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Summary

¥any finite populations vhich are sampled repeatedly change
slovly over time. Then estimation of finite population
characteristics for the current occasion, ¢, may be improved
by the use of data from previous surveys. In this paper, ve
investigate the use of empirical Bayes procedures basedona
superpopulation model having two stages: (a) population
units on the i-th occasion are a randoa sample from the normal

distribution vith mean » i and variance 03, and (b)
Byre-eshhy area randoa sample from the normal distribation

with mean 4 and variance 62. Here, the azi, g and 62 are

assumed to be unknown; this generalizes the specification
studied by Ghosh and Needea %1986) . Ve first make
large—sanmple comparisons of the empirical Bayes estimator of
the finite population mean on the curreat occasion with the
corresponding Bayes estimator and vith several additional
"natural® estimators. Ve also consider empirical Bayes and
Bayes credible intervals for the finite population mean.

1. Introduction

Yany finite populations vhich are sampled repeatedly using
large scale surveys change sloely over time. Consequently,
data from earlier surveys can be used profitably to obtain
improved estimates of finite population parameters on the
current occasion. In a similar vay, estimates may be required
for a particular small area, and information is available for
other related areas. An example of the former situation is the
National Health Interview Survey conducted annually by the
National Center for Health Statistics. There is great
stability over time in the response to variables such as the
presence or absence of color blindness, acute bronchitis and
acute digestive smens conditions, number of restricted
activity days wvithin the past two veeks, and self—-assessment
of quality of health.

To address these issues Ghosh and Needen (1986) used
empirical Bayes (EB) methodology. They assumed a
normal—theory, tvo stage linear model vith equal sa-pli.ng
variances. Subsequently, Ghosh and Lahiri S1987) relaxed the
normsality assumption by assuming posterior linearity and the
existence of fourth moments in (1.1) and (1.2) below.
However, they retained the assusption of equal sampling
variances.

Here ve generalize this research by considering the
important case of unequal, unknown sasmpling variances. Vhile
this problem specification does not fit the EB igm
exactly, the methods of proof and results are related to those
of Ghosh and Needen (1988).

It is assumed throughout that each of a sequence of £
finite populations has been sampled vith 1= (Tigr--- Tin )

i

denoting the vector of values of the N; units in the

population on the J'.th occasion (i=1,...,4). Also, givena
sasple of a; umits (0< n; ¢ Ni) on the ith

denote the set of units saapled on the ith occasion,
X = (Yn,. .. ’Yin-)' the vector of values of units sampled on
i i

occasgion, let s i

the i*B occasion and 1e= (x;x,x;z, ces ,x;t) # the vector of

values of all saspled units.
.odAslthe basis for inference ve assume the superpopulation
el:
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o i.iud .
YigoYygeeeo Vg Iog0ry = Mlagoey) (1.1)

with independence over 1. =1,2,...,, and

2 i.i.d 2
”1'“2"“’“!.”'5 ~ N(9,5%). (1.2)
Our objective is to make inference about the current finite
population mean,
N

10 = ) Yy5/%,
j=1

vhere 4, 5% and 52 s (vf,. .. ,aﬁ)' are assamed to be fixed but

unknown. Ve proceed by £irst finding the Bayes estimator, eg,
of (Y l) , and then developing an empirical Bayes estimator,

epny by substituting estimates of 4, 52 and 52

in ep. The
choice of estimators is facilitated by the research of Rao,
Kaplan and Cochran (1981), henceforth RKC, vho investigated
properties of various estimators in the one—vay components of
variance model defined by (1.1) and (1.2).

Bayes and empirical Bayes point estimators and credible
intervals for 7(Y,) are defined in Section 2, together vith

three alternative point estimators that do not require 4% and
the IE to be estimated. In Section 3 ve present the

asymptotic properties of the EB estimator and interval. Ve

conclude Section 3 with a brief sussary of the results of an

extensive numerical investigation of the performance of the

!l.;desttuator and interval vhen sample sizes are small or
erate.

2. Baves, Empirical Baves and Alternative Procedures
2.1 b AL1C3

Vieving (1.1) as the sampling model and (1.2) as the prior

in a Bayesian analysis, it is vell known that, given Y

~g? " 4

and 62, ByrBgse.. by are independently distributed vith

By o 8w 0+ (19T, 8%0) (2.1)

oy

2
vhere ¥, = 2 Yij/ni and v; = (ri/ni)/{(52¢(v§/ni)}. Let
j=t
f; =2./N, denote the sampling fraction on the iR occasion.
Then conditioning on Y., it follows from (2.1) that 7(Y,) is

univariate normal vith mean ey and variance vg vhere

eg = B{1(Y) Y} = ¥, = (1—£ )0 (Y ~0) (2.23)
and
v = rax(AY)IY,) = (-0){t, + (t)1~ple’fn,  (220)

Thus, under squared error loss, the Bayes estimator of "(XL) is

e = E('r(XL) Ixs) and the Bayes risk is vg 2 m(7(!() lxs) .

Let 3; = (53/0,)/{8%+(53/n,)} vhere

o

8.3 (Yij'Yi)zl(ni'l)’ i21,2,...,L. Theaa
ja1



pseudo—empirical Bayes estimator of 1(XL) is eEB vhere

epg =T, - (1~£)5,(Y,-9) . (2.3)
Defining i = (S?/ni)/{52+(53/ni)}, the proposed
empirical Bayes estimator is
epp = YL - (l‘ft)"t(?L“”) (2.4)

vhere § and 3° are to be determined. Vhereas eEB only
enters the analysis at an intermediate stage, epp in (2.4) is

the estimator vhose properties are to be investigated. Note
that vhen the sampling variances are equal, (2.4? reduces to
(2.12) in Ghosh and Needen (1986).

Froa the results in RKC (1981), ve use as the basis for our

estimator of §° the unbiased, ANOVA estimator, Ji:
¢

DERUEIE S M)y
i=1
¢ ¢
=1 (=aThs}/ § ap (-l
i=1 i=1

¢

7 1.
i=1
Proceeding as in Ghosh and Yeeden (1986), ve modify Ji to

4
- =1 2
2= [(4—1)(4-3)‘1.2 UL A)
¢ ¢
- 2 (i—ninfl)sf}/ 2 ni(l—nin_'l)
i=1

i=1
i=t

32
5‘=

vhere n_

for £> 4 and take

5% < max(0,52). (2.5)
Note that for the case of equal variances §° in (2.5) is
analogous to (2.8) in Ghosh and ¥eeden (1988).
Vhen !2 and 52 are known, the maximua likelihood
estimator of 4 is
. ¢ ¢
bo= ) (1-9)¥/ ) (1-v;) (2.8)
i=1 i=1

where the {?i} are veighted inversely proportional to their
variances. Here, ve use

a8 /Y a-; 850
& .

i = i=1 (2.7)
L n. ¢ . 2
i i p
) 3 =0
i=1 Y1 i1 Y

vhere §; = (Sg/ni)/{.52+(sg/ni)}. Ve need a separate
estimator vhen 32 =0 because in this case :'i s1,

i=1,2,...,L, and 4§, in (2.6) is indeterninate. Observe,
though, tthat

- z - l n. ‘ n.
L JO—¥fy/J )= 5t/ ] 3
240 i=1 i=t =151 =1 i

see Rao (1980) for comments about the efficiency of this

estimator vhen §°=0.
As alternatives to ¢pp in (2.4) ve have considered three
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estimators of 7(&) vhich do not require estimates of 82 or

the c?_- i.e.,
4
e, =¥, e-= ZYi/l and e, =
i=1

{
2 nin'.'lYi.
i=1

(2.8)

Properties of e1s &9, and 4 are easily determined since Yi

and SE are independent with
Y, 8(8,62+ 62 n7t) and 53~ afxﬁi_l/(ni-n, i=1,2,...,0

2.2. Credible intervalg
Given Xs' a, 62 and the fi, 1(!‘) has a normal

distribution with mean ep and variance v§; see (2.2a,b).

Thus, an exact 100(1—a)% HPD credible interval for 17(Y,) is
eg * 2,/9%p (2.9)

vhere Q(za/z) =1-4a/2 and ¥(-) is the standard normal

cumulative distribution function. Vhen 4, 52 and the v? are

unknovn, ve suggest using

epp * 29 ;B (2.10)

where

wp={{0-£ £r -8 (13| 53m, }a 1)/ (a2)] .

In Section 3 we investigate the quality of the interval,
(2.10), as an approxiastion to the Bayes interval, (2.9).

Other anthors have considered EB confidence intervals.
Yorris (1983 a,b) gave a general definition of an EB .
confidence interval, but also investigated in greater detail
the existence and construction of EB intervals for the 4; in

(1.2) vhen the r% in (1.1) are equal. He provided empirical

evidence that the intervals have approximately the correct
probability content. Carlin and Gelfand (1990) have receatly
proposed and studied a potentially useful method to improve
the coverage properties of naive EB confidence intervals.
Here, the coverage probability may either be conditional on a
summary of the data (i.e., quasi—Bayes or Bayes) or averaged
over the marginal distribution of the data (i.e. , empirical
Bayes). Unfortunately, it appears from their examples (2.3,
2.4) that implementation of their methodology for our

specification, i.e., unequal unknowvn c%, unknown # and 62,
and unequal n;, will be difficult.

3. A icp :
Let e be any estimator of 1(&); e may be a function of 4,

02 or 62 but not

integrated over both 4 and Y) under squared error loss,

= (/41,. . ,p‘) . Then the Bayes risk (risk

r(e), is 2
£(e) = By By (et
That is, all expectations are taken over the marginal
distribution of Y obtained from (1.1) and (1.2). Purther ve
have as in Lemma 3 of Ghosh and eeden (1986) that
r(e) —r(eg) = B(e —ep)? .

Qur principal objective is to prove Theorem 1, vhich
provides an asymptotic upper bound for r(ezn) -r(eg). Todo
80, ve first state three lemmas and then use (3.1). Our proofs

’

are similar in style to those in Ghosh and ¥eeden (1988} but
the details are usually different. Noreover, our proois tend

(3.1)



to be more cumbersome because each of the vg is estimated

separately.
All of the results in this section vill be established under
the folloving nild conditions analogous to those used by Ghosh

and Needen (1986): 0 < < ®, Sup v?_ =< o, infn; =2, and
ixn i

supa, = k < o. Lemmas 1 and 2 are easily established. Lemma 3,

i1

used in the proof of Theorea 1, is proved in Appendix A.

Lemma 1!.2
53

square.

Lesma 2

82 as t— », vhere "I.2" means convergence in mean

.g 88 o
&, — §° as L — o, vhere "a.s." means almost surely.
The folloving tvo corollaries are immediate consequences of

Corollary 1
.na.8. -
52 24 as L—a, vhere 5° is defined in (2.5).
Corollary 2
- a.s.
max |i.—ii| ——0, 28¢ —a.

i=1,2,...,Lb !
See (2.3) and (2.4) for definitions.
Leama 3

. P

§— ¢ as L — o, vhere "p" means convergence in
probability.
Proof

- - P
Appendix A shovs that given 62 >0, 8— 4 as

¢ - o; and by using Lemma 1 (or Leama 2) the result follovs.
Ve nov state and sketch the proof of Theorem 1.

Theoren 1
Under the assuaptions

(1) 0< &% <a; 2

0<¢?<supc§=: <o fori=1,...,¢

151
(ii) infni=2 and supn; =k<a,
in i

2
s -

Lin E(egg-ep)? ¢ 11.(1-fL)%&%s[u-aL)’(sf/af - 1)2] . (3.2)
Ll [ 229 L
Proof

By using the Cauchy Schvarz inequality,

!2(e£B-eB)2 < E(e}:‘n-efm)2

+ 2{E(epy-eb) V2 {E(egep) 1 /2 + Blelp-ep®.  (33)

Nov using the definitions of epp and epp in (2.3) and
(2.4) respectively

E(egg-epp)? = (1~ 2E((3y-5) (1,-0 -5, (3-012.  (3.4)
Also by the distributional properties of Yi and Si it
follows that

2
2 ! :
B(epy-ep)? = (1-£)3 4, i% 21—y sf/ef - 1)7]
2
¢+ i-ca. (3.5)

Appendix B shows that E(en-ein)2 0 ag L -—as. The

result (3.2) follovs by applying (3.3), (3.4) and (3.5).
The boum? given by (3.2) can be rep a'cgd by) othel.('. -gte

useful, bounds. First, since 1 - ;'. ¢ nlﬁzlsi

Lin B(egg-ep)? ¢ af Lin (1 PR PR (3.8)
Second, since 3[(1‘:'02(53/’?. -1)2] $2/(a,1),
lin B(egy-eq)? 2 Lin (1 v a ). (3.7)
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In practical situations, the bounds on iin{r(em) —r(eg)}
-
- Lia B(egg - eg)® may be very small. If §° is small, the
—D

bound in (3.6) will be saall since (1-£,)%(1—u,) <1 for
any {. Second, writing }in n, =1y, the right side of (3.7)
o

is O(n:s) , vhich should be small in many applications.

Yoreover, one may easily imagine a sequence of surveys or
experiments vith improving precision of measurement so that

ti/nl — 0 as {—a. Inthe latter case, using (3.7),
%in E(epp - eB)2 =0 and the EB estimator is asymptotically
-

optimal in the sense of Robbins (1955).
To compare epp vith e,y and eg first note that

B(e, —ep)? = (1-£ )22 (6% + (¢2/n))} (3.8)
¢
Bleg—ep)®= § a3e? « (F/m))}
j=t
s (1=(1~£ Y2211 - (£ o Ho + (2n )} (39)

vhere a.jzl"l for i=2 and ajznjnt1

Using (3.7), and (3.8), Lin E(egy —ep)? ¢ LinB(e, —ep)?
(2 l
provided that }in 1,2 3. Noreover, using (3.6) and (3.9), it
-

for i=3.

can be shown that
Lin E(egg — 65)? ¢ LimB(e;—¢y)? fori=2,3.
{~ {~

Ve next present asymptotic results vhich give conditions
vhen the EB credible interval in (2.10) will be a good
approximation for the Bayes interval in (2.9).

Theorenm 2

Under the conditions of Theoresm1, 2

Lin E(sy-vp)? ¢ 82 Lin{(1~f,) o3/, (n,-1) 23, (3.10)

i (2

The proof of {3.10) is sketched in Appendix C.
Using Theorem 2 and the Liapunov inequality,

Lin Blig-vy| ¢ 61/%2/4

L
Lin (16200} a0/, (3.11)
~

Consequently, the width of the estimated 1.P.D. credible
interval may be close to the width of the true H.P.D. credible
interval for 1(1'.).

Tinally, ve state and prove Corollary 3 vhich follows by an
application of both Theoress 1 and 2.
Corollary 3

Under the conditions of Theorea 1,

{i- Elegg-eg & 2,/9(7p—vp)|
< 21/2]‘,2(1—f‘) 1/2{(1_f‘)1/2Ut1/2 (nl—l)—l/4

-1/2

+ 31/221/42',/2}0‘% (nl—l.)—"/4 . (3.12)
Proof
By the Liapunov and Kinkowski inequalities,
linBlegp —ep* 33/2“’8""3”
{ . .
¢ {LinE(eggeq) 12 5, jpllim E(ivg)?}/ (3.13)
i loon

Corollary 3 follows by substituting (3.7) and (3.10) in {3.13).
Fro:?(:!.lo). (3.11) and (3.12) it is clear that for large [ the EB

interval, {2.10), vill provide a reasonable approxmti;n for

the Bayes .P.D. interval, (2.9), vhen 1, is large or c‘/nt

is small.
In concluding ve summarize the results of our numerical
investigation but ve omit the details. Ve perform a sequence



of numerical examples which indicate that vhen £ 20 and
520 (n =n,i=1,2,...,0), the eapirical Bayes point

estizator and interval (of the finite population aean) are
reasonable approximations for the Bayes estimator and qPD
interval respectively. Yoreover, 53 is alvays better than

Ut and except for three cases (vith a = 10) 5 is better
than e,. Our results also show that increasing n is more

profitable than increasing {. For example, for the credible
interval, it is preferable to have (£ =10, n=20) rather
than (£ =20, n=10) and there are substantial gains by
having (£ = 10 n = 30) rather than (£ =30, n=10).

APPENDIX A: COMPLETION OF PROOF OF LEDDA 3
- “9
P{]0-9] >¢|6°>0} —0asl{—a, Ye>0
{(j ! } ,

Noting that all arguments apply for 32 >0, ve first

establish the bound in (A.2) for |0 9.
It is easy to show that
-1

2 (1)

<plee (7 52
i=1 ﬂ[ j=1’;a;f“,l J]
and
¢ ]
1T s (-0 <1 T (-0y) (40|
131 1—1
¢
i “’l ZX'Y"’l (1.1)
=1,2,...,¢ io1
i T2, ~1 2
'{% § (Y,
i=1
. ¢
v.-0|}. ‘
" gt 2,...,:" » i zi§1l i "'} (A.2)

¢ .
Second ve show that both %I z (1)) (Yi—ﬂ)l and
i=1

- 14

v -c 2 [¥;-¢] converge to zero in
1,2, te

probability as £~ t' By an argument similar to Ghosh and

Needen (1986), 2 |¥;~¢| bas finite expectation, so it is

b&unded in probabxhty as {—o. It follovs by Corollary 2

¢
Iu—v |- , Y 19,0l B0as t—a.  (4.3)
i=1 2,.. =1
L
Since % 2 (1-9;)(Y;~4) is an unbiased estimator of 0 and
i=1

var{} § (1—v;)(T;~9)} —0 as £—a, it follovs that
i=1
} 3 (—;)(¥;~8) 2—0 as £—a. Consequently, by (A.2)
4
¢
and (4.3) z ): (1-.. )(1;~0) —2—0as ¢ —a.

Ve co-plete the proof by using the distributional
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properties of the S§ to shov that is bounded

max Sg
j=1,2,. ]
in probability as {~w.

APPENDIX B: COMPLETION OF PROOF OF THEQREX 1
E(epg—e'pp)’ —0 as £ —a.

Proof
Like Ghosh and Meeden (1986) ve showv that

(vgep) (T=0) =9, (0—0) 20 a3 t—o
and the sequence,

{00 (T =0) =4, (8-0))%},

is uniformly integrable (u.i.); see also Serfling (1980,
p- 15).
Now

(69 ) (T =8) = 5, (=0) |

¢ max
i=1,2,..,2
Since |V,~#] isbounded in probabilityas {—s, it
follows by Corollary 2, Lezma 3 and (B.1) that
(90} (V=) (6-0) —B—0 as ¢ —o.
In the rest of Appendix B ve establish that
{[(0,=v,) (1,~0) = v, (8-0)1%} isu.i. Nov,

|Zi-2i|}|vl—a| Ny (B.1)

((vgvp) (V) =0, (8-012 <2{(T -0 2o (8-0)%}. (8.2)
Froa Ghosh and ¥eeden (1986) {(Y‘-a)z} isu.i., so ve need

only show that (3—0)2 isu.i. There are tvo cases.
First, sappose that §220. Then

¢ t 12
el b B .
(+-9°=1} —5(¥,-9)/ § ~gt . It suffices to shov that
i=t 5§ i=1 5%
¢ ag ¢,
1) % 0/ = -5 <a; (8.3)
i=1 x i=1

see Serfling (1980; p. 13) Denoting the vector of estimators
of ¢ by 5%=(s3,53,....5%)",

¢, ¢
Y ] gé(Yx 0/} = ‘2
i=1 9§ i=t 1
X 2 4
¢ ¢
n. n.
=8 fvar{ § H(T,-0} |s? ]/ § =
2 v3 - )
1 =S i1 5%
A 2,2
B yjvar i “-§(?.--o)|s2 E -;]] . (B.4)
=L =t si : i 1=ls

Novw by the distributional properties of {Y i,Si}, given §2,

¢ .42
2 -2(7 -9 - N[O, ) [g.j,] [52+(¢§/ni)]].
i=t “i

(8.5)
i=l x
Using (B.5),
1.0} | e
vari{ § 1( WS L 32
i=l 1 izl si




¢ . ¢ 2 A
= 1 . 1 7
2 Zl[s] [a (a/n)]l [2 57] <2[a ] <a.
i= i=1
Thus the first term in (B.4) is bounded. Since
¢ e 12
w{ U 52}/[ ) 7] <[] <o
i=1 5 i=1 5§

the second term in (B.4) is bounded.
In the second cage §° > 0. Thea

¢ ¢
(La)2={z (1) (T;-0)/ § (1—31)] . After some algebra

i=1 i=1

it follows that

) 2
[ § (1) (T,-0)/ 2 (1—; )}
i=1

i=1
5% 21 : 2
t[n—:'” 71 0-0°

i=1

aax
i=1,2,..,

32 st o
rv vhere V. xk 1 and "st" means
L
stochastically. Thus, by (B.8) letting U‘=-ll z U;, vhere
i=1

s[1+('63)" (8.6)

Also,
i=1,

max
2,...,4“

U, Uy,eee,U, azeiind x"{.

¢ ¢ : st 2 a2
[z (1-.. )(¥-8)/ ) (1—v; )] s[s’i—] [p#maf] T,. (8.7)
=1 i=1

By SLLYN, U‘ ~2:3:11 as { — . It follovs by Lemma 2 that

[1+¢2V/262] 7, Rt [1+¢27/252] as L—a.

2
But since V.x2_,, k< a, E(1+e%7/26%) <. It suffices to
show that

Lin 1:{(1\».%/252 )20, - (1+e?v/24%) } 0; (8.8)
see Serfling (1980; p. 13).
Now it ia easy ta show that
2
{[1 *—-!J Ul [1 +§;!-Y] }
= (¢ /62R(V (6418201 + :? B2 [(%/6 ). (BY)

Applying Holder’s inequality to each term on the right—hand
side of (B.9),

l‘[’ﬂ%zz] “e-1]}|s[z<vz)]1/z[x[[§]ut _1}2}1/2

and
() 12l () 12 1/2
‘[V [[}’;ﬂ Url]HS{E(‘A)} [H[;zj 1] } . (B.10)

By Minkowski’s inequality and using £U, " x%.

{pe -]

(8.11)
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Since Ut 2:8: .1 a3l ~a, there exists a finite real nuaber

As.t. :upU‘gA a.s. Thus by (B.11),
>t

e 2 /2
2] 2
1ag||5T,-1] <a 111!26 -
o ||5,) la
and by Leamas 1 and 2
.'52 2
lin Bj | =T, -1} =0. (B.12)
o |6
A siailar argument showvs that
r¢.a2 2
. g
liaBl|=| TU,-1f =0. (8.13)
= (5

But since V~ 13_1, B(Y") <& for every finite r >0, and
(B.8) follows from (B.9)—(B.13).

APPENDIX C: PROOF OF THEOREX 2
R 2 . 2 1/2
lin B(vp — —
‘u (vg—vg)“ <642 }u{(l £,)ey/n,(a 1) }

Proof
Pirst ve show that

. 2
Lin B2 - D)2 ¢ 8 lin{(l—f Do, t-x)l/z} . (€.1)
b [
By Yinkowski‘s inequality,
2(i2-2)? ¢ (1-£,)?
1 o2 222 o2 2 9)l/2?
[q{z(st-«t) } ’{z(ut.s -9 } ] ) (.2)
Now,
lu—!E(S‘—v‘) =2}i‘:(13/n£)2/(nt—1). (€.3)
To estabhsh (c.1) ve only need to shov that
{n E(u'_é —UL5 ) <211-(1‘/n‘) /(nl—l) (C.4)
Now,
C az-a‘.sz] § (8,82 52)2 - 2623, - P
+64(0£—ul) , (C.5)
md - -
(0,820,212 ¢ (oo 2281825002692 (c.o)
It is easy to showv that
. 142 . 3
E[u‘—ot] < %x(&f-&’)’w(&’m), 250 (.7
ud -
lin 80 ,~v,)? ¢ 2 Lin(e?/2 )2 (a,~1) 2. c.s
‘- ! f"() l.'( i () ((‘) (c.8)

Using (C.7) and Lemmas 1 and 2 it follovs that
2
lim E[vt ""l] 2 0. Thus, by using (C.6) and Lemnas 1 and 2

l-»

again,

. 42
linB [ulﬁz - .‘52] 0. (€.9)
t~
Thus (C.4) follows fron (C.s), {C.8) and (C.9).
Next, ve prove tha
B(vg - vp)? ¢ 3 (BGE =) )/? (€.10)
by first showing that
(rg-vp) 2 S 312 - i1, (C.11)



If!y an&ppli.)cation of the Liapunov inequality (C.10) follows Yorris, C. (1983b) , "Parametric Eapirical Bayes Confidence
rom (C.11).
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