p) n . 

Figure 1 plots this function for proportions of 0.05 and 
0.50 by sample size. As the sample size (and, hence, 
the average cluster size) increases, the predicted 
design effect increases. Also, the design effect is 
larger for proportions near one half and smaller for 
proportions near zero (or one). 
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Table 1. Average Design Effects by Sex, Age Group, and Race 

Sex 
Age/Race Age/Race 
Marginals Cross-classifications 

Males 

Females 

Total 

12-17 1.44 12-17 
18-25 1.68 Whites 1.51 
26-34 1.65 Blacks 1.32 
35+ 1.52 Hispanics 1.47 

Whites 1.64 
Blacks 1.69 
Hispanics 1.69 

All Males 1.98 

12-17 1.83 
18-25 1.80 
26-34 1.64 
35+ 1.89 

Whites 1.75 
Blacks 1.66 
Hispanics 2.07 

All Females 2.07 

12-17 1.87 
18-25 1.91 
26-34 1.84 
35+ 1.67 

Whites 1.82 
Blacks 1.83 
Hispanics 1.96 

All Races 1.87 

18-25 
Whites 1.43 
Blacks 1.50 

Hispanics 1.61 

All Races 1.91 

26-34 
Whites 1.54 
Blacks 1.64 
Hispanics 1.88 

All Races 1.84 

35+ 
Whites 1.33 
Blacks 1.28 
Hispanics 1.68 

All Races 1.67 

Overall 2.06 

Source: National Institute on Drug Abuse, 1988 National Houshold Survey on Drug 
Abuse. 
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Table 2. Simple Log-linear Regression Model Results 

Variable 
Standard 95% C.I. 

Beta Error Lower Upper 
R-Squared 

(%) P-Value 

Intercept 
Log(p) 
Log(q) 
Log(n) 

0.0528 0.0116 0.0301 0.0755 
0.5310 0.0030 0.5251 0.5369 
0.5545 0.0091 0.5367 0.5723 

-0.4666 0.0038 -0.4740 -0.4592 

96.9 0.0001 

Table 3. Model Evaluation Results 

Model 
Total Sample 

R-Square ARD 
Age-Specific 

ARD 

Average design effects 
• Overall 
• Domain-specific 

Log-linear model 
SRS control model 

Learning Test Learning Test 

90 86 16 24 16 
94 90 11 21 10 
97 93 11 17 11 
77 84 22 24 21 

Leaming Test 

1 2 3 4 1 2 3 4 

16 16 18 21 20 24 35 
11 11 10 17 18 20 26 
12 11 12 13 15 16 22 
22 21 20 21 24 23 23 

1 = 12-17 yrs. 
2 = 18-25 yrs. 
3 = 26-34 yrs. 
4 =  35+ 

Source: 1988 National Household Survey on Drug Abuse, National Institute on Drug Abuse. 
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