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ABSTRACT (n-1)riTrj 
7ri°j = n__}~ (Tri+7rj). (4) 

The variance and two estimators of variance of the Horvitz- 
Thompson estimator were studied under randomized, variable 
probability systematic sampling. Three bivariate distributions, 
representing the populations, were investigated empirically, with 
each distribution studied for three correlations of the response 
variable, y, and auxiliary variable, x. The Horvitz-Thompson 
and Yates-Grundy variance estimators were compared based on 
confidence interval coverage, root mean square error, and 
proportion of negative estimates. The two variance estimators 
performed equally well except in some high-correlation 
populations, where the Yates-Grundy estimator had smaller root 
mean square error, and the Horvitz-Thompson estimator had a 
few negative estimates. A comparison of the precision of 
variable probability to equal probability sampling was also 
made. As expected, the gain in precision of variable probability 
over equal probability sampling was greatest when the 
correlation between x and y was high, and the gain was reduced 
or absent when correlations were lower. 

1. INTRODUCTION 

In a finite universe of size N, assume that a response variable 
of interest, y, and an auxiliary variable, x > 0, are defined for 
each element of the universe. The sampling design investigated 
is randomized, variable probability systematic (hereafter vps) 
(Madow, 1949; or see procedure 2 of Brewer and Hanif, 1983). 
Let 7r i denote the inclusion probability of the i th population 
element, ~rij denote the pairwise inclusion probability of the i th 

and jth population units, and T u =  £yi/Tri denote the Horvitz- 
i=1 

Thompson estimator of the population total, Ty. 

Two estimators of V(~'u) , the variance of ~'u' are commonly 
used: 

n (Trij-TriTrj~yiy j 

i=1 i=l j  ~: i 

(Horvitz and Thompson, 1952), and 

= 1 £ £ fTriTrj-Trij) (~. _ yj~2, (2) 
V y c  i=lj  ¢ i \ 7rij \ _ ,  7rj] 

(Yates and Grundy, 1953; Sen, 1953), where the summations are 
over elements in the sample. Each variance estimator requires 
calculating the 7rij's. The true 7rij's are difficult to obtain for 
randomized, vps sampling, so in practice, many investigators use 
an approximation formula, such as 

(n -1 ) r i r j  (a) 7rh; --  N 

(Hartley and Rao, 1962). 

Investigation of the behavior of the two variance estimators 
was motivated by a validation study of the variance estimation 
methodology used in the National Surface Water Surveys 
(NSWS) (Overton, 1985; Messer et al., 1986). The Horvitz- 
Thompson variance formulation was necessary in the NSWS, but 
all population 7r ' s  were not available, so an alternate 
approximation to (3) was prescribed by Overton (1985): 

A useful analytical comparison of variance estimators 
computed with approximation formulas (3) and (4) was not 
tractable. Simulation was the obvious approach to validation of 
the Horvitz-Thompson variance formula, used with 
approximation (4), in the context of the NSWS. The estimator 
vyG is usually claimed superior to VHT (Cochran (1977, p. 261)). 
Empirical studies have shown VHT frequently results in negative 
estimates, and that the sampling variance of VHT is much larger 
than that of vyG for many of the populations studied (Rao and 
Singh, 1973; Cumberland and Royall, 1981). However, Stehman 
and Overton (1987) demonstrated that these advantages of vyG 
are restricted to certain kinds of populations. 

A strategy to bridge the gap between special case empirical 
results and a complete theoretical solution was implemented by 
the "population space" assessment described in the next section. 
The population space provides a basis for general understanding 
of properties of estimators in finite population sampling. We 
advocate this approach as a general validation method in finite 
population sampling for cases in which analytical results are 
intractable. 

2. DESCRIPTION OF THE POPULATION SPACE 

Three families of populations were studied. The STREAM 
family represented real data, while the GAMNORM and 
BIGAMMA families were generated from known probability 
distributions. Within each family, three different subfamilies 
representing low, medium, and high correlations between the 
response variable, y, and the design covariate, x, were studied. 
All populations within a subfamily were created from a single 
base population by adding or subtracting constants to x and/or y 
of the base population. Thus a subfamily consisted of 
populations with the same "cloud" of points shifted to various 
locations in the (x,y)-plane. Members of a subfamily have 
V x=Vu, where V x and V u are the finite population variances of 
x and y, respectively; the same Vy; and the same correlation 
between x and y. Populations in a subfamily differing by an 
additive shift in the x's have different inclusion probabilities. 
The inclusion probabilities are unchanged under additive shifts in 
the y's. Scale invariant assessment of estimator properties was 
obtained by locating populations within the population space by 
the standardized centroid, (:K', f~'), where X'=:K/~-~x= 1/cv(x), 
~"=Y/ ,V~u= 1/cv(y), and cv denotes the population coefficient 
of variation.~'~ The population space structure is summarized in 
Table 1. 

The STREAM82 base population consisted of 72 of the 100 
units from the National Stream Survey, Phase I Pilot Study 
sample (Messer et al., 1986). The response variable was 
y=length  of stream reach, and the auxiliary variable was 
x=direct  watershed area of a stream reach. The response 
variables for other base populations were obtained from the y's 
of the STREAM82 base population by calculating y~ = Yi+ kei, 
where e i was the residual of the least squares fit, and k was a 
constant determined by the correlation specified. Each subfamily 
within the STREAM family had the same 7ri's and ~rij's for all 
populations with common X~. 

213 



For the GAMNORM family of populations, x was randomly 
generated from a standard gamma distribution with location 
parameter a=2,  and y was generated, conditional on x, from the 
equation, Yi=PXi +ei,  where e i was a random variable 
distributed Normal(0,(1-p2)Vx).  The same set of 100 x's was 
used as the base population for all three subfamilies. A 
subfamily base population was created by specifying p, 
generating the ei's, and calculating Yi" 

The BIGAMMA family was generated from a bivariate 
gamma distribution. If a population with large x values was 
generated so that at least one of the sampling units would be 
selected with certainty in a sample of size 16, that population 
was discarded and a new base population was generated. For the 
BIGAMMA family, a different set of x's was generated for each 
subfamily base population. 

Properties of the variance estimators were obtained by 
simulating 5,000 replications of samples of size n=16 for each 
investigated population. Random numbers from the uniform 
(0,1 ) and standard normal distributions were generated using 
the GAUSS (Version 1.49, Aptech Systems, Inc., Kent, WA) 
functions RNDU and RNDN, respectively. Random variables for 
standard gamma distributions with non-integer parameter, or, 
0 < a < 1, were generated according to an algorithm described by 
Kennedy and Gentle (1980, p. 213). 

The behavioral surfaces of the estimators over the population 
space were described by a battery of contour plots generated by 
the kriging and octant search (10 nearest data points) options of 
the interpolation and contour plotting routines in SURFER 
(Golden Software, Inc., P. O. Box 281, Golden, CO). Figures 1- 
4 are organized such that each column represents a family, and 
each row a subfamily, arranged in the column by increasing 
correlation. The 45-degree line extending through the origin, 
termed the standard diagonal, serves as a convenient spatial 
reference in the population space. 

3. NOTATION 

XI, "~Lrl 

v@~)  

oj 

VHT 

vyG 

V~T 

v~,G 

population standardized means of x and y 

Horvitz-Thompson estimator 

variance of Ty 

Hartley and Rao (1962) formula for 7rij 

Overton (1985) formula for r i j  

Horvitz-Thompson variance estimator 

Yates-Grundy variance estimator 

VHT calculated with 7rh; 

o VHT calculated with zrij 

h r  vyG calculated with 7rij 

o vyG calculated with 7rij 

4. RESULTS OF POPULA TION SPACE ANAL YSIS 

4.1 Efficiency of Randomized, vps Sampling 

The ratio of the variance of ~" under randomized vps 
sampling relative to the variance of T u u n d e r  simple random 
sampling, VSRS, was used to assess the efficiency of vps sampling 
(Figure 1). The qualitative pattern of efficiency was similar for 
all three families. Efficiency of vps sampling was greatest for 
populations near the standard diagonal for the medium- and 
high-correlation subfamilies, and just below the standard 
diagonal for the low-correlation subfamilies. The gain in 
precision of vps sampling in these regions increased with p(x, y). 
In the upper left region of the population space, vps sampling 

should be avoided because it is much less efficient than simple 
random sampling. A feasible strategy for improving the 
precision of vps sampling in this region is to shift the population 
to the right by adding a constant to the x's. 

4.2 Comparison of Variance Estimators 

The criteria for comparison of the variance estimators V~tT, 
V~,G ' VHT,hr and Vhy~ were: confidence interval coverage achieved 
by nominal 95% intervals for Tu, calculated as Tu =t= 1.96~;  
estimated root mean square error (RMSE); relative bias; and 
proportion of negative variance estimates. Figures 2-4 illustrate 
use of the population space approach for investigating variance 
estimator properties. Complete results comparing variance 
estimators are available in Stehman and Overton (1989). 

Coverage of the estimator employed in the NSWS, V~tT, was 
good for most of the population space with the exception of the 
region away from the origin, just below the standard diagonal, in 
the high-correlation subfamilies (Figure 2). Comparison of the 
RMSE of vh~ to that of V~T (Figure 3) demonstrated a strong 
pattern in the populations for which the Yates-Grundy variance 
estimator had much smaller RMSE than the Horvitz-Thompson 
variance estimator. However, patterns of roughly equal RMSE 
were also evident, particularly for low-correlation subfamilies and 
populations near the origin, vh~r was the poorest variance 
estimator, and as illustrated by the proportion of negative 
estimates (Figure 4), performance was especially poor near the 
standard diagonal of the high-correlation subfamilies. Past 
emphasis on this region of the population space contributed to 
the perception that vyG was always superior to VHT. 

Summarizing other important findings of the population 
space investigation: (1)properties of v~, G and vh~ were virtually 
identical, so the simpler form v}G is recommended; h(2) 
performance of v~i T was usually superior to that of VHT , 
particularly for populations in the region of the standard 
diagonal; (3) v~. G is strictly non-negative (Stehman and Overton, 
1989), and no negative v ~  estimates occurred in the 
simulations; samples with negative v~i T were absent in most 
populations, although some high-correlation populations near the 
standard diagonal had 0.5% negative v~i T estimates. 

5. DISCUSSION 

Analytic comparison of variance estimators in vps sampling 
is usually very difficult, so simulation is often employed. Given 
the frequent use of simulation in finite population sampling, it is 
surprising that simulation experiments are so often structured in 
a manner providing limited inferential capacity. The population 
space provides a quantitative demonstration of estimator 
properties, and serves to strengthen inferences available from 
empirical investigations. The exact sampling strategy and 
design-based inferential model of interest can be investigated, 
whereas simplifying assumptions are often required to derive 
analytic theory. The population space approach thus 
complements analytic assessment. 

Generalization and theoretical understanding depend on 
discovering patterns of estimator behavior, and such patterns are 
apparent over the population space. These patterns of behavior 
are revealed by a systematic exploration of a sample of all 
possible cases. Inferences to populations within a subfamily are 
obtained by interpolation from the sampled populations 
investigated by simulation. Interpolation is possible because of 
the continuity of the behavioral surfaces within a subfamily. 
These surfaces also appear continous over change in correlation 
within a family. This continuity allows properties to be inferred 
for many populations in the population space, not just those for 
which properties are actually simulated. 

Continuity of behaviors does not extend across families of 
populations, although qualitative patterns of behavior are 
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consistent. This consistency also strengthens inference because it 
demonstrates that while behavior surfaces may differ 
quantitatively, general patterns persist. The possibility remains 
that other distributions may demonstrate anomalous behavior. 
But the consistency of the qualitative behavior surfaces observed 
across families of distributions provides some assurance that the 
observed realizations are not atypical, and that other realistic 
distributions will yield qualitatively similar surfaces. Results for 
other families and correlations not reported here have shown 
similar patterns of behavior of the estimators. Extension of 
simulations to other distributions should be made to encompass 
rare circumstances and to discover bounds of applicability of the 
inferences. 

Further generalization is achieved by constructing families of 
populations from known probability distributions, thus modeling 
our population space approach on the superpopulation concept of 
analysis. Through the superpopulation model, and continuity of 
behavior within a family, the population space results are 
representative of a broader class of populations, not just those in 
the family actually studied. 

6. CONCLUSIONS 

Properties of the variance and variance estimators of Ty in 
randomized vps sampling were strongly associated with the 
correlation between x and y and the standardized population 
centroid. The consistent patterns of estimator behaviors across 
different bivariate distributions, and the ability to interpolate 
properties for populations within a subfamily, are key features 
contributing to the success of the population space approach. 
The patterns of estimator behaviors were less clear in previous 
empirical studies (Cumberland and Royall, 1981; Rao and Singh, 
1973) because the populations studied were restricted to the 
region near the standard diagonal, a region shown by the 
population space analysis to have special behavior. This is also 
the region in which the vps design is most favored over simple 
random sampling (Figure 1). The results presented here 
demonstrate that VHT performs similarly to vyG in many 
populations, particularly those located away from the standard 
diagonal or having low correlation. 

Difficult analytic challenges, such as validation of variance 
estimation methodology used in the NSWS, can be addressed by 
the structured, empirical assessment provided by the population 
space. The population space approach provides a strategy for 
generalizing inferences from special case empirical results. If 
populations are selected to span circumstances likely to be 
encountered in practical applications of methodology, the 
population space assessment can provide validation within those 
circumstances of application. This method of validation was 
applied to the variance estimation problem encountered in the 
NSWS. Despite possessing some bias and occasional negative 
estimates, coverage provided by v~i T was generally good, and 
both this variance estimator and v~G were deemed acceptable for 
use in the NSWS. 

The ease of simulation in today's climate of computing 
makes the simulation/demonstration assessment available from 
the population space approach an attractive routine protocol. 
Such a protocol would seem highly recommended for any novel 
application of methodology. 
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TABLE 1. Characteristics of families investigated in the population space assessment. 

Subfamilies 
Family N Distribution of X Distribution of Y E(YIx) p(X, Y)* 

BIGAMMA 100 Gamma(2) Gamma(2) 

GAMNORM 100 Gamma(2) Normal** 

px+  2(l-p) .49, .78, .97 

px .48, .75, .94 

STREAM 72 x=direct water- y-s t ream reach .50, .82, .99 
shed area length 

* populations within a subfamily are obtained by adding a constant to x and/or y 
** conditional distribution of Y given x 

FIGURE 1. Efficiency of vps sampling relative to simple random sampling: V(Ty)/VsR s. Contours 
plotted are 0.5, 1, 2, and 4. Horizontal and vertical axes represent ~1 and ~,1, respectively. 
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FIGURE 2. Observed confidence interval coverage (nominal 95% intervals) obtained using v~i T. 
Contours plotted are 85, 90, 94, and 96. Horizontal and vertical axes represent X~ and v{/, respectively. 
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FIGURE 4. Proportion of samples with negative V~T showing the poor behavior of this variance 
estimator. Contours plotted are 0, 0.10, 0.20, 0.40. IIorizontal and vertical axes represent X~ and Y~, 
respectively. 
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