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ABSTRACT

The variance and two estimators of variance of the Horvitz-
Thompson estimator were studied under randomized, variable
probability systematic sampling. Three bivariate distributions,
representing the populations, were investigated empirically, with
each distribution studied for three correlations of the response
variable, y, and auxiliary variable, x. The Horvitz-Thompson
and Yates-Grundy variance estimators were compared based on
confidence interval coverage, root mean square error, and
proportion of negative estimates. The two variance estimators
performed equally well except in some high-correlation
populations, where the Yates-Grundy estimator had smaller root
mean square error, and the Horvitz-Thompson estimator had a
few negative estimates. A comparison of the precision of
variable probability to equal probability sampling was also
made. As expected, the gain in precision of variable probability
over equal probability sampling was greatest when the
correlation between x and y was high, and the gain was reduced
or absent when correlations were lower.

1. INTRODUCTION

In a finite universe of size N, assume that a response variable
of interest, y, and an auxiliary variable, x > 0, are defined for
each element of the universe. The sampling design investigated
is randomized, variable probability systematic (hereafter wps)
(Madow, 1949; or see procedure 2 of Brewer and Hanif, 1983).
Let m; denote the inclusion probability of the ith population
element, 7, denote the pairwise inclusion probability of the ith

N n
and jth population units, and T,= gyi/”i denote the Horvitz-

i=
Thompson estimator of the population total, Ty.

Two estimators of V(Ty), the variance of Ty, are commonly
used:
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(Horvitz and Thompson, 1952), and
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(Yates and Grundy, 1953; Sen, 1953), where the summations are
over elements in the sample. Each variance estimator requires
calculating the 7r'<j’s. The true 7r,-j’s are difficult to obtain for
randomized, vps sampling, so in practice, many investigators use
an approximation formula, such as
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(Hartley and Rao, 1962).

Investigation of the behavior of the two variance estimators
was motivated by a validation study of the variance estimation
methodology used in the National Surface Water Surveys
(NSWS) (Overton, 1985; Messer et al., 1986). The Horvitz-
Thompson variance formulation was necessary in the NSWS, but
all population #’s were not available, so an alternate
approximation to (3) was prescribed by Overton (1985):
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A useful analytical comparison of variance estimators
computed with approximation formulas (3) and (4) was not
tractable. Simulation was the obvious approach to validation of
the  Horvitz-Thompson  variance formula, used with
approximation (4), in the context of the NSWS. The estimator
Vyg is usually claimed superior to vy (Cochran (1977, p. 261)).
Empirical studies have shown vy frequently results in negative
estimates, and that the sampling variance of vy is much larger
than that of vy for many of the populations studied (Rao and
Singh, 1973; Cumberland and Royall, 1981). However, Stehman
and Overton (1987) demonstrated that these advantages of vyg
are restricted to certain kinds of populations.

A strategy to bridge the gap between special case empirical
results and a complete theoretical solution was implemented by
the “population space” assessment described in the next section.
The population space provides a basis for general understanding
of properties of estimators in finite population sampling. We
advocate this approach as a general validation method in finite
population sampling for cases in which analytical results are
intractable.

2. DESCRIPTION OF THE POPULATION SPACE

Three families of populations were studied. The STREAM
family represented real data, while the GAMNORM and
BIGAMMA families were generated from known probability
distributions. Within each family, three different subfamilies
representing low, medium, and high correlations between the
response variable, y, and the design covariate, x, were studied.
All populations within a subfamily were created from a single
base population by adding or subtracting constants to x and/or y
of the base population. Thus a subfamily consisted of
populations with the same “cloud” of points shifted to various
locations in the (x,y)-plane. Members of a subfamily have
V.=V, where V_ and V are the finite population variances of
x and y, respectively; the same V ; and the same correlation
between x and y. Populations in a subfamily differing by an
additive shift in the x’s have different inclusion probabilities.
The inclusion probabilities are unchanged under additive shifts in
the y’s. Scale invariant assessment of estimator properties was
obtained by locating populations within the population space by
the standardized centroid, (X', ¥’), where X'=X/[V_=1/cv(x),
Y'=Y/JV,=1/cv(y), and cv denotes the population coefficient
of variation. The population space structure is summarized in

Table 1.

The STREAMS82 base population consisted of 72 of the 100
units from the National Stream Survey, Phase I Pilot Study
sample (Messer et al., 1986). The response variable was
y=Ilength of stream reach, and the auxiliary variable was
x=direct watershed area of a stream reach. The response
variables for other base populations were obtained from the y’s
of the STREAMS82 base population by calculating yj =y, +ke;,
where e; was the residual of the least squares fit, and k was a
constant determined by the correlation specified. Each subfamily
within the STREAM family had the same ;s and ;s for all
populations with common X',



For the GAMNORM family of populations, x was randomly
generated from a standard gamma distribution with location
parameter a=2, and y was generated, conditional on x, from the
equation, y;=px;+¢; where ¢; was a random variable
distributed Normal(0,(1-p%)V_). The same set of 100 x’s was
used as the base population for all three subfamilies. A
subfamily base population was created by specifying p,
generating the ¢;’s, and calculating y,.

The BIGAMMA family was generated from a bivariate
gamma distribution. If a population with large x values was
generated so that at least one of the sampling units would be
selected with certainty in a sample of size 16, that population
was discarded and a new base population was generated. For the
BIGAMMA family, a different set of x’s was generated for each
subfamily base population.

Properties of the variance estimators were obtained by
simulating 5,000 replications of samples of size n=16 for each
investigated population. Random numbers from the uniform
(0,1) and standard normal distributions were generated using
the GAUSS (Version 1.49, Aptech Systems, Inc., Kent, WA)
functions RNDU and RNDN, respectively. Random variables for
standard gamma distributions with non-integer parameter, a,
0 < a < 1, were generated according to an algorithm described by
Kennedy and Gentle (1980, p. 213).

The behavioral surfaces of the estimators over the population
space were described by a battery of contour plots generated by
the kriging and octant search (10 nearest data points) options of
the interpolation and contour plotting routines in SURFER
(Golden Software, Inc., P. O. Box 281, Golden, CO). Figures 1-
4 are organized such that each column represents a family, and
each row a subfamily, arranged in the column by increasing
correlation. The 45-degree line extending through the origin,
termed the standard diagonal, serves as a convenient spatial
reference in the population space.

3. NOTATION
X', ¥’ population standardized means of x and y
’i‘y Horvitz-Thompson estimator
V('i‘y) variance of ’i‘y
wf‘j' Hartley and Rao (1962) formula for
L Overton (1985) formula for 7;;
VHT Horvitz-Thompson variance estimator
vyag Yates-Grundy variance estimator
vI’f{r vy calculated with w?j'
viT vy calculated with w?j
V")‘('G vyg calculated with wf'j'
Vg vyq calculated with 7r:-’j

4. RESULTS OF POPULATION SPACE ANALYSIS

4.1 Efficiency of Randomized, vps Sampling

The ratio of the variance of TVA under randomized, vps
sampling relative to the variance of T, under simple random
sampling, Vgrg, was used to assess the e'flﬁciency of vps sampling
(Figure 1). The qualitative pattern of efficiency was similar for
all three families. Efficiency of vps sampling was greatest for
populations near the standard diagonal for the medium- and
high-correlation subfamilies, and just below the standard
diagonal for the low-correlation subfamilies.  The gain in
precision of vps sampling in these regions increased with p(x, y).
In the upper left region of the population space, vps sampling
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should be avoided because it is much less efficient than simple
random sampling. A feasible strategy for improving the
precision of vps sampling in this region is to shift the population
to the right by adding a constant to the x’s.

4.2 Comparison of Variance Estimators

The criteria for comparison of the variance estimators v{r,
Vo V’}II”‘IW and V%I(TG were: confidence interval coverage achieved
by nominal 95% intervals for T,, calculated as T, £ 1.964%;
estimated root mean square error (RMSE); relative bias; and
proportion of negative variance estimates. Figures 2-4 illustrate
use of the population space approach for investigating variance
estimator properties. = Complete results comparing variance
estimators are available in Stehman and Overton (1989).

Coverage of the estimator employed in the NSWS, v{j1, was
good for most of the population space with the exception of the
region away from the origin, just below the standard diagonal, in
the high-correlation subfamilies (Figure 2). Comparison of the
RMSE of v{’,’G to that of vijp (Figure 3) demonstrated a strong
pattern in the populations for which the Yates-Grundy variance
estimator had much smaller RMSE than the Horvitz-Thompson
variance estimator. However, patterns of roughly equal RMSE
were also evident, particularly for low-correlation subfamilies and
populations near the origin. vﬁfr was the poorest variance
estimator, and as illustrated by the proportion of negative
estimates (Figure 4), performance was especially poor near the
standard diagonal of the high-correlation subfamilies. Past
emphasis on this region of the population space contributed to
the perception that vy was always superior to vyp.

Summarizing other important findings of the population
space investigation: (1) properties of v{,; and V% were virtually
identical, so the simpler form v$q is recommended; (2)
performance of vfip was usually superior to that of v}’;fr,
particularly for populations in the region of the standard
diagonal; (3) v$q is strictly non-negative (Stehman and Overton,
1989), and no negative V{VG estimates occurred in the
simulations; samples with negative vfp were absent in most
populations, although some high-correlation populations near the
standard diagonal had 0.5% negative v{j estimates.

5. DISCUSSION

Analytic comparison of variance estimators in vps sampling
is usually very difficult, so simulation is often employed. Given
the frequent use of simulation in finite population sampling, it is
surprising that simulation experiments are so often structured in
a manner providing limited inferential capacity. The population
space provides a quantitative demonstration of estimator
properties, and serves to strengthen inferences available from
empirical investigations. = The exact sampling strategy and
design-based inferential model of interest can be investigated,
whereas simplifying assumptions are often required to derive
analytic theory. The population space approach thus
complements analytic assessment.

Generalization and theoretical understanding depend on
discovering patterns of estimator behavior, and such patterns are
apparent over the population space. These patterns of behavior
are revealed by a systematic exploration of a sample of all
possible cases. Inferences to populations within a subfamily are
obtained by interpolation from the sampled populations
investigated by simulation. Interpolation is possible because of
the continuity of the behavioral surfaces within a subfamily.
These surfaces also appear continous over change in correlation
within a family. This continuity allows properties to be inferred
for many populations in the population space, not just those for
which properties are actually simulated.

Continuity of behaviors does not extend across families of
populations, although qualitative patterns of behavior are



consistent. This consistency also strengthens inference because it
demonstrates that while behavior surfaces may differ
quantitatively, general patterns persist. The possibility remains
that other distributions may demonstrate anomalous behavior.
But the consistency of the qualitative behavior surfaces observed
across families of distributions provides some assurance that the
observed realizations are not atypical, and that other realistic
distributions will yield qualitatively similar surfaces. Results for
other families and correlations not reported here have shown
similar patterns of behavior of the estimators. Extension of
simulations to other distributions should be made to encompass
rare circumstances and to discover bounds of applicability of the
inferences.

Further generalization is achieved by constructing families of
populations from known probability distributions, thus modeling
our population space approach on the superpopulation concept of
analysis. Through the superpopulation model, and continuity of
behavior within a family, the population space results are
representative of a broader class of populations, not just those in
the family actually studied.

6. CONCLUSIONS

Properties of the variance and variance estimators of T in
randomized wvps sampling were strongly associated with the
correlation between x and y and the standardized population
centroid. The consistent patterns of estimator behaviors across
different bivariate distributions, and the ability to interpolate
properties for populations within a subfamily, are key features
contributing to the success of the population space approach.
The patterns of estimator behaviors were less clear in previous
empirical studies (Cumberland and Royall, 1981; Rao and Singh,
1973) because the populations studied were restricted to the
region near the standard diagonal, a region shown by the
population space analysis to have special behavior. This is also
the region in which the vps design is most favored over simple
random sampling (Figure 1). The results presented here
demonstrate that vyt performs similarly to vyg in many
populations, particularly those located away from the standard
diagonal or having low correlation.

Difficult analytic challenges, such as validation of variance
estimation methodology used in the NSWS, can be addressed by
the structured, empirical assessment provided by the population
space. The population space approach provides a strategy for
generalizing inferences from special case empirical results. If
populations are selected to span circumstances likely to be
encountered in practical applications of methodology, the
population space assessment can provide validation within those
circumstances of application. This method of validation was
applied to the variance estimation problem encountered in the
NSWS. Despite possessing some bias and occasional negative
estimates, coverage provided by vfjy was generally good, and
both this variance estimator and v$q were deemed acceptable for
use in the NSWS.

The ease of simulation in today’s climate of computing
makes the simulation/demonstration assessment available from
the population space approach an attractive routine protocol.
Such a protocol would seem highly recommended for any novel
application of methodology.
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TABLE 1. Characteristics of families investigated in the population space assessment.

Subfamilies
Family N  Distribution of X Distribution of Y E(Y|x) (X, Y)*
BIGAMMA 100 Gamma(2) Gamma(2) px+2(1-p) .49, .78, .97
GAMNORM 100 Gamma(2) Normal** px 48, .75, .94

STREAM 72

shed area

*

*x

FIGURE 1. Efficiency of vps sampling relative to simple random sampling: V(Ty)/VSRS.

E n Contours
plotted are 0.5, 1, 2, and 4. Horizontal and vertical axes represent X’ and Y’, respectively.
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FIGURE 2. Observed confidence interval coverage (nominal 95% intervals) obtained using Vi
Contours plotted are 85, 90, 94, and 96. Horizontal and vertical axes represent X’ and Y', respectively.

GAMNORM48 BICAMMAL9 STREASO

oge ofs 030 ogs 095 07 br{ 045 048 038 o8 [q o3 o.96 ogs

H
:

s . 1 . 7

H .46 038 035 ogs [ 45 o35 0gs 044 0gd  [oss ;\_/og/s oge 0gs

A
-
. . ] .
048 age o044 03 0gs %.y: oy o1 03 o093 o |

ol b o s o . y o o .
»
, . /‘—\w\ s % \/» s ; /
) [X? ofh (X1 og4 o 093 og¢ ag2 04 .90 .95 o8 27 0t 044
& 4 .
043 o4 % 094 043 o4 041 093 093 093 03 093 34 0.93 093 044

-

v T f 0 v
GAMNORM7S
. .
0gs o3 ogs
f f
-
B
f ‘
LX TR ) 093 o Fofs o5 Pop og2
i
3 1
(X3 og 0g2 ot 0.3 083 092 043
e
' . f
Al og2 ot [ry o L og3 o3 ogs ops 03 ogs 0.3 0 0g3 [*H)
! g T ' T + T ! ¥ ¥ T
GAMNORM24 BIGAMMAY? STREAM9Y

4 v
o odo iy 0.3 043 o o by o044 o3 ogs
- Y
s f
052 L\oy’ ! ;
H

042 z 0.47 0. 042 oqt 042 (57 e S
4
s
Eoan u :
og3 (8‘7) o3y og a2 o [T} 043 73_ o4 043
'y 1 3 + 0 ' T 3 . . ' 1 0 + O
FIGURE 3. Ratios of root mean square errors: Rl!ISE(vﬁ_T)/RMSE(v{}'G). Contours plotted are 1.0, 1.3,
and 2.0. Horizontal and vertical axes represent X’ and Y’, respectively.
i 8 O erranaAdY SiRtamby
196 130 137 147 j0 192 w 195 [F) 199 198 \ 152 L7 197 135
-
s R . C
195 178 132 BT 198 195 128 [RD) [R1 198 197 149 [¥1] 136 112
. . . o4
195 113 108 193 191 192 118 1.0 197 192 1.98 149 3 110 199
1t <,
) . . N
110 age 1.91 197 .93 192 [ 196 121 195 194 [
: : .
1g3 /(p 0.3 0.8 o8 191 142 1.90 099
! T FUNRN e e 0 g
CAMNORM? S BIGAMMATE
. .
7
148 .y 130 3 1.08 .08 [EY LT 7 113
. .
o e g w | e o e
]
0 . 4
197 7 197 9 048 110 i\v;/up 199 197
. )
e g A op oy e g g g
) * N +

et 0.3 o7 o8 049 }» 1o 193 f/\ age o.ge
R i s R N

¥ 0 0 v ¥ 3 0 v
GAMNORM2 4 BIGAMMAIT

' 7 .

105 )qa 179 (KT SNT1 145 130 298 g8 Y4
[ H .

198 49 144 12 1.6 .98 B¢ 198 13 18

~ 2
. .
1
18 147 [0 19 1. 197 1492 13 134 133

v N
194 /ap—\ﬂ og7 g0 5] 138 119 140
>, —
B
148 ﬁ 190 o oge 4

b B B g g v v 3 . g

217



FIGURE 4. Proportion of samples with negative vﬁa« showing the poor behavior of this variance
estimator. Contours plotted are 0, 0.10, 0.20, 0.40. Ilorizontal and vertical axes represent X’ and Y’,

respectively.
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