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i. Introduction 

Multiple imputation (Rubin 1978, 
1987) is a procedure for handling 
missing data that allows the data 
analyst to assess the uncertainty due 
to imputing the missing values. 
Several, say M, values are drawn to 
replace each missing observation, 
resulting in M completed data sets. 
Each completed data set is analyzed 
using standard data- analysis 
techniques, and the results are 
combined to yield one inference. 

From the Bayesian perspective, 
multiple imputation is motivated as 

follows. Let Yobs and Ymis denote, 
respectively, the observed and 
missing values in a data set. Then 
under suitable conditions, the 
posterior density of a population 
quantity Q can be expressed as 

( i ) ~g (Q I Yobs, Ymi s ) f (Ymi s I Yobs ) dYmi s, 

where f is the posterior predictive 
density of the missing values and g 
is the complete- data posterior 
density of Q; that is, the posterior 
of Q is the average of the complete- 
data posterior over the predictive 
distribution of the missing data. 
Multiple imputation simulates 
approximate draws from f and thus 
allows the data analyst to 
approximate the averaging specified 
in (I). 

Typically, the specification of f 
in (I) involves formulating both a 
model for the data and a model for 
the missing-data mechanism. Recent 
evaluations have shown that if 
appropriate models for the missing- 
data mechanism and for the data are 
used, then multiple imputation 

usually performs quite well (Herzog 
and Rub in 1983; Rub in and Schenker 
1986, 1987; Raghunathan 1987; Rubin 
1987). 

This paper evaluates the 
robustness of four multiple- 
imputation procedures to 
misspecification of the model for the 
data. Fully parametric techniques 
are contrasted with less parametric 
schemes that replace missing values 
for incomplete cases with data from 
fully observed cases. A particular 
goal is to investigate whether the 
less parametric techniques are more 
robust. Results are given from a 
Monte Carlo study performed in the 
regression setting with two 
explanatory variables and a dependent 
variable subject to ignorable 
nonresponse. Model misspecification 
is represented by using a linear mean 
structure for the imputation 
procedure when the actual data 
structure is nonlinear. The 
imputation methods are compared with 
respect to the performance of point 
estimators and confidence intervals 
for the marginal distribution 
function of the dependent variable at 
several points. 

2. Imputation Methods Studied 

Suppose that n observations on a 
dependent variable Y and a p- 
dimensional explanatory variable X 
are sampled, but that only nob s of the 
Y-values are observed. 

The four imputation methods 
studied here are all initially based 
on the normal- theory linear 
regression model, which assumes that 
for observation i, 

Yi=xiT~+£ i, 6i"N(0, a2) , 

where ~ i, • • • , £n are independent, and 
and a are unknown parameters. 
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Under a specified method, one set of for incomplete case i, where X 0 and 
imputes for the missing Y-values is Y0 are data values observed for a 
drawn in two stages, as described complete case drawn at random (with 
below. Multiple imputations are replacement and with equal 
created by independently repeating probability) from the nob s complete 
the two stages M times, cases and r 0 is the residual of that 

The first stage is identical for case when ~=~*. The RD method, like 
all four methods. First, the linear the MB method, imputes the 
regression model is fitted by least conditional predictive mean of the 
squares to the nob s complete cases, incomplete case and additional noise. 
Values of the parameters ~ and a are Because the noise for the RD method 
then drawn from their posterior is drawn from the empirical 
distribution under the Jeffreys prior distribution, however, this method 
(Box and Tiao 1973). Specifically, should be less sensitive to 
a 2 is set equal to a*2=SSE/W, where violations of the normality 
SSE is the residual sum of squares assumption. 
from the least squares fit and W is 
drawn from a X 2 distribution with Predictive-Mean-Matching (PMM) Method 
nobs- p degrees of freedom; then a For each incomplete case, the PMM 
value ~* is drawn from the method (Little 1988) draws a case 

*2 -I) N(~,a (xTx) distribution where ~ randomly from a set of complete cases 
is the least-squares estimate of ~ having conditional predictive means 
and X now denotes the design matrix, close to that of the incomplete case, 

Given the values (~*,a*) drawn in and then imputes the value of Y from 
the first stage, the second stage the selected case to the incomplete 
draws a set of imputes for the case. Thus the PMM method may be 
missing Y-values. The second-stage thought of as a "hot-deck" procedure 
procedures for the four imputation (Ford 1983). Preliminary results 
methods considered here are described showing an increase in bias for this 
next. In the descriptions, the term method with larger sets of available 
"conditional predictive mean" for complete-cases led to using only the 
case i refers to Xi~* the mean of three closest cases in this study 
the case given ~*. Since the PMM method uses the normal- 

theory linear regression model only 
Model-Based (MB) Method to define the distance between cases, 

For incomplete case i, the MB it is the least parametric of the 
method imputes a value Yi from the techniques studied here and should be 
N(Xir~*,a .2) distribution. Thus the less sensitive to violations in the 
impute is the conditional predictive model than the other methods. In 
mean of the incomplete case with some addition, unlike the other methods, 
Gaussian noise added on. Since this the PMM method imputes only realistic 
method relies completely on the values that have been observed in the 
normal- theory linear regression data set. 
mode I, it is Iike ly to be the 
preferred method when the model holds Local-Residual-Draw (LRD) Method 
exactly. It is also likely to be the The LRD method contains aspects of 
most sensitive to violations of that both the RD and PMM methods. For 
model. 

Residual-Draw (RD) Method 
The RD method (Kalton 1983, p. 79) 

imputes the value 

* - T ^* * ~* 
Yi = Xi fl +r0 = Y0+(Xir-X0 ~) 

each incomplete case, this method 
imputes the value 

* . T^* * Yi = Xi ~ +r0 = Y0+(xiT-XoT)~ *, 

where X0, Y0, and r 0 are defined as 
in the RD method except that complete 
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case providing the residual is now Variance of the Error Term 
drawn at random from a set of The variance of the error term was 
complete cases having conditional set at two levels, a2=l and a2=2. 
predictive means close to the These correspond to the two 
conditional predictive mean of the population values for the squared 
incomplete case. Preliminary results multiple correlation coefficient, 
led to a choice of the ten nearest p2=.67 and p2--.50, respectively. 

cases as the available set. The LRD 
method is a variant of a method Expected Fraction of Missing Y-Values 
discussed in Scheuren (1976) and The expected fractions of missing 
Schieber (1978). By using only Y-values considered were 20~, 50~, 
residuals from nearby cases, the LRD and 80~, with the last one being 
method is designed to adjust the mainly of interest for understanding 
imputations locally for lack of fit the methods rather than representing 
of the regression model or realistic situations. 
heterogeneity of variance. LRD 
imputation may also be viewed as a Missing-Data Mechanism 
modification of the PMM method in The three missing-data mechanisms 
which an adjustment factor (Xi T XoT)~ * - considered were (i) missing 
is added to the imputed Y-value. The completely at random, (ii) missing at 
adjustment is intended to correct for random dependent on X and positively 
possible bias due to the distance correlated with the predicted value 
between the predictive means of the of Y, and (iii) missing at random 
missing observation and its complete- dependent on X but uncorrelated with 
case match. Since this correction is the predicted value of Y. 
model-based, however, it should be 
less useful when the model is Quantity of Interest (O) 
misspecified. The eight quantities of interest 

considered were the percentages of 
3. Design of the Monte Carlo Study the Y population greater than the 

10th, 25th, 50th, 75th, and 90th 
The Monte Carlo study was designed percentiles, and the regression 

as a 2x2x3x3x5x8 factorial experiment coefficients ~0, ~I, and ~2. 
with five outcomes per cell. 

Imputation Method 
3.1 Factors in the Design The four imputation methods 

described in Section 2 were 
True Model for the Data considered with M--5 imputations per 

Samples of data were simulated as missing value. Regardless of the 

follows. For each observation, model used to generate the true data, 

Xi--(l,Xil,Xi2) T was generated with X±I the imputation methods assumed a 
and Xi2 distributed independently as linear mean structure; thus the 
N(5, i) ; then Yi was generated from imputation model was misspecified 
the model when the true model for the data was 

nonlinear. In addition to the 
Yi~--xiT~+Ei, Ei-N(O,a 2) . analyses with missing data, an 

analysis was performed using each 
Data from linear and nonlinear models entire data set before any 
were created by setting ~=I and observations were deleted; this "no o 
~=I/4, respectively; for the linear missing-data" analysis was used to 
model, ~=(i0,I,i) T whereas for the standardize some of the results for 
nonlinear model, ~=(0,i,I) T. the imputation methods. 
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3.2 Outcomes in the Experiment 

On each Monte Carlo trial, a 
sample of size n=250 was generated 
for each cell in the factorial design 
according to the true model for the 
data and the variance of the error 
term. Values of Y were randomly 
deleted as specified by the missing- 
data mechanism and the expec ted 
fraction of missing values. For each 
imputation method separately, the 
missing values were multiply imputed, 
and the estimates and t-based 
confidence intervals described in 
Rubin and Schenker (1986) were 
computed for the quantity of 
interest. Even when an incorrect 
model was used in creating the 
imputes (corresponding to f in (i)), 
the correct model was used in the 
analysis (corresponding to g in (I)) 
so that the effect of misspecifying 
the imputation model could be 
isolated. 

Two thousand Monte Carlo 
replications were simulated, and five 
outcomes were examined. The outcomes 
were the bias, variance, and mean 
squared error of the point estimator, 
and the coverage rate and average 
width of its associated nominal 95% 
confidence interval. 

4. Monte Carlo Results 

This section discusses the Monte 
Carlo results for estimating the 
percentages of the Y population 
greater than the five percentiles 
listed in Section 3.1, with Y-values 
missing completely at random at 
expected rates of 20% and 50%. Other 
results from the study, which are 
qualitatively similar to those 
presented here, are available from 
the authors. 

The results are summarized in the 
table below. The outcomes for error 
variances of a2=l and a2=2 have been 

averaged because the results for the 
two cases were similar. In addition, 
the measures of performance have been 
averaged over the five percentiles of 

the Y distribution for brevity. 
Monte Carlo variances, mean squared 
errors, and average interval widths 
have been standardized for each cell 
in the design by dividing by the 
value obtained from the "no-missing- 
data" analysis defined in Section 
3.1. 

Table of Monte Carlo Measures of Performance for 
Estimating Percentages of the Y Population 

with Data Missing Completely at Random 

Measure of Performance MB RD PS~M LRD 

Linear Mean Structure 

IBiasl 
20% missing .044 .047 .060 .055 
50% missing .078 .047 .108 .053 

Variance 
20% missing 1.03 1.03 1.20 1.18 
50% missing 1.23 1.22 1.81 1.65 

Mean Squared Error 
20% missing 1.03 1.03 1.20 1.16 
50% missing 1.23 1.22 1.81 1.85 

IError in Coverage Rate I 
20% missing .630 .550 1.78 1.17 
50% missing 1.78 1.33 4.59 2.99 

Average Interval Width 
20% missing 1.09 1.08 1.07 1.08 
50% missing 1.31 1.23 1.IS 1.19 

Nonlinear Mean Structure 

IBiasl 
20% missing .066 .813 .070 .070 
50% missing 2.45 2.05 .107 .098 

Variance 
20% missing 1.06 1.05 1.21 1.17 
50% missing 1.42 1.36 1.82 1.64 

Mean Squared Error 
20% missing 1.28 1.19 1.21 1.17 
50% missing 2.76 2.24 1.82 1.64 

IError in Coverage Rate I 
20% missing 1.68 1.22 1.09 .630 
50% missing 7.06 5.85 4.70 2.58 

Average Interval Width 
20% missing 1.12 1.10 1.07 1.08 
50% missing 1.39 1.28 1.20 1.20 

Note: Measures are averaged over the five 
percentiles and the two error variances. 
Variances, mean squared errors, and interval widths 
are standardized. 

Bias 
Under the linear population model, 

all four imputation methods display 
low bias; the largest average 
absolute bias is .108% for the PMM 
method with a 50% missing-data rate. 
Under the nonlinear model, however, 
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the biases of the MB and RD methods Coverage Rate 
increase significantly, averaging When data are missing at a 209 
over 29 in absolute value for the 509 rate, the nominal 959 confidence 
missing-data rate; in contrast, the intervals for all four methods have 
biases of the PMM and LRD methods Monte Carlo coverage rates within 
remain low. Clearly, the less 2.59 of the nominal level regardless 
parametric design of the PMM and LRD of the percentile being estimated. 
methods helps to avoid biases when For 509 missing data, the MB and RD 
the population mean structure is methods outperform the PMM and LRD 
misspecified, methods when the true model is 

linear, although the LRD method still 
Variance performs quite well. With the 

The MB and RD methods typically nonlinear population model and 509 
produce lower variances than the PMM missing data, however, the PMM and 
and LRD methods, with the ratio of LRD methods have more accurate 
average variances being as small as coverage rates on average than the MB 
two-thirds for the linear model with and RD methods, with the LRD method 
509 missing data. However, the achieving the best results in most 
variances of the MB and RD methods cases. 
increase when the true population The PMM and LRD methods tend to 
model is nonlinear rather than yield coverage rates that are lower 
linear, whereas the performances of than the nominal level, whereas the 
the PMM and LRD methods barely differ MB and RD methods produce slightly 
under the two models. Some features conservative intervals when the true 
that are hidden by the averaging in model is linear. While the results 
the table of results include the for the PMM and LRD methods are quite 
following. All four methods have consistent across the two population 
nearly constant variances across the models, the coverage rates of the MB 
five percentiles under the linear and RD methods are quite volatile 
model, and the variances remain under the nonlinear model. For 
nearly constant for the PMM and LRD example, with 509 missing data, the 
methods under the nonlinear model, coverage rates for the MB method 
The variances for the MB and RD range from 829 to 989, whereas those 

methods, however, become unstable for for the PMM method range only from 
the nonlinear model, ranging from .9 889 to 929. 
to 2.3 for the MB method with 509 
missing data. Average Interval Width 

The MB and RD methods typically 
Mean Squared Error produce slightly wider intervals 

Under the linear model, the than the PMM and LRD methods. This 
variance is the dominant component of is consistent with the fact that the 
the mean squared error, so that the MB and RD methods tend to yield 
comparisons made above for the conservative intervals under the 
variances of the methods apply here linear model, whereas the PMM and LRD 
as well. When the true model is methods have coverage rates that were 
nonlinear, however, bias becomes a lower than nominal in most cases. 
significant component for the MB and 
RD methods. Once again, the results 5. Discussion 
for the MB and RD methods are 
unstable across the five percentiles The PMM and LRD methods, which 
of Y; however, more often than not, were designed to be less parametric, 
the mean squared errors of the MB and show promise of greater robustness 
RD methods are higher than those for than the more parametric MB and RD 
the PMM and LRD methods, methods in two respects. First, the 
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less parametric techniques maintain 
very low biases under both the linear 
and nonlinear population models, 
whereas the biases of the more 
parametric techniques increase under 
the nonlinear model. Second, all 
measures of performance for the PMM 
and LRD methods are very consistent 
across the two models; in contrast, 
the measures for the MB and RD 
methods tend to be quite volatile 
under the nonlinear model. 

The PMM and LRD methods tend to 
produce less efficient estimates than 
the more parametric methods. In 
addition, the coverage rates for the 
PMM and LRD methods tend to be less 
accurate under the linear model, 
especially for high fractions of 
missing data. These results, along 
with the fact that the PMM and LRD 
methods typically produce narrower 
intervals despite the higher 
variances of the estimators, suggest 
that the methods need to be refined. 
Further research will develop 
different criteria for designating 
complete cases as close to the 
incomplete case in question, and will 
investigate alternative schemes for 
sampling from the chosen complete 
cases. 
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