ESTDATING THE FINITE POPULATION MEAN OSING RIPIRICAL BAYES YETHODS

Balgobin Nandram, Worcester Polytechnic Institute, Worcester, MA

 J. Sedransk, National Center for Health Statistics, Washington, DCIEY YORDS AND PERUSES: Small area estimation; Bayesian credible intervals; Confidence intervals; Jniform integrability; ANOVA estimators.

DISCUSSION:
S. Y. Yiller

Bureau of Labor Statistics, Vashington, D.C.

Summary

Many finite populations which are sampled repeatedly change slouly over time. Then estimation of finite population characteristics for the current occasion, ℓ, may be improved by the use of data from previous surveys. In this paper, we investigate the use of empirical Bayes procedures based on a superpopalation model having two stages: (a) population units on the $i-t h$ occasion are a random sample from the normal distribution vith aean μ_{i} and variance σ_{i}^{2}, and (b) μ_{1}, \ldots, μ_{l} are a random sample from the normal distribution vith mean θ and variance δ^{2}. Here, the σ_{i}^{2}, θ and δ^{2} are assumed to be unknom; this generalizes the specification studied by Ghosh and Yeeden (1986). Ve first aake large-sample conparisons of the empirical Bayes estimator of the finite popolation aean on the current occasion vith the corresponding Bayes estimator and vith several additional natural" estimators. Ve also consider empirical Bayes and Bayes credible intervals for the finite population sean.

1. Tntroduction

Yany finite populations which are sampled repeatedly using large scaie surveys change slovly over time. Consequently, data from earlier surveys can be used profitably to obtain improved estimates of finite population parameters on the current occasion. In a similar vay, estinates nay be required for a particular small area, and infornation is available for other related areas. An example of the forner situation is the National Health Interviey Survey conducted annually by the National Center for Eealth Statistics. There is great stability over time in the response to variables such as the presence or absence of color blindness, acute bronchitis and acute digestive systeas conditions, nuaber of restricted activity days vithin the past two veeks, and self-assessaent of quality of health.
To address these issues Ghosh and Yeeden (1986) used empirical Bayes (EB) methodology. They assumed a noraal-theory, two stage linear sodel with equal sampling variances. Subsequently, Ghosh and Lahiri (1987) relaxed the noraality assumption by assuming posterior linearity and the existence of fourth moments in (1.1) and (1.2) belor. Hovever, they retained the assumption of equal sampling variances.
lere ve generalize this research by considering the important case of unequal, unknown sampling variances. Thile this problen specification does not fit the ES paradiga exactly, the methods of proof and results are related to those of Ghosh and Yeeden (1986).
It is assuned throughout that each of a sequence of ℓ finite populations has been sampled uith $Y_{i}=\left(Y_{i 1}, \ldots, Y_{i N_{i}}\right)$ denoting the vector of values of the X_{i} units in the population on the $i^{\text {th }}$ occasion ($i=1, \ldots, l$). Also, given a sample of n_{i} units ($0<n_{i} \leq N_{i}$) on the $i{ }^{\text {th }}$ occasion, let s_{i} denote the set of units sampled on the $i^{\text {th }}$ occasion, $X_{s_{i}}=\left(Y_{i 1}, \ldots, Y_{i n_{i}}\right)^{\prime}$ the vector of values of units sampled on the $i^{\text {th }}$ occasion and $Y_{s}=\left(Y_{S_{1}}^{\prime}, Y_{S_{2}}^{\prime}, \ldots, Y_{S_{i}}^{\prime}\right)$, the vector of values of all sampled units.

1s the basis for inference ve assume the superpopulation model:

$$
\begin{equation*}
\gamma_{i 1}, Y_{i 2}, \ldots, Y_{i N_{i}} \mid \mu_{i}, \sigma_{i}^{2} \stackrel{i . i . d}{\sim} N\left(\mu_{i}, \sigma_{i}^{2}\right) \tag{1.1}
\end{equation*}
$$

vith independence over $i=1,2, \ldots, l$, and

$$
\begin{equation*}
\mu_{1}, \mu_{2}, \ldots, \mu_{l} \mid \theta, \delta^{2} \stackrel{\text { i. i.d }}{\sim} N\left(\theta, \delta^{2}\right) . \tag{1.2}
\end{equation*}
$$

Our objective is to make inference about the current finite popalation mean,

$$
T\left(Y_{\ell}\right)=\sum_{j=1}^{Y_{\ell}} Y_{\ell j} / K_{\ell}
$$

where θ, δ^{2} and $\sigma^{2}=\left(\sigma_{1}^{2}, \ldots, \sigma_{l}^{2}\right)$ are assumed to be fixed but monoun. Ve proceed by first finding the Bayes estimator, e_{B}, of $\tau\left(Y_{2}\right)$, and then developing an empirical Bayes estimator, $e_{B B}$, by substituting estimates of θ, δ^{2} and σ^{2} in e_{B}. The choice of estimators is facilitated by the research of Rao, Taplan and Cochran (1981), henceforth BKC, vho investigated properties of various estimators in the one-ay components of variance sodel defined by (1.1) and (1.2).
Bayes and empirical Bayes point estimators and credible intervals for $\gamma\left(Y_{\ell}\right)$ are defined in Section 2, together vith
three alternative point estimators that do not require δ^{2} and the r_{i}^{2} to be estimated. Le Section 3 ve present the asymptotic properties of the EB estiator and interval. Ye conclude section 3 vith a brief sumary of the results of an extensive numerical investigation of the performance of the us estinator and interval vhen sample sizes are suall or moderate.

2. Bayes, Pmoirical Bayes and Alternative Procedures

 2.1 Point estimationVieving (1.1) as the sampling model and (1.2) as the prior in a Bayesian analysis, it is vell known that, given $\underset{\sim}{\gamma}, \theta, \underset{\sim}{2}$
and $\delta^{2}, \mu_{1}, \mu_{2}, \ldots, \mu_{l}$ are independently distributed vith

$$
\begin{equation*}
\mu_{i} \sim N\left(u_{i} \theta+\left(1-w_{i}\right) P_{i}, \delta^{2} u_{i}\right) \tag{2.1}
\end{equation*}
$$

n_{i}
where $\mathrm{P}_{\mathrm{i}}=\sum_{\mathrm{j}=1} \mathrm{Y}_{\mathrm{ij}} / \mathrm{n}_{\mathrm{i}}$ and $\mathrm{u}_{\mathrm{i}}=\left(\sigma_{\mathrm{i}}^{2} / n_{\mathrm{i}}\right) /\left\{\left(\delta^{2}+\left(\sigma_{\mathrm{i}}^{2} / n_{i}\right)\right\}\right.$. Let $f_{i}=n_{i} / M_{i}$ denote the sampling fraction on the $i^{\text {th }}$ occasion. Then conditioning on \underline{S}_{s}, it follows from (2.1) that $7(\underset{\sim}{\gamma})$ is univariate normal vith mean e_{B} and variance ν_{B}^{2} where

$$
\begin{equation*}
e_{B}=B\left\{7\left(Y_{\ell}\right) \mid Y_{S}\right\}=Y_{\ell}-\left(1-f_{\ell}\right) \omega_{\ell}\left(Y_{\ell}-\theta\right) \tag{2.2a}
\end{equation*}
$$

and
$\nu_{B}^{2}=\operatorname{var}\left(\gamma\left(Y_{l}\right) \mid Y_{B}\right)=\left(1-f_{l}\right)\left(f_{l}+\left(1-f_{l}\right)\left(1-\omega_{l}\right)\right\} \sigma^{2} / n_{C}$
Thus, under squared error loss, the Bayes estimator of $X_{Y}\left(Y_{l}\right)$ is $e_{B}=B\left(\left.\gamma\left(Y_{L}\right)\right|_{\sim S}\right)$ and the Bayes risk is $\nu_{B}^{2}=\operatorname{var}\left(\gamma(\underset{\sim}{Y}) \mid Y_{S}\right)$.

Let $\dot{\dot{u}}_{i}=\left(S_{i}^{2} / n_{i}\right) /\left\{\delta^{2}+\left(S_{i}^{2} / n_{i}\right)\right\}$ where n_{i}
$s_{i}^{2}=\sum_{j=1}^{1}\left(Y_{i j}-Y_{i}\right)^{2} /\left(n_{i}-1\right), i=1,2, \ldots, \ell$. Then a
psendo-empirical Bayes estimator of $7(\underset{\sim}{Y})$ is $e_{B B}^{*}$ vhere

$$
\begin{equation*}
\mathrm{e}_{E B}^{*}=\bar{Y}_{l}-\left(1-\mathrm{f}_{l}\right) \dot{\omega}_{l}\left(\bar{Y}_{l}-\theta\right) . \tag{2.3}
\end{equation*}
$$

Defining $\dot{w}_{i}=\left(S_{i}^{2} / n_{i}\right) /\left\{\dot{\delta}^{2}+\left(S_{i}^{2} / n_{i}\right)\right\}$, the proposed empirical Bayes estimator is

$$
\begin{equation*}
e_{E B}=Y_{l}-\left(1-f_{l}\right) \dot{\omega}_{l}\left(\bar{l}_{l}-\dot{\theta}\right) \tag{2.4}
\end{equation*}
$$

where $\dot{\theta}$ and $\dot{\delta}^{2}$ are to be deternined. Whereas $e_{E B}^{*}$ only enters the analysis at an intermediate stage, $e_{B B}$ in (2.4) is the estimator whose properties are to be investigated. Note that when the sampling variances are equal, (2.4) reduces to (2.12) in Ghosh and Yeeden (1986).

Prom the results in BKC (1981), we use as the basis for our estimator of δ^{2} the unbiased, ANOVA estimator, $\dot{\delta}_{A}^{2}$:

$$
\begin{aligned}
\dot{\delta}_{i}^{2}= & {\left[\sum_{i=1}^{\ell} n_{i}\left\{Y_{i}-\left(\sum n_{i} n_{\cdot}^{-1} \bar{Y}_{i}\right)\right\}^{2}\right.} \\
& \left.-\sum_{i=1}^{\ell}\left(1-n_{i} n_{-}^{-1}\right) s_{i}^{2}\right] / \sum_{i=1}^{\ell} n_{i}\left(1-n_{i} n_{.}^{-1}\right) \\
\text { Where } n_{.}= & \sum_{i=1}^{l} n_{i} .
\end{aligned}
$$

Proceeding as in Ghosh and Yeeden (1986), ve modify $\tilde{\delta}_{\boldsymbol{A}}^{2}$ to

$$
\dot{\delta}_{*}^{2}=\left[(\ell-1)(\ell-3)^{-1} \sum_{i=1}^{\ell} n_{i}\left\{\gamma_{i}-\left(\sum n_{i} n^{-1} \bar{Y}_{i}\right)\right\}^{2}\right.
$$

$$
\left.-\sum_{i=1}^{\ell}\left(1-n_{i} n^{-1}\right) S_{i}^{2}\right] / \sum_{i=1}^{\ell} n_{i}\left(1-n_{i} n^{-1}\right)
$$

for $\ell \geq 4$ and take

$$
\begin{equation*}
\dot{\delta}^{2}=\max \left(0, \dot{\delta}_{\phi}^{2}\right) \tag{2.5}
\end{equation*}
$$

Note that for the case of equal variances $\dot{\delta}^{2}$ in (2.5) is analogous to (2.8) in Ghosh and Meeden (1986).

Then σ^{2} and δ^{2} are known, the maximus likelihood
estimator of is

$$
\begin{equation*}
\dot{\theta}_{+}=\sum_{i=1}^{l}\left(1-w_{i}\right) \bar{Y}_{i} / \sum_{i=1}^{l}\left(1-w_{i}\right) \tag{2.8}
\end{equation*}
$$

where the $\left\{\mathrm{P}_{\mathrm{i}}\right\}$ are weighted inversely proportional to their

$$
\begin{align*}
& \text { variances. Here, we use } \\
& \dot{\theta}= \begin{cases}\sum_{i=1}^{l}\left(1-\dot{H}_{i}\right) q_{i} / \sum_{i=1}^{\ell}\left(1-\dot{i}_{i}\right) ; \dot{\delta}^{2}>0 \\
\sum_{i=1}^{\ell} \frac{n_{i}}{S_{i}^{2}} \bar{Y}_{i} / \sum_{i=1}^{\ell} \frac{n_{i}}{S_{i}^{2}} ; & \dot{\delta}^{2}=0\end{cases} \tag{2.7}
\end{align*}
$$

vhere $\hat{\dot{u}}_{i}=\left(S_{i}^{2} / n_{i}\right) /\left\{\dot{\delta}^{2}+\left(S_{i}^{2} / n_{i}\right)\right\}$. Ve need a separate estimator vhen $\dot{\delta}^{2}=0$ because in this case $\hat{\dot{u}}_{i}=1$, $i=1,2, \ldots, l$, and $\dot{\partial}_{z}$ in (2.6) is indeteminate. Observe, though, that

$$
\lim _{\delta^{2} \rightarrow 0} \sum_{i=1}^{\ell}\left(1-w_{i}\right) \nabla_{i} / \sum_{i=1}^{\ell}\left(1-\hat{w}_{i}\right)=\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}} \bar{Y}_{i} / \sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}} ;
$$

see Rao (1980) for coments about the efficiency of this estiastor uhen $\delta^{2}=0$.

Is alternatives to ${ }^{\mathrm{EB}}$ in (2.4) ve have considered three
estimators of $7\left(\mathbf{Y}_{\ell}\right)$ which do not require estimates of δ^{2} or the σ_{i}^{2}; i.e.,

$$
\begin{equation*}
e_{1}=Y_{\ell}, \quad e_{2}=\sum_{i=1}^{\ell} \bar{Y}_{i} / \ell \text { and } e_{3}=\sum_{i=1}^{\ell} n_{i} n^{-1} \bar{\gamma}_{i} \tag{2.8}
\end{equation*}
$$

Properties of e_{1}, e_{2}, and e_{3} are easily deternined since \bar{Y}_{i} and S_{i}^{2} are independent vith
$\bar{Y}_{i}-N\left(\theta, \delta^{2}+\sigma_{i}^{2} n_{i}^{-1}\right)$ and $s_{i}^{2}-\sigma_{i}^{2} x_{n_{i}}^{2} /\left(n_{i}-1\right), i=1,2, \ldots, \ell$.

2.2. Credible intervals

Given $Y_{s}, \theta, \delta^{2}$ and the $\sigma_{i}^{2}, \gamma\left(Y_{-}\right)$has a normal
distribution \quad ith nean e_{B} and variance ν_{B}^{2}; see ($2.2 a, b$). Thus, an exact $100(1-\propto) \%$ EPD credible interval for $7\left(Y_{\ell}\right)$ is

$$
\begin{equation*}
e_{B}=z_{a / 2}{ }_{B} \tag{2.9}
\end{equation*}
$$

where $\Phi\left(z_{a / 2}\right)=1-a / 2$ and $\Phi(\cdot)$ is the standard normal cumalative distribution function. Then θ, δ^{2} and the σ_{i}^{2} are unknown, ve suggest using

$$
\begin{equation*}
e_{E B} * z_{a / 2}{ }_{B B} \tag{2.10}
\end{equation*}
$$

where
$\dot{u}_{B}=\left[\left\{\left(1-f_{\ell}\right)\left[f_{\ell}+\left(1-f_{\ell}\right)\left(1-\dot{U}_{\ell}\right)\right] S_{\ell}^{2} / n_{\ell}\right\}\left(n_{\ell}-1\right) /\left(n_{\ell}-2\right)\right]^{1 / 2} ; n \geq 3$.
In Section 3 we investigate the quality of the interval,
(2.10), as an approximation to the Bayes interval, (2.9).

Other anthors have considered EB confidence intervals. Yorris (1983 a,b) gave a general definition of an BB confidence interval, but also investigated in greater detail the existence and construction of $E B$ intervals for the μ_{i} in (1.2) ohen the σ_{i}^{2} in (1.1) are equal. He provided empirical evidence that the intervals have approximately the correct probability content. Carlin and Gelfand (1990) have recently proposed and studied a potentially useful method to improve the coverage properties of naive EB confidence intervals. Here, the coverage probability may either be conditional on a sumary of the data (i.e., quasi-Bayes or Bayes) or averaged over the arginal distribution of the data (i.e., empirical Bayes). Jnfortunately, it appears from their examples (2.3, 2.4) that implementation of their methodology for our specification, i.e., unequal unknown σ_{i}^{2}, untnown and δ^{2}, and nequal n_{i}, \quad ill be difficult.

3. Asymptotic. Properties

Let e be any estimator of $7\left(Y_{\ell}\right)$; e may be a function of θ,
 integrated over both $\underset{\sim}{\mu}$ and \underline{Y}) under squared error loss,
$r(e)$, is

$$
r(e)=E_{\underline{Y}} \underline{E}_{\underline{Y} \mid \underline{Y}}\left(e-\underset{Y}{ }\left(\mathbb{Y}_{\ell}\right)\right)^{2}
$$

That is, all expectations are taken over the aarginal distribution of Y obtained from (1.1) and (1.2). Further we
have as in Lemaz 3 of Ghosh and Meeden (1986) that

$$
\begin{equation*}
r(e)-r\left(e_{B}\right)=B\left(e-e_{B}\right)^{2} \tag{3.1}
\end{equation*}
$$

Our principal objective is to prove Theoren 1 , vhich provides an asymptotic upper bound for $r\left(e_{B B}\right)-r\left(e_{B}\right)$. To do so, ve first state three lemas and then use (3.1). Our proofs are similar in style to those in Ghosh and Yeeden (1986), but the details are usually different. Moreover, our proofs tend
to be more cumbersone because each of the σ_{i}^{2} is estinated separately.

All of the results in this section vill be established under the following mild conditions analogous to those used by Ghosh and Meeden (1986): $0<\delta^{2}<\infty, \sup _{i \geq 1} \sigma_{i}^{2}=\sigma^{2}<\infty, \inf _{i \geq 1} n_{i}=2$, and $\sup n_{i}=k<\infty$. Lemmas 1 and 2 are easily established. Lemma 3, i) 1 ised in the proof of Theoren 1 , is proved in Appendix 4 .

Lemes 1

$\dot{\delta}^{2} \xrightarrow{\mathrm{~L}_{2}} \delta^{2}$ as $\ell \rightarrow \infty$, where ${ }^{n} L_{2}{ }^{\prime \prime}$ means convergence in mean square.
Leva 2
$\dot{\delta}^{2} \xrightarrow{\text { a.s. }} \delta^{2}$ as $l \rightarrow \infty$, where "a.s." means aimost surely.
The follouing two corollaries are imediate consequences of Lemal 2.
Corollary 1
$\dot{\delta}^{2} \xrightarrow{\text { a.s. }} \delta^{2}$ as $l \longrightarrow \infty$, where $\hat{\delta}^{2}$ is defined in (2.5).
Corollary 2

$$
\max _{i=1,2, \ldots, \ell}\left|\hat{i}_{i}-\hat{b}_{i}\right| \stackrel{2.8 .}{ } 0, \text { as } \ell \rightarrow \infty
$$

See (2.3) and (2.4) for definitions.
Letat 3
$\dot{\theta} \xrightarrow{\mathrm{P}} \theta$ as $L \rightarrow \infty$, where $" P$ " means convergence in probsbility.
Proof
Appendix 1 shous that given $\dot{\delta}^{2}>0, \dot{\theta} \xrightarrow{p}$ as
$\ell \rightarrow \infty ;$ and by using Lema 1 (or Lema 2) the result follows. Ve nov state and sketch the proof of Theoren 1.
Theorea 1
Joder the assumptions
(i) $0<\delta^{2}<\infty ; 0<\sigma_{i}^{2} \leq \sup _{j \geq 1} \sigma_{j}^{2}=\sigma^{2}<\infty$ for $i=1, \ldots, \ell$
(ii) $\inf _{i \geq 1} n_{i}=2$ and $\sup _{i \geq 1} n_{i}=k<\pi$,
$\lim _{l \rightarrow 0} E\left(e_{E B}-e_{B}\right)^{2} \leq \lim _{l \rightarrow \infty}\left(1-f_{l}\right)^{2} v_{l} \frac{\sigma_{l}^{2}}{n_{l}}\left[\left(1-\dot{i}_{l}\right)^{2}\left(S_{l}^{2} / \sigma_{l}^{2}-1\right)^{2}\right]$.
Proof
By using the Cauchy Schuarz inequality,

$$
\begin{align*}
& E\left(e_{E B}-e_{B}\right)^{2} \leq E\left(e_{E B}-e_{E B}^{*}\right)^{2} \\
& +2\left\{E\left(e_{E B}-e_{E B}^{*}\right)^{2}\right\}^{1 / 2}\left\{E\left(e_{E B}^{*}-e_{B}\right)^{2}\right\}^{1 / 2}+E\left(e_{E B}^{*}-e_{B}\right)^{2} \tag{3.3}
\end{align*}
$$

Nov using the definitions of $e_{E B}^{*}$ and $e_{E B}$ in (2.3) and (2.4) respectively

$$
\begin{equation*}
E\left(e_{B B}-e_{E B}^{*}\right)^{2}=\left(1-f_{l}\right)^{2} E\left[\left(\dot{u}_{L}-\dot{\psi}_{L}\right)\left(\dot{Y}_{L}-\theta\right)-\dot{\omega}_{L}(\hat{\theta}-\theta)\right]^{2} . \tag{3.4}
\end{equation*}
$$

Also by the distributional properties of P_{i} and S_{i}^{2} it follovs that

$$
\begin{align*}
E\left(e_{B B}^{*}-e_{B}\right)^{2} & =\left(1-f_{l}\right)^{2} u_{l} \frac{\sigma_{l}^{2}}{n_{l}} B\left[\left(1-\hat{i}_{l}\right)^{2}\left(S_{L}^{2} / \sigma_{l}^{2}-1\right)^{2}\right] \\
& \leq \delta^{2}+\frac{\sigma^{2}}{2}< \tag{3.5}
\end{align*}
$$

Appendix B shows that $B\left(e_{B B}{ }^{-e_{B B}^{*}}\right)^{2} \longrightarrow 0$ as $L \rightarrow e$. The result (3.2) follows by applying (3.3), (3.4) and (3.5).

The bound given by (3.2) can be replaced by other, eore useful, bounds. Pirst, since $1-\psi_{l} \leq n_{l} \delta^{2} / S_{l}^{2}$

$$
\begin{equation*}
\lim _{l \rightarrow 0} E\left(e_{B B}-e_{B}\right)^{2} \leq \delta^{2} \lim _{l \rightarrow 0}\left(1-f_{l}\right)^{2}\left(1-u_{l}\right) \tag{3.8}
\end{equation*}
$$

Second, since $B\left[\left(1-E_{l}\right)^{2}\left(S_{l}^{2} / o_{l}^{2}-1\right)^{2}\right] \leq 2 /\left(n_{l}-1\right)$,

$$
\begin{equation*}
\lim _{l \rightarrow} B\left(e_{B}-e_{B}\right)^{2} \leq 2 \lim _{l \rightarrow}\left(1-f_{l}\right)^{2} v_{C} C_{l}^{2} / n_{l}\left(n_{\ell}-1\right) \tag{3.7}
\end{equation*}
$$

In practical situations, the bounds on $\underset{\ell \rightarrow-\infty}{\lim \left\{r\left(e_{E B}\right)-r\left(e_{B}\right)\right\}}$ $=\lim _{\ell \rightarrow \infty} \mathbb{E}\left(e_{E B}-e_{B}\right)^{2}$ may be very small. If δ^{2} is small, the bound in (3.6) vill be small since $\left(1-f_{l}\right)^{2}\left(1-U_{\ell}\right) \leq 1$ for any ℓ. Second, writing $\lim _{\ell \rightarrow \infty} a_{l}=n_{*}$, the right side of (3.7) is $0\left(n_{e^{3}}^{-3}\right)$, ohich should be small in many applications. Yoreover, one may easily imagine a sequence of surveys or experiments with improving precision of aeasurement so that $\sigma_{\ell}^{2} / n_{\ell} \rightarrow 0$ as $\ell \rightarrow \infty$. In the latter case, using (3.7), $\lim _{\operatorname{li}} \mathbb{E}\left(e_{E B}-e_{B}\right)^{2}=0$ and the $E B$ estimator is asymptotically optinal in the sense of lobbins (1955).

$$
\text { To compare } e_{E B} \text { vith } e_{1}, e_{2} \text { and } e_{3} \text { first note that }
$$

$$
\begin{equation*}
E\left(e_{1}-e_{B}\right)^{2}=\left(1-f_{l}\right)^{2}{ }_{l}^{2}\left\{\delta^{2}+\left(\sigma_{l}^{2} / n_{l}\right)\right\} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
& B\left(e_{i}-e_{B}\right)^{2}=\sum_{j=1}^{\ell} a_{j}^{2}\left\{\delta^{2}+\left(\sigma_{j}^{2} / n_{j}\right)\right\} \\
& +\left\{1-\left(1-f_{\ell}\right) \cup_{l}-2 a_{\ell}\right\}\left\{1-\left(1-f_{\ell}\right) \psi_{\ell}\right\}\left\{\delta^{2}+\left(\sigma_{\ell}^{2} / n_{\ell}\right)\right\} \tag{3.9}
\end{align*}
$$

where $a_{j}=\ell^{-1}$ for $i=2$ and $a_{j}=n_{j} n^{-1}$ for $i=3$.
Using (3.7), and (3.8), $\lim _{\ell \rightarrow \infty} E\left(e_{B B}-e_{B}\right)^{2} \leq \lim _{\ell \rightarrow \infty} E\left(e_{B}-e_{B}\right)^{2}$
provided that $\lim _{\ell \rightarrow \infty} \mathrm{a}_{\ell} \geq 3$. Moreover, using (3.6) and (3.9), it can be shown that
$\lim _{\ell \rightarrow \infty} E\left(e_{E B}-e_{B}\right)^{2} \leq \lim _{l \rightarrow \infty} E\left(e_{i}-e_{B}\right)^{2}$ for $i=2,3$.
Ve aext present asymptotic results which give conditions then the EB credible interval in (2.10) will be a good approxingtion for the Bayes interval in (2.9). theore 2

Onder the conditions of Theorea 1 ,
Onder the conditions of Theoren 1,
$\lim _{\ell \rightarrow Q} R\left(v_{B}-\nu_{B}\right)^{2} \leq 6 \sqrt{2} \lim _{\ell \rightarrow \square}\left\{\left(1-f_{\ell}\right) \sigma_{\ell}^{2} / n_{\ell}\left(n_{\ell}-1\right)^{1 / 2}\right\}$.
The proof of (3.10) is sketched in Appendix C.
Using Theores 2 and the Liapunov inequality,
$\lim _{l \rightarrow} B\left|\hat{v}_{B}-\nu_{B}\right| \leq 6^{1 / 2} 2^{1 / 4}$

$$
\begin{equation*}
\lim _{l \rightarrow}\left(1-f_{l}\right)^{1 / 2}{ }_{l} / n_{l}^{1 / 2}\left(n_{l}-1\right)^{1 / 4} \tag{3.11}
\end{equation*}
$$

Consequently, the width of the estimated I.P.D. credible interval may be close to the ridth of the true I.P.D. Credible interval for $\gamma\left(Y_{2}\right)$.

Tinally, we state and prove Corollary 3 which follows by an application of both Theorens 1 and 2.
Corollary 3
Onder the conditions of Theoren 1 ,
$\lim _{\mathrm{L} \rightarrow \mathrm{B}}\left|\mathrm{e}_{\mathrm{BB}}{ }^{-e_{B}} \neq z_{a / 2}\left(\hat{\nu}_{B}-\nu_{B}\right)\right|$

$$
\begin{align*}
& \leq 2^{1 / 2} \lim _{\ell \rightarrow 0}\left(1-f_{\ell}\right)^{1 / 2}\left\{\left(1-f_{\ell}\right)^{1 / 2} \ell_{\ell}^{1 / 2}\left(n_{\ell}-1\right)^{-1 / 4}\right. \\
& \left.+3^{1 / 2} 2^{1 / 4} z_{a / 2}\right\}{ }_{\ell} \ell_{\ell}^{-1 / 2}\left(n_{\ell}-1\right)^{-1 / 4} \tag{3.12}
\end{align*}
$$

Proof
By the Liapunov and Kinkousti inequalities,
$\lim _{\ell \rightarrow B} \mathrm{~B}\left|\mathrm{E}_{\mathrm{EB}}-\mathrm{E}_{\mathrm{B}} \neq \mathrm{z}_{a / 2}\left(v_{B}-v_{B}\right)\right|$

$$
\begin{equation*}
\leq\left\{\lim _{l \rightarrow 0} B\left(e_{B B}-e_{B}\right)^{2}\right\}^{1 / 2}+z_{\alpha / 2}\left\{\lim _{\ell \rightarrow \infty} E\left(v-v_{B}\right)^{2}\right\}^{1 / 2} \tag{3.13}
\end{equation*}
$$

Corollary 3 follows by substituting (3.7) and (3.10) in (3.13).
From (3.10), (3.11) and (3.12) it is clear that for large i the EB interval, (2.10), vill provide a reasonable approximation for the Bayes H.P.D. interval, (2.9), when a_{l} is large or $\sigma_{l}^{2} / n_{\ell}$ is sasll.

In concluding ve sumarize the results of our numerical invertigetion but ve onit the details. Ve perform a sequence
of numerical examples which indicate that when $\ell \geq 20$ and $n \geq 20\left(n_{i}=n, i=1,2, \ldots, l\right)$, the empirical Bayes point estimator and interval (of the finite population aean) are reasonable approxinations for the Bayes estimator and GPD interval respectively. Moreover, egB is alvays better than e_{1}; and except for three cases (with $n=10$) $e_{E B}$ is better than e_{2}. Our results also show that increasing a is aore profitable than increasing ℓ. Por example, for the credible interval, it is preferable to have $(~ \ell=10, n=20)$ rather than $(l=20, n=10)$ and there are substantial gains by having $(\ell=10, n=30)$ rather than $(~ \ell=30, n=10)$.

APPRNDLI A: COPPLETION OP PROOF OF LETA 3

$\underset{\text { Proof }}{P\left\{|\dot{\theta}-\theta|>\epsilon \mid \dot{\sigma}^{2}>0\right\} \rightarrow 0 \text { as } l \rightarrow a, \forall \in>0}$
Noting that all arguments apply for $\dot{\delta}^{2}>0$, we first establish the bound in (A.2) for $|\theta-\theta|$.

It is easy to shor that

$$
\left[\sum_{i=1}^{\ell}\left(1-\dot{W}_{i}\right)\right]^{-1} \leq \frac{1}{2 L}\left[k+\left(\dot{\delta}^{2}\right)^{-1} \underset{j=1,2, \ldots, \ell}{\max } S_{j}^{2}\right]
$$

and

$$
\begin{align*}
& \left|\sum_{i=1}^{\ell}\left(1-\omega_{i}\right)\left(\bar{Y}_{i}-\theta\right)\right| \leq\left|\sum_{i=1}^{\ell}\left(1-\omega_{i}\right)\left(\bar{Y}_{i}-\theta\right)\right| \\
& \quad \max _{i=1,2, \ldots, \ell}^{\left|\omega_{i}-\omega_{i}\right| \cdot \frac{1}{\ell} \sum_{i=1}^{\ell}\left|\bar{Y}_{i}-\theta\right| .} \tag{A.1}
\end{align*}
$$

Now, using (A.1), $|\dot{\theta}-\theta| \leq \frac{1}{2}\left[k+\left(\dot{\delta}^{2}\right)^{-1} \underset{j=1,2, \ldots, \ell}{\max } S_{j}^{2}\right]$
$=\left\{\frac{1}{2}\left|\sum_{i=1}^{\ell}\left(1-\dot{w}_{i}\right)\left(\bar{Y}_{i}-\theta\right)\right|\right.$

$$
\begin{equation*}
\left.+\max _{i=1,2, \ldots, l \mid}\left|\dot{*}_{i}-\dot{w}_{i}\right| \cdot \frac{1}{2} \sum_{i=1}^{l}\left|\bar{Y}_{i}-\theta\right|\right\} \tag{A.2}
\end{equation*}
$$

Second ve show that both $\frac{1}{l}\left|\sum_{i=1}^{i=1}\left(1-\mathbf{w}_{i}\right)\left(\bar{Y}_{i}-\theta\right)\right|$ and
$\underset{i=1,2, \ldots, \ell}{\max }\left|\dot{\omega}_{i} \dot{-}_{i}\right| \cdot \frac{1}{l} \sum_{i=1}^{\ell}\left|\bar{Y}_{i}-8\right|$ converge to zero in
probability as $\boldsymbol{l} \boldsymbol{\rightarrow} \boldsymbol{i}$. By an arguent similar to Ghosh and Meeden (1986), $\frac{1}{l} \sum_{i=1}^{l}\left|\overline{7}_{i}-0\right|$ has finite expectation, $s 0$ it is bounded in probability as $\ell \rightarrow$. It follous by Corollary 2 that

$$
\begin{equation*}
\max _{i=1,2, \ldots l}\left|\dot{u}_{i}-\omega_{i}\right| \cdot \frac{1}{Z} \sum_{i=1}^{\ell}\left|\bar{Y}_{i}-\theta\right| \xrightarrow{p} 0 \text { as } \ell \longrightarrow \text {. } \tag{1.3}
\end{equation*}
$$

Since $\frac{1}{6} \sum_{i=1}^{l}\left(1-{\underset{w}{i}}^{i}\right)\left(\bar{Y}_{i}-\theta\right)$ is an unbiased estinator of 0 and $\operatorname{var}\left\{\frac{1}{l} \sum_{i=1}^{i=1}\left(1-\psi_{i}\right)\left(\mathbb{T}_{i}-\theta\right)\right\} \rightarrow 0$ as $\ell \rightarrow 0$, it follous that
$\frac{1}{l} \sum_{i=1}^{\ell}\left(1-\psi_{i}\right)\left(\bar{Y}_{i}-\theta\right) \xrightarrow{p} 0$ as $\ell \longrightarrow$. Consequen
and $(1.3) \frac{1}{Z} \sum_{i=1}^{\ell}\left(1-\omega_{i}\right)\left(\bar{\eta}_{i}-\theta\right) \xrightarrow{p} 0$ as $\ell \longrightarrow$.
Ve coaplete the proof by using the distributional
properties of the S_{j}^{2} to show that $\underset{j=1,2, \ldots, \ell}{\max } S_{j}^{2}$ is bounded in probability as $\ell \rightarrow \infty$.
APPENDIX B: COMPLETION OF PROOT OF THEORES 1

$$
E\left(e_{E B}-e_{E B}^{*}\right)^{2} \rightarrow 0 \text { as } \ell \rightarrow \infty
$$

Proof
Like Ghosh and Meeden (1986) ue show that

$$
\left(\hat{ष}_{\ell}\right)\left(\mathbb{Y}_{\ell}-\theta\right)-\dot{v}_{\ell}(\dot{\theta}-\theta) \xrightarrow{p} 0 \text { as } \ell \longrightarrow 0
$$

and the sequence,

$$
\left\{\left[\left(\dot{v}_{\ell}^{-\dot{v}_{\ell}}\right)\left(\bar{\eta}_{\ell}-\theta\right)-\dot{v}_{\ell}(\dot{\theta}-\theta)\right]^{2}\right\}
$$

is uniformly integrable (u.i.); see also Serfling (1980, p. 15).

$$
\begin{aligned}
& \text { Nov }
\end{aligned}
$$

Since $\left|\bar{Y}_{\ell}-\theta\right|$ is bounded in probability as $\ell \rightarrow \infty$, it follous by Corollary 2, Lemma 3 and (B.1) that
$(\dot{\omega} \ell \ell)\left(\mathbb{Y}_{\ell}-\theta\right)-\dot{ष}_{\ell}(\dot{\theta}-\theta) \xrightarrow{p} 0$ as $\ell \longrightarrow \infty$
In the rest of Appeadix B ve establish that
$\left\{\left[\left(\dot{\theta}_{\ell}^{-\psi_{\ell}}\right)\left(\bar{Y}_{\ell}-\theta\right)-\dot{\psi}_{\ell}(\dot{\theta}-\theta)\right]^{2}\right\}$ is u.i. Nov,

$$
\begin{equation*}
\left[\left(\dot{v}_{l}^{-d_{l}}\right)\left(\bar{Y}_{l}-\theta\right)-\dot{v}_{l}(\dot{\theta}-\theta)\right]^{2} \leq 2\left\{\left(\bar{Y}_{l}-\theta\right)^{2}+(\dot{g}-\theta)^{2}\right\} \tag{B.2}
\end{equation*}
$$

Irow Ghosh and Yeeden (1986) $\left\{\left(\bar{\gamma}_{l}^{-\theta}\right)^{2}\right\}$ is u.i., so ve need only show that $(\dot{\theta}-\theta)^{2}$ is u.i. There are tro cases.

First, suppose that $\dot{\delta}^{2}=0$. Then

$$
\begin{align*}
& (\dot{\theta}-\theta)^{2}=\left[\begin{array}{l}
\ell \\
\left.\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\left(Y_{i}-\theta\right) / \sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\right\}^{2} \text {. It suffices to show that } \\
B\left[\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\left(Y_{i}-\theta\right) / \sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\right\}^{4}<a ;
\end{array},\right.
\end{align*}
$$

see Serfling (1980; p. 13). Denoting the vector of estimators of σ^{2} by $\underline{S}^{2}=\left(S_{1}^{2}, S_{2}^{2}, \ldots, S_{l}^{2}\right)^{\prime}$,

$$
\begin{align*}
& \mathbb{B}\left\{\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\left(\mathbb{Y}_{i}-\theta\right) / \sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\right\}^{4} \\
& \left.\left.={\underset{S}{S}}^{2}\left\{\left.\operatorname{var}\left\{\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\left(Y_{i}-\theta\right)\right]^{2} \right\rvert\, s^{2}\right]\right\} /\left\{\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\right\}^{4}\right\} \\
& +\mathbb{E}_{S^{2}}\left\{\operatorname{var}\left\{\left.\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\left(Y_{i}-\theta\right) \right\rvert\, s^{2}\right\} /\left\{\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\right\}^{2}\right]^{2} \tag{B.4}
\end{align*}
$$

Now by the distributional properties of $\left\{\mathbb{T}_{i}, S_{i}^{2}\right\}$, given S^{2},

$$
\begin{equation*}
\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\left(\bar{Y}_{i}-\theta\right)-N\left\{0, \sum_{i=1}^{\ell}\left[\frac{n_{i}}{s_{i}^{2}}\right]^{2}\left[\delta^{2}+\left(\sigma_{i}^{2} / n_{i}\right)\right]\right\} \tag{B.5}
\end{equation*}
$$

Using (B.5),

$$
\operatorname{var}\left\{\left.\left[\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\left(Y_{i}-\theta\right)\right]^{2} \right\rvert\, s^{2}\right\} /\left\{\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\right\}^{4}
$$

$=2\left\{\sum_{i=1}^{\ell}\left[\frac{a_{i}}{s_{i}^{2}}\right]^{2}\left[\delta^{2}+\left(\sigma_{i}^{2} / n_{i}\right)\right]\right]^{2} /\left\{\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\right\}^{4} \leq 2\left[\delta^{2}+\frac{\sigma^{2}}{2}\right]^{2}<a$.
Thus the first tera in (B.4) is bounded. Since

$$
\operatorname{var}\left[\left.\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\left(\bar{Y}_{i}-\theta\right) \right\rvert\, s^{2}\right\} /\left\{\sum_{i=1}^{\ell} \frac{n_{i}}{s_{i}^{2}}\right\}^{2} \leq\left[\delta^{2}+\frac{\sigma^{2}}{2}\right]<\infty,
$$

the second tern in (B.4) is bounded.
In the second case $\dot{\delta}^{2}>0$. Then
$(\dot{\theta}-\theta)^{2}=\left\{\sum_{i=1}^{l}\left(1-\dot{w}_{i}\right)\left(\bar{Y}_{i}-\theta\right) / \sum_{i=1}^{\ell}\left(1 \dot{山}_{i}\right)\right\}^{2}$. After sone algebra it follows that

$$
\left\{\sum_{i=1}^{\ell}\left(1-\dot{\omega}_{i}\right)\left(\bar{Y}_{i}-\theta\right) / \sum_{i=1}^{\ell}\left(1-\dot{\omega}_{i}\right)\right\}^{2}
$$

$$
\begin{equation*}
\leq\left[1+\left(\dot{\delta}_{*}^{2}\right)^{-1} \max _{i=1,2, \ldots, \ell}\left[\frac{s_{i}^{2}}{n_{i}}\right]\right]^{2} \sum_{i=1}^{\ell}\left(\bar{Y}_{i}-\theta\right)^{2} \tag{B.6}
\end{equation*}
$$

 stochastically. Thas, by (B.8) letting $\bar{U}_{\ell}=\frac{1}{Z} \sum_{i=1}^{\ell} \nabla_{i}$, where $\pi_{1}, \pi_{2}, \ldots, \pi_{l}$ are i.i.d x_{1}^{2},
$\left\{\sum_{i=1}^{\ell}\left(1-\dot{\psi}_{i}\right)\left(\bar{Y}_{i}-\theta\right) / \sum_{i=1}^{\ell}\left(1-\dot{\psi}_{i}\right)\right\}^{2} s t\left[\delta^{2} \frac{\sigma^{2}}{2}\right]\left[1+\sigma^{2} v / 2 \dot{\delta}_{*}^{2}\right]^{2} \bar{U}_{\ell}$. (B. 7)

$$
\left[1+\sigma^{2} \mathrm{Y} / 2 \hat{\delta}_{*}^{2}\right]^{2} \nabla_{l} \xrightarrow{\text { a.s. }}\left[1+\sigma^{2} \mathrm{Y} / 2 \delta^{2}\right]^{2} \text { as } l \rightarrow \text {. }
$$

But since $Y-\chi_{k-1}^{2}, z<\pi, B\left[1+\sigma^{2} Y / 2 \delta^{2}\right]^{2}<\infty$. It suffices to shoy that

$$
\begin{equation*}
\operatorname{Lim}_{\ell \rightarrow \infty} \mathbb{E}\left\{\left(1+\sigma^{2} V / 2 \delta^{2}\right)^{2} \bar{U}-\left(1+\sigma^{2} V / 2 \delta^{2}\right)^{2}\right\}=0 ; \tag{B.8}
\end{equation*}
$$

see Serfling (1980; p. 15).
Now it in eave to shor that
$\left.B\left\{\left[1+\frac{\sigma^{2} Y}{2 \delta^{2}}\right]^{2} \nabla_{\ell}-\left[1+\frac{r^{2}}{2 \delta^{2}}\right\rangle\right]^{2}\right\}$
$=\left(\sigma^{2} / \delta^{2}\right) E\left\{Y\left[\left(\delta^{2} / \dot{\delta}_{*}^{2}\right) \tilde{\sigma}_{L^{-1}} 1\right]+\frac{\sigma^{4}}{4 \delta^{4}} B\left\{Y^{2}\left[\left(\delta^{2} / \dot{\delta}_{*}^{2}\right)^{2}{ }_{\ell}-1\right\}\right.\right.$.
Applying Holder's inequality to each term on the right-hand side of (B.9),
and

$$
\begin{equation*}
\left|E\left\{y^{2}\left[\left[\frac{\delta^{2}}{\delta^{2}}\right]^{2} \sigma^{-1}\right]\right\}\right| \leq\left\{B\left(Y^{4}\right)\right\}^{1 / 2}\left\{B\left[\left[\frac{\delta^{2}}{\delta^{2}}\right]^{2} \sigma^{2}-1\right]^{2}\right\}^{1 / 2} \tag{B.10}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{E}\left[\left[\frac{\delta^{2}}{\delta^{2}}\right] \bar{V}_{\ell}-1\right]^{2} \leq\left[\mathrm{E}\left[\frac{\delta^{2}}{\delta^{2}}-1\right] \bar{\theta}_{\ell}\right]^{2 / 1 / 2} \tag{B.11}
\end{equation*}
$$

Since $\bar{W}_{\ell} \xrightarrow{\text { a.s. }} 1$ as $\ell \rightarrow \infty$, there exists a finite real number
As.t. $\sup _{\ell \backslash 1} \bar{\nabla}_{l} \leq \Delta$ a.3. Thus by (B.11),
$\lim _{\ell \rightarrow \infty}\left[\left[\left[\frac{\delta^{2}}{\delta^{2}}\right] \nabla_{\ell}-1\right]^{2} \leq A\left\{\lim _{\ell \rightarrow \infty} E\left[\frac{\delta^{2}}{\delta_{*}^{2}}-1\right]^{2}\right\}^{1 / 2}\right.$
and by Lemmas 1 and 2

$$
\begin{equation*}
\lim _{l \rightarrow} E\left[\left[\frac{\delta^{2}}{\delta^{2}}\right] \nabla_{l}-1\right]^{2}=0 \tag{B.12}
\end{equation*}
$$

A siailar argment shows that

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left[\left[\frac{\delta^{2}}{\delta^{2}}\right]^{2} \bar{ण}_{t}-1\right]^{2}=0 \tag{B.13}
\end{equation*}
$$

But since $V=X_{k-1}^{2}, E\left(V^{5}\right)<a$ for every finite $r>0$, and (B.8) follows from (B.9)-(B.13).

IPPENDIX C: PROOR OF THEORPI 2
$\lim _{\ell \rightarrow 0} R\left(v_{B}-v_{B}\right)^{2} \leq 6 \sqrt{2} \lim _{\ell \rightarrow 0}\left\{\left(1-f_{\ell}\right) \sigma_{l}^{2} / n_{\ell}\left(n_{l}-1\right)^{1 / 2}\right\}$
Eroof
Pirst ve show that
$\lim _{l \rightarrow \infty} B\left(\nu_{B}^{2}-\nu_{B}^{2}\right)^{2} \leq 8 \operatorname{lin}_{l \rightarrow \infty}\left\{\left(1-f_{l}\right) \sigma_{l}^{2} / n_{l}\left(n_{l}-1\right)^{1 / 2}\right\}^{2}$.
By Xinkouski's inequality,

$$
\begin{align*}
& \mathrm{Z}\left(\dot{\nu}_{\mathrm{B}}^{2}-\nu_{B}^{2}\right)^{2} \leq\left(1-f_{L}\right)^{2} \\
& \quad\left[\frac{1}{n_{l}}\left\{E\left(S_{l}^{2}-\sigma_{l}^{2}\right)^{2}\right\}^{1 / 2}+\left\{E\left(\dot{\psi}_{l} \dot{\delta}^{2}-\alpha_{l} \delta^{2}\right)^{2}\right\}^{1 / 2}\right]^{2} \tag{C.2}
\end{align*}
$$

Nov,

$$
\begin{equation*}
\lim _{l \rightarrow 0} \frac{1}{n_{l}^{2}} \mathbb{E}\left(S_{l}^{2}-\sigma_{l}^{2}\right)^{2}=2 \lim _{l \rightarrow \infty}\left(\sigma_{l}^{2} / n_{l}\right)^{2} /\left(n_{l}-1\right) \tag{C.3}
\end{equation*}
$$

To establish (C.1) ve only need to shov that

and

$$
\left[\iota^{*} \dot{\delta}^{2}-\ell^{\delta} \delta^{2} \leq\left(\dot{U}^{2}\right)^{2} \dot{\delta}^{4}+2 \dot{\delta}^{2}\left|\dot{\delta}^{2}-\delta^{2}\right|+\left(\dot{\delta}^{2}-\delta^{2}\right)^{2} .\right.
$$

It is easy to shon that

$$
\begin{equation*}
E\left[\dot{U}_{\ell}-\dot{\}}\right]^{2} \leq \frac{1}{\delta^{4}} \mathrm{E}\left(\dot{\delta}^{2}-\delta^{2}\right)^{2}+P\left(\dot{\delta}^{2}=0\right), \quad \delta^{2}>0 \tag{C.7}
\end{equation*}
$$

and

$$
\begin{align*}
& \left.\lim \delta^{4} \mathrm{E} \mid{ }_{l}-\ell\right)^{2} \leq 2 \operatorname{lin}\left(\sigma_{l}^{2} / n_{l}\right)^{2}\left(n_{l}-1\right)^{-1} \tag{C.8}\\
& \text { Using (C.7) and Lemess } 1 \text { and } 2 \text { it follous that }
\end{align*}
$$

$\lim _{l \rightarrow 0} E\left[\dot{v}_{\ell}-\dot{y}_{l}\right]^{2}=0$. Thus, by using (C.6) and Lemas 1 and 2

$$
\begin{equation*}
\lim _{i \rightarrow B}\left[\psi^{-} \delta^{2}-\psi_{l} \delta^{2}\right]^{2}=0 \tag{C.9}
\end{equation*}
$$

Thus (C.4) follows from (C.5), (C.8) and (C.9). Next, ve prove that

$$
\begin{equation*}
B\left(\dot{v}_{B}-v_{B}\right)^{2} \leq 3\left\{B\left(\dot{v}_{B}^{2}-v_{B}^{2}\right)^{2}\right\}^{1 / 2} \tag{C.10}
\end{equation*}
$$

by first showing that

$$
\begin{equation*}
\left(v_{B}-v_{B}\right)^{2} \leq 3\left|\hat{v}_{B}^{2}-v_{B}^{2}\right| \tag{C.11}
\end{equation*}
$$

By an application of the Liapunov inequality (C.10) follous from (C.11).

Pinally, by a second application of the Liapunov inequality, (C.1) and (C.10), Theorem 2 is proved.

references

Carlin, B.P. and Gelfand, A.E. (1990), "Approaches for Empirical Bayes Confidence Intervals," Journal of the American Statistical Association, $85,105-114$.
Ghosh, Y. and Yeeden, G. (1986), "Enpirical Bayes Rstimation in Finite Population Sampling,"Joumal of the American Statistical Association, 81, 1058-1062.
Ghosh, Y. and Lahiri, P. (1987), "Robust Eapirical Bayes Estimation of Yeans from Stratified Samples," Jonraal of the American Statistical Association, 82, 1153-1162.
Yorris, C. (1983a), "Parametric Empirical Bayes Inference: Theory and Applications," Jonrmal of the dmerican Statistical Association, 78, 47-59.

Yorris, C. (1983b), "Parametric Eapirical Bayes Confidence Intervals," In Scientific Inference, Data Analysis, and Robustness, G.E.P. Box, T. Leonard, and C. P. Mu (Eds.), Acadenic Press, New York, 25-49.
Rao, J.N.I. (1980), "Estimating the Common Yean of Possibly Different Noral Populations: 1 Simulation Study," Journal of the Imerican Statistical Association, 75, 447-453.
Rao, P.S.R.S., Saplan, J. and Cochran, M.G. (1981) "'Estimators for the One-Yay Randoe' Effects Yodel with Unequal Error Variances," Joural of the American Statistical Association, 76, 89-97.
Bobbins, I. (1955), "An Empirical Bayes Approach to Statistics," in Proceedings of the 3rd Berkeley Symposiun 0a Hathematical Statistics and Probability (Vol. 1), Berkeley, CA: Oniversity of California Press, 159-163. Serfling, R.J. (1980), Approximation Theorems of Yathematical Statistics, John Viley, Ner York.

