
E S T ~ T I N G  THE FINITE POPULATION ]YJ~ USING EMPI~CIL BAYES ~ H O D S  

Balgobin Nandraa, ~/orcester Polytechnic Institute, ~/orcester, MA 
J.  Sedransk ,  N a t i o n a l  Center f o r  Heal th  S t a t i s t i c s ,  Washington,  DC 

KEY 70BJ)S AND PHR~ES: Small area estimation; Bayesian 
credible intervals;  Confidence intervals;  Uniform 
inte~rability; INOVI estimators. 

DISCUSSION: 

S. I. filler 
Bureau of Labor Statistics, Vashin~ton, D.C. 

Su~ar~ 

Many finite populations vbich are sampled repeatedly change 
slovly over time. Then estimation of f in i te  population 
character is t ics  for the current occasion, g, may be improved 
by the use of data from previous surveys. In this paper, we 
investigate the use of empirical Bayes procedures based on a 
superpopulation model having two stakes: (a) population 
units on the i - t h  occasion are a random sample from the normal 

2 and (b) distr ibut ion vithmean #i and variance ~i '  
F1 , . . .  ,/;g are a random sample from the normal distr ibution 

0 and 62 githmean 0 and variance ~2. Here, the ~i '  are 
assumed to be unknown; this  generalizes the specification 
studied by Ghosh and leeden (1986). Ve f i r s t  make 
large--sa~ple comparisons of the empirical Bayes estimator of 
the f in i t e  population mean on the current occasion ~ith the 
corresponding Bayes estimator and vith several additional 
"natural ~ estimators. Ve also consider empirical Bayes and 
Bayes credible intervals for the f in i t e  population mean. 

1. Introduction 

lany f in i t e  populations vhich are sampled repeatedly usin~ 
large scale surveys change slogly over time..Consequently, 
data from ea r l i e r  surveys can be used profitably to obtain 
improved estimates of f in i t e  population parameters on the 
current occasion. In a similar gay, estimates may be required 
for a par t icular  small area, and information is available for 
other related areas. In example of the former situation is the 
National ~ealth Intervieg Survey conducted annually by the 
National Center for Health S ta t i s t i c s .  There is ~reat 
s t ab i l i ty  over time in the response to variables such as the 
presence or absence of color blindness, acute bronchitis and 
acute digestive systems conditions, number of restr icted 
act ivi ty  days gi thin the past tgo reeks, and self-assessment 
of quality of health.  

To address these issues Ghosh and leeden (1986) used 
mpi r ica l  Bayes (EB) methodology. They assumed a 
nonnY-theory, tvo sta~e l inear model vith equal saaplin~ 
variances. Subsequently, ~hosh and Lahiri (1987) relaxed the 
normality assumption by assuming posterior l inea r i ty  and the 
existence of fourth moments in (1.1) and (1.2) belog. 
Hovever, they retained the assumption of equal sampling 
variances. 

| e re  ge generalize this  research by considerin~ the 
important case of unequal, unknown saaplin~ variances. ~hile 
this  problem specification does not f i t  the ~B p a r a d ~  
exa~l~,  the methods of proof and resul ts  are related to those 
of Ghosh and leeden (1986). 

I t  is assumed throughout that each of a sequence of 
finite populations has been sampled gith -Yi z ( Y i l " ' "  'YiN i) 

denoting the vector of values of the N i units in the 

population on the i th occasion (i = 1 , . . . , / ) .  Also, given a 

sample of n i units  (0 < n i <. Ni) on the i th occasion, le t  s i 

denote the set of units sampled on the i th occasion, 
Ts i = ( ¥ i i ' " "  'Yini )" the vector of values of units sampled on 

the i th occasion and -Ys = ( ! ; I '~Y;2 '""~Y;~)"  the vector of 

values of a l l  sampled uni ts .  
As the basis for in/erence ge assume the superpopulation 

model: 

2 i . i . d  
Yi~,Yi2, --.,~iNil~i,% - N(~i,, ~) (~.~) 

gith independence over i = 1 , 2 , . . . , £ ,  and 
i i .d  

~,~, . . . ,~e.I  0, ~2 "" ~(e,62) • (~.2) 
Our objective is to make ~ e r e n c e  about the current f in i t e  

population mean, 

N l 

7CY.l) : [ Yl~/N~ 
j= l  

un~o~.  Ve proceed by f i r s t  finding the Bayes estimator, eB, 

of 7~.l ) , and then developing an empirical Bayes estimator, 

eEB, by substi tut ing estimates of 0, 62 and ~2 in eB" The 

choice of estimators is f ac i l i t a ted  by the research of lao, 
[aplan and Cochran C1981), henceforth UC, gho investigated 
properties of various estimators in the one--~ay components of 
variance model defined by (1.1) and (1.2). 

Bayes and empirical Bayes point estimators and credible 
intervals for 7(Yl) are defined in Section 2, together gith 

three al ternat ive point estimators that do not require ~2 and 

the ~i to be estimated. In Section 3 ve present the 
asymptotic properties of the EB estimator and interval .  Ye 
conclude Section 3 vith & brief  suaaarT of the results  of an 
~ ensive numerical investi~-~tion of the performance og the 

estimator and interval ghen sample sizes are small or 
coder;re. 

2. Baves. ~moirical Baves and Altemativq Procedures 
2.1 Point estimation 

Vievin~ (1.1) as the sampling model ~nd (1.2) as the prior 

in a Bayesian analysis,  i t  is veil  known Chat, given -Ys' 0, ~2 

and &2, F 1,F 2 , . . .  ,;z{ are independently distributed gith 

~i " N(wi9 + (1"~i)~i '62~i)  (2.1) 
n i 

• here ~i = ~ Yij/ni  and ,i = C,2/ni)l{(&2.Ca~/ni) }. Let 
j-~ 

fi = ni/Ni denote the sampling fraction on the i th occasion. 

Then conditioning on -Ys' it follovs fro= C2.1) that 7(YL) is 

univariate normal vi thaean e B and variance v~ ,here 

es : z {7 (Y l ) IYs }  : Yl- ( 1 - ~ ) . l ( y c o )  (2.2,) 
and 

Thus, under squared error loss, the Bayes estimator of 7(Yt) is 

e s : s(7~.~)IXs) =d the nay.  risk is ~ : vLrCT(X~)IXs)" 

L,t "~:i.: CS~l~i)/CF*Cs~/~i)} ,,h,~,, 
n i 

2 ~ ( ¥ i j d i ) 2 / ( n i . 1 )  Si  : , i = 1 , 2 , . . . , L .  Then a 
j= l  
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pseudo-empirical Bayes estimator of 7(Yt) is e~B vhere 

~ e  = ~ - (~-~ ~) "~ (~-~) • 

D ~ ~  ~i = ( s ~ / h ) / ( ~ + ( ~ / h ) ~ ,  ~ e  p~opo~ 
empirical Bayes estimator is 

eES = Yt - (l-ft)~t(~rO) 

.here 0 and ,~2 are to be determined. Vhereas eE8 oaly 
enters the analysis at an intermediate sta@e, eEB in (2.4) is 
the estimator vhose properties are to be investigated. Note 
that vhen the sampling variances are equal, (2.4) reduces to 
(2.12) in Ghosh and leeden (1986). 

From the resul ts  in ~J[C (1981), ge use as the basis for our 
estimator of 62 the unbiased, ~qO¥1 estimator, ~ :  

r !  

l i=l I' 
i=1 i=l 

l 

~here n . =  I hi" 
i - I  

Proceeding as in Ghosh and Xeeden (1986), ve modify 6~ to 

l 

(2.3) 

(2.4) 

l l 

i=l i= l  
for l.> 4 and take 

~oce that for the case of equal variances ~2 in (2.5) is 
analogous to (2.8) in Ghosh and leeden (1986). 

.~2 and 62 are knovn, the aaxi~u~ likelihood ~ e n  

estiutorof 0 is 
l l 

i=t i=t 

(2.s) 

C2.~) 

vhere the {Ti} are veishted inversely proportional to the i r  
variances. ~ere, ge use 

t t 

~:  i:1 i:~ 

~iiTi / ; : 0 
i=l i=l 

estimator vhen ~2 = O because in this  ease ~i = I ,  

i = 1 , 2 , . . . , ~ ,  and 0 in (2.6) is indeterminate. Observe, 
t hou~ ,  that  

l . l l ni I ai 

~2"0 i= l  i= l  i=1 "=1 

(~.7) 

see lao (1980) for comments about the efficiency of this  
estimator ~hen 82 = O. 

AI astern&rives to e~B in (2.4,) ve have considered three 

estimators of 7(Yl) which do not require estimates of 62 or 

the o'~; i . e . ,  

l l 

el=Yl' e2 = ~ Yi/l and e 3= ~ ni£tY i. (2.8) 
i=l i=l 

Properties of e l ,  e2, and e 3 are easi ly determined since Yi 
2 and $i are independent with 

Ti-s(0,62 2n~1) and 2 - ~ 2 2  . ÷ ~i S i iZni_I/(ni-I ) , i = 1,2,...,I. 

2.2. Credible ~n~erv~Is 
, 62 2 aiven -Ys g' and the ~i '  7(~.Z) has a normal 

dis t r ibut ion vi thnean e B and variance vn2; see C2.2~,b). 
Thus, an exact lO0(1-~)Y. ~O credible interval  for 7(.Y/) is 

• s * za/2~ B (2.9) 
uhere @(za/2) : I - a/2 and @(-) is the standard normal 

2 cum~ative d is t r ibu t ion  function. Vhen 9, 62 and the ~i are 

unknows, ve s u r e s t  using 
4 

eF~ * z./2 VB (2.10) 

,here 

In Section 3 we i n , e ~ a t e  the quality of the interval, 
(2.10), as an a p p r o ~ t i o n  to the byes in te r ,a l ,  (2.9). 

Other authors have considered KB confidence in tervals .  
l o r r i s  (1983 a,b) gave a general def ini t ion of an EB 
confidence in te rva l ,  but also investigated in greater  deta i l  
the existence and construction of E8 intervals  for the ~i in 

2 (1.2) ghen the ~i in (1.1) are equal. He provided esmpirical 
evidence that the in tervals  have approximately the correct 
probabili ty content.  Carlin and Gelfand (1990) have recently 
proposed and studied a potent ia l ly  useful method to improve 
the coverage propert ies  of naive EB confidence in tervals .  
Here, the coverage probabi l i ty  may ei ther  be conditional on a 
summary of the data ( i . e . ,  quasi--Sayes or Bayes) or avera@ed 
over the marginal d i s t r ibu t ion  of the data ( i . e . ,  empirical 
Bayes). Unfortunately, i t  appears from the i r  examples (2.3, 
2.4) that implementation of the i r  aethodolosy for our 

2 unknovn 0 and 62 , specif icat ion,  i . e . ,  unequal unknovn r i ,  

and unequal h i ,  r i l l  be d i f f i c u l t .  

3. Asv~tot ic  Prooercies 

Let e be any estimator of 7(.Yl) ; e may be a func~cion of 0, 

~2. or 62 but not ~. = ( / ~ 1 " " ' ~ ) "  Then the Bayes r isk (r isk 

inteErated over both ~. and Y.) under squared error loss,  

r (e ) ,  is 

rCe) : ~. ~.l~Ce-~(~.~))~ . 

That is ,  a l l  expectations are taken over the u r g i n a l  
d is t r ibut ion of Y obtained froa (1.1) and (1.2).  Further ve 

have as in Lemaa 3 of Ghosh and leeden (1986) that  

rCe) - r(eB) = lgCe -eB) 2 . (3.1) 
Our principal  objective is to prove Theorem 1, vhich 

provides an asymptotic upper bound for r(eEB ) - r(eB). To do 
so, ge firs~ s ta te  three lemmas and then use (3.1).  Our proofs 
are similar in s ty le  to those in Ghosh and heden (1986), but 
the deta i l s  are usually d i f ferent .  Moreover, our proofs tend 
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2 is estimated to be more cumbersome because each of the ~i 

separately.  
All of the resul ts  in this  section will be established under 

the following mild conditions analogous to those used by ~hosh 
andleeden (1988): O< ~2<®, sup 2 ¢2 infn i 2 and 

i>.l ~i = < ®' i>.l = ' 
sup n i = k < ®. Leuas 1 and 2 are easily established. Lena  3, 
i>.l 
used in the proof of Theorem 1, is proved in lppendix I.  

L e g a l  

~2 as ~ - -  ®, where "L 2 means convergence in mean 
square. 
Le~a  2 

~2 a . s . ,  ~2 as ~ --®, where "a.s." means almost surely. 

The following tgo corol lar ies  are i u e d i a t e  consequences of 
Leman 2. 
Corollary 1 

~2 --a's" ~2 as ~ ---+ ®, where ~2 is defined in (2.5). 
Corollary 2 

- &.S .  
= =  l ~ i - ~ i l  --0, as Z --=. 

i= l , 2 , .  ..  ,L 
See (2.3) and (2.4) for def ini t ions.  
Lena  3 

• P 
- -  + as t -  =, +here "p" means convergence in 

probabi l i ty .  
Proo+ 

. p 
Appendix I shows that given ~2 > O, + - -  ~ as 

l -®; and by using Lena  I (or Lemna 2) the resul t  follows. 
We nov state  and sketch the proof of Theorem I.  

Theorem I 
Under the assurptions 

2 < sup 2=¢2 (i) 0 < ~ 2 < . ;  O<¢i . j>_1 ~j < ® ~ o r i : l , . . . , l  

( i i )  i n f n  i = 2  and supn i n k < . ,  
i>t i>.t 

1i,, ,Ce,-eB)2 <_ l i , ,C , - f t )2 ,~ [C l -~ t )2CS~/ ,~ . -1 )2 ] .  (3.2) 

~roof 
By using the Cauchy Schva~ inequality, 

E(eEB-eB) 2 .< E(eEB-e~B) 2 

• ~ ~/~ • ~}~/~ • 
+ 2{E(e~-e~)  } { E ( e E B - e B )  , E(eEB-e  B) • (3.3) 

Nov using the defini t ions of e~B and eEB in (2.3) and 
(2.4) respect ively 

E(eEB-eh) 2 : (1-fL)2E [ (~L-:~)(Yt-O)--~£ (0-8)]2. 
2 Also by the d is t r ibut ional  properties of Yi and S i i t  

follows that  

,)'] 
¢2 <. ~2 + ~... < . .  

Appendix B shovs that E(eEs-eh)2 - -  0 as t - -  . .  The 
resul t  (3.2) follows by applyin~ (3.3), (3.4) and (3.5). 

The bound given by (3.2) can be replaced by other,  sore 

" nt~2/S ~ useful,  bounds. Fi r s t ,  since 1 -  ~ <. 

1in Z(eEB-eB)2 < ~2 l i , ,  (1-f~)2(1--,,/). 

<.,/c,,,-,). 

l i a  ~(e~-eB)2 ~ 2 l i a  (Z-fl)2.~/nl(nr~). 

( 3 . 4 )  

(3.s) 

(3.8) 

(3.~) 

In pr~: t ica l  s i tua t ions ,  the bounds on lim(r(eEB ) - r(eB)} 

= lira E(eEB - eB) 2 may be very small. If 62 is small, the 

bound in (3.e) will be small since (1-fl)2(l-a~) < I for 

any I. Second, writing lira n I = n, ,  the r i ~ t  side of (3.7) 

is O(a,-3), which should be snail in many applications. 
Moreover, one may easi ly  imagine a sequence of surveys or 
experiments with improving precision of measurement so that 
¢~/ul--- 0 as l - - ,® .  In the l a t t e r  case, using (3.7), 

fin E(eEB. - eB~ 2. - 0 and the EB estimator is asymptotically 

optimal in the sense of Robbins (1055) 
To compare eEB with el,e 2 and e 3 "first note that 

z( '~-eB)  2 -  C1-~l)2"~C ~ + ('~/~l)t  (3.8) 
and 

l 

j=t 
+ (z-Cz-~l),, ,C.-2a¢Ig.- Cz-fl),,,lt{,~ 2 + C'~/'~lIt (3.o) 

where a j = 1 - 1  for i = 2  and a j = n j n _  l for i = 3 .  

Using (3.T), and (3.8), limZ(l.~ eEB -eB)2 " < liaE(el-eB)2l-~ 

provided that l i a  n l >. 3. Moreover, using (3.8) and (3.9), i t  

can be shoran that  

Lira E(eEB - eB )2 <. lira ECei-eB)2 for i = 2,3. 

Ve next present asymptotic resul ts  which give conditions 
when the EB credible interval  in (2 .10)wil l  be a good 
approximation for the Bayes interval  in (2.9). 
Theorm 2 

Under the conditions of Theorem 1, 
lira E(~B-VB)2 ~ ~ l i m ( C l - f l ) ¢ ~ / n l C n t - 1 ) l l 2 }  • (3.10) 

The proof of (3,10) is sketched in Appendix C, 
Using Theorem 2 and the Liap~ov inequality, 
1 ~  st ~B-vsl <. 81122114 

l i J  Cl-f~) 1/2¢~/n~/2 (n6-t) 1/4. (3-t l )  

consequently, the width of the estimated H.P.D. credible 
interval  ~ay be close to the width of the true H.P.D. credible 

IH.~M.I~, ve s ta te  and pz~ve ~ro i Ia r l r  3 which foiIovs by an 
application of both Theorems 1 and 2. 
Corollary 3 

Under the conditions of Theorem 1, 

l i a  ~leEo-eB • za/2CPB--~B) I 

- +..  (t-w+) t/2++t/2 ("z-t)-t /4 

+ 31/221/4za/2}~n~-l /2(n~.-1)- l /4  . (3.12) 

By the Liapunov and ][inkovski inequal i t ies ,  

l i= l ~ l e ~  - • B * ~ / 2  ("B - "S) l 

< ( l  in E(eEB-eB)2}I/2+ .,./,,{lira E(~,'..-~B)2] .112 (3.].3) 

CorollarZ 3 ~ollows by substitut~g (3.7) and (3.10) in (3.13). 
From (3.10), (3.11) and (3.12) it is clear that for large ~ the EB 

interval ,  (2.10), will  provide a reasonable approximation for 

the S&yes E.P.D. in terval ,  (2.9), when n l is large or ~ /n~  

is m a l l .  
In concludi~ ve summarize the resul ts  og our numerical 

i n v e n i p t i o a  b ~  ve omit the de ta i l s .  Ve perform a sequence 
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of numerical examples which indicate that when ~ > 20 and 
n>. 20 (n i = n, i = 1 , 2 , . . . , / ) ,  the empirical Bayes point 

e s t i ~ t o r  and in terval  (of the f i n i t e  population mean) are 
reason&hie approximations for  the Bayes estimator and RI~D 
in te rva l  respec t ive ly .  Ioreover ,  WEB is always be t te r  than 

e l ;  and except for three cases (with n = 10) WEB is be t te r  

than e 2. Our r e su l t s  also show tha~ increasing a is more 

p ro f i t ab le  than increasing t .  For example, for  the credible 
in t e rva l ,  i t  is preferable  to have (~ = 10, n = 20) rasher 
than (~ = 20, n = 10) and there are substant ia l  gains by 
havin~ C~ = 10, n = 30) ra ther  than (~ = 30, n = 10). 

IPPEN1)II A: COI~LL'rION OF PIO0~ OF LDDII 3 

~ L O I  >,  1~2 > o} - -0  ~ Z - - . ,  v , > o  

Noting that  a l l  arguments apply ~or - ~2 > O, ve first 

es tab l i sh  the bound in (k.2) for  l 0 -  Of. 
It is  easy to shoe thac 

-1 

(~-~i) <-~z "(i~) -~ "~  s 
i-1 j = l , 2 , . . . , l  

and 
l . l . 

I ~ (~--~)(Y~-~)l <- I ~ (~-;~)(?~-o)1 
i = l  i=1 

- l 
+ ~ ~ l~ i -~ i l  • ~ ~ IYi -a I. (A.~) 

i = 1 , 2 , . . . ,  i=I 

, o . , . , . ,  

l 

• [ C1-.,i)(Ti-~) 
i=t 

. l 

+ ~'x l l " i-~ i } 
"' i=l 

l . 

i= l  
l 

- I I" oo i=1 ,2 , . ,  l i 
"' i=l 

p robab i l i ty  as ~ -. ~. By an arb~ment s imilar  to Ghosh and 
l 

i= l  
bounded in probabi l i ty  as t --.  ,,. I t  follows by Corollary 2 

. ! 

" ~  I ' i '-"il • ~ ~ ITi-~l - P - - o .  ~--.. ¢,t.s) 
i = 1 , 2 , . . l  i=l 

l - 

Since ~ ~ (1-~i)(Yi-#) is an unbiased estinmtor of 0 and 

i=l 
l . 

i -1 
l . 

1 -2--- 0 as t ---- .. Consequently, by (t.~) Z ~ (1-'~i) (?i -0) 
i=1 

l 
and ( ' .3) ~ ~ (1--;i)(Yi 4 )  P - 0 as l ---~ o. 

i=1 
Ye complete the proof by using the d i ~ r i b u t i o n a l  

2 l a x  2 propert ies  of the Sj to show tha t  j = 1 , 2 , . . . , l  Sj is  bounded 

in probabi l i ty  as l ~ ®. 

IPPE~I I  B: COI~~ON OF PIOOF OF TII~iLEI 1 

• 2 
E(eEB - e  EB) ~ as l --.®. 

Proof 
Like Ghosh and Ieeden (1986) we show that  

( : ~ e )  (vl-°) - Am(L°) _ r _  o ~ t - - - .  
and the sequence, 

{ [('l-'~) (Tl-o) - ;I(Lo) ] 2}, 
is uniformly in tegrable  (u . i . )  ; see also Ser~ling (1980, 
p. ~s). 

Now 
,b  

I ¢;~-~t)¢Tl-°) - ;l(?-0) I 
, b  

S~ce IYl-o; is  bounded in probabi l i ty  as l - - .  ®, i t  

fo l lovsby  Corollary 2, Le--a 3 and (B.1) that  

C,r.~)CVl-o)-~eC~-o)__ - = ~  o ~ l --®. 
In the res t  of Appendix B we es tab l i sh  that  

{[(;~-~l)(Vl-o) -;l(Lo)]2I ~s ~.~. No,, 

[(,.,c-,~) (?co) - ;~(Le)]  2 .< 2((?l-o)2+(Le)2 t. (s.2) 

Iron Ghosh and leeden C1986) {(TI-O)2 } is u . i . ,  so ve need 

only show that  (~-O)-- 2 is  u . i .  There are two cases. 

F i r s t ,  suppose that  ~2 = O. Then 

(~..o12 _ ni ~i 
i--I 

<®; (s.3) 
i l  1 

see Ser~lin& ($980; p. . Denotin~ the vector of estimators 
of ~2 by.S 2 ~ 2 . . ,S~) ' ,  . : (S 1,S2,. 

ni I ni 

i I i=l  

No~ by the d i s t r i b u t i o n a l  proper t ies  of {~i '52}'  given S 2, 

U s ~  (S.~), 

ni 2 

i-~ s i ] 1 " ]  ti-~ 

(s.5) 
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4 "' ]] n i 2 [~2 2 ~ 2 
= 2 s i /n i )  / < 2 < , .  

i l  i i  

Thus the f i r s t  tera in (B.4) is bounded. Since 

2 

the second term in (B.4) is bounded. 
In the second case " ~2 > O. Then 

(9.-0) 2 : (l--~i)(Ti-O)/ ~ (l---~i) . After sole algebrs 
i=1 i=l 

i t  follovs ~h~ 

(t- '~i)(~'i-~)/ [ (1"-~ i) 
i - I  i l l  

< +(i~,) - t  ~.~ ~ [ ( ~ i - ~ )  ~. (s.~) 

2 i st¢2 S ? 
Also, n x  <. 2-- V, ,here Y - Z~_ 1, and "st" means 

stochastically.  Thus, by (B.8) let t ing U~ = ~ ~ U i ,  ,here 
i - I  

U1,U2,...,U ~ are i . i . d  1:~, 

i=I i=I 

By SLLN, U~ a . s .  1 as ~ - - -  s. I t  folloes by Lena~ 2 that 

[1÷,2,/2~,.] 2 a s  [ l ] U~ t+,,'~v.~ ~ as ~ - - . .  

BUt since ' - Z ~ _  I,  k < . ,  ' [ I+ '2 ' /2 '2 ]2  < ®. I t  s+f ices  tO 

shoe that 

{(+ ,/~ ~, [+ / , ] } o  
see Ser~lin~ C198o; p. 15). 

Non i t  La e a ~  to shoe that  

• ~1~ ~} 
,4 ~(v~EC~/~):~ct}" 

AppLying Holder's ineqnxlity to each term on the riKht-haad 
side of (B.9), 

r r 2"~ 2 

'{ '+rr'+]m+LLTJ r jjtl] <{+(v~)}~/;LL~Jc c]  j • 

By linkovski 's inequality and usin S ~lJ~ " X~, 

(s.s) 

(B.9) 

(B.m) 

Since U~ a . s .  1 as ~ - . ,  there exists ~ f ini te  real nuber  

I s.C. sup U~ .< A &.s. Thus by (B.11), 

lim~ U~-I  < l [ l i m ~  - I  
~-~ L~-~ 

and by LeJmas I and 2 

l i lE  U l - 1  =0. (B.12) 
b-I 

I s i l i l ~  azg~ent shovs t l~ t  
2 2 

BuC since Y " Z2_l, E(V r) < ~ for every f ini te  r > O, and 

(s.s) ~oZlo~s ~ro, (s.9)-CS.z3). 
LPPD[DH C: ?lg0F Or 1~A]I~I 2 

~ '  ~(;B - ~s) 2 -< 6~  u.[(~-+~),~/~(~c~) ~/2} 
t-~ L-~ L 

Pmof 
First ge shou that 

-- . 1ii  ,,¢2e/nl(nL-l)I/22 ~-,(;I ¢2<, {c~-,,) }. c~.~) 
b~ l-,, 

By ii~JEo,ski" s inequality, 

z(;~-~]) ~ <. (~-~)~ 

NO,, 

To establish (C. 1) ,e only need to shoe thAI 
~-.li" ~ ( ~ 2  _ ,~a~) ~ .< ~ ~i,(,~/,~) 2 / ~ . +  (~_t) . c  (c.4) 

No,, 

A 

+ ~C;~_,~) ~, (c.~) 

I t  is easy to shov that 

and 

~ ,  #ml ;+.+~1 = .< = t~,(,~/~)=C~ct)-*.  CC.S) 
UsinK (C.7) mud Lmms ~ and 2 i t  follovs ~xxt 

mad Le l l ~  1 and2 

2 
l i l l [ ;  ~ 2 , . ~  L --:, 2 l , ,  - 0 .  (C.9) 

Thus (C.4) fol lo,s. froa (C.5), (C.8) and (C.9). 
Next, ee prove tb~t 

by f i r s t  shovin K that 

( ; , - , , ) '  .< ~1;~ -,,gs • ( c . . )  
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By an application of the Liapunov inequality (C.lO) follovs 
~ro= (C. tl). 

Finally, by a second application of the Liapunov 
inequality, (C.I) and (C.I0), Theorem 2 is proved. 
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