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Abstract. 

When auxiliary information is available it is 
advantegeous to use it to construct estimators. 
In stratified random sampling, one may 
construct either a separate regression estimator 
or a combined regression estimator for the 
propulation mean. The separate regression 
estimator is appropriate when the population 
regression coefficients are different from stratum 
to stratum; while the combined regression 
estimator is appropriate when the stratum 
regression coefficients are equal. In practice it 
may be uncertain whether the regression 
coefficients are equal. In such a case, we can use 
a preliminary test to test the equality of the 
population stratum regression coefficients. Then 
a preliminary test regression estimator can be 
constructed. Also we can use a weighted 
regression estimator which is a weighted average 
of the separate regression estimator and the 
combined regression estimator with the weights 
depending on the test statistic. A comparison of 
the various estimators is made by a Monte Carlo 
study. 

1. INTRODUCTION. 

When auxiliary information is available, it is 
advantegeous to use it to construct estimators. 
We consider regression estimators in stratified 
random sampling. Two commonly used 
estimators are the separate regression estimator 

and the combined regression estimator. Let Yhi 

be the values of the ith unit in the hth 

stratum, i - - l ,  2, ..., N h and h - - l ,  2, ..., L. 

Let N--F.Nh, the total number of units in the 

population. Suppose an auxiliary variable is 

available and let Xhi be the corresponding value 

of the auxiliary variable for Yhi" We are 

interested in estimating the population mean 

L 
V - - Z  WhY h (1) 

h = l  

where W h - - N h / N  is the hCh stratum weight, 

N h 

and Yh--~-~Yhi/Nh.__. is the hi[h stratum 
i=l  

population mean. Suppose a simple random 
sample of size n h is taken from the hth 
stratum. The separate regression estimator is 
obtained by first computing a separate regression 
estimator for each stratum, that is 

71rh = Yh  +bh (Xh - ~ h  ) (2) 

where Yh and ~ h  are the sample means 
N h 

X h - - ~ X h i / N h ,  and 
i= l  

n h n h 

bh--E (Yhi-Yh)(Xhi-~hl/E (Xhi-~h 12 (3) 
i -1  i= l  

Then the separate regression estimator is given 
as (see Cochran(1977)), 

L 

Y l r s - - E  WhYlrh . (4) 
h = l  

The combined regression estimator is obtained 
by first computing the stratified sample 
estimators 

L 

Yst -- ~ WhYh 
h - 1  

L 
~ s t - - Z  W h ~ h  • 

h = l  
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The combined regression estimator is given as 

Ylrc--Yst  + b c ( X - x s t )  

where 

W ~ ( 1 - f h )  

be = h n h ( n h - 1 )  E ( Y h i - Y h ) ( X h i - ~ h )  
1 (6) 

E W ~ ( 1 - f h )  
h nh (nh -- 1) E~ (Xhi --~h)2 

f h - - n h / N h  is the sampling fraction. 

It is known that the separate regression 

estimator is appropriate when the regression is 
linear and the true regression coefficients flh 
vary from stratum to stratum, while the 
combined regression estimator is preferred if the 
true regression coefficients are the same in all 
strata. In practice it may happen that the 
investigator is uncertain whether the stratum 
population regression coefficients are equal. In 
such a case the investigator may resolve the 
uncertainty by using a preliminary test to test 
the null hypothesis that the population 
regression coefficients are equal. If the null 
hypothesis is rejected, i.e. the data indicates that 
the regression coefficients are different, we use 
the separate regression estimator. On the other 
hand, if the null hypothesis is not rejected, we 
use the combined regression estimator. This 
type of inference procedure is conditioning on 
the model specification. Hence it is termed as 
inference procedure based on conditional 
specification by Bancroft and Han (1977). 
Further references may be found in the 
bibliographies by Bancroft and Han (1977), Han, 
Rao and Ravichandran (1988). In Section 2 we 
discuss the preliminary test estimator and a 
weighted estimator. A comparison of the 
estimators is made in Section 3 by a Monte 
Carlo study. 

2. PRELIMINARY TEST ESTIMATOR 

AND WEIGHTED ESTIMATOR. 

Let us assume that y and x have a 
bivariate normal distribution. We test 
H0"f l l - - f l2=""  = i lL  by using the test statistic 

L 
F--  E C h ( b h - b c ) 2 / [ ( L -  1)S 21 (7) 

h = l  

where 

n h 

Ch-- E (Xhi - ' ~ h  )~ 
i=1 

S 2 - - E E [ Y h i  
h i 

- Y h  -bh(Xhi  --Xh)]2/(N--2L).  

The statistic F has an F distribution with 

(L--I ,  N--2L) degrees of freedom under H 0. 

We define two estimators of Y based on the 

statistic F. One estimator is the preliminary 
test estimator 

Y_lrs if F > Fa  
Y P T - -  ('Ylrc if F_< Fa  (8) 

where Fa  is the 100(i-a)% point of F(L-1, N- 
2L). The other estimator is the weighted 
estimator 

- 1 F 
Y w - - 1 ~  Ylrc + 1 ~  y lrs (9) 

The rationale of using Yw is that when H 0 is 

true, F will be small and the weight for Y lrs is 

small and the weight for Ylrc is large as Ylrc 

should be used in such a case. On the contrary, 

if H 0 is not true, one should use Ylrs" Since F 

will be large and consequently the weight for 

Y lrs is large. 

3. COMPARISON OF THE ESTIMATORS. 

The derivations of the biases and mean square 

errors (MSE) for Y PT and Y w are very 

tedious. Hence we use a Monte Carlo study to 
compare the biases and MSE's. The simulation 
was done on the CRAY X-MP/24 at the 
University of Texas System Center for High 
Performance Computing. The subroutines in the 
International Mathematical and Statistical 
Library (IMSL) are used in the simulation. The 
subroutine RNMVN is used to generate the 
bivariate normal random variables for given 
population regression coefficients. Once a 

random sample is generated, the estimators 

Ylrc' y l r s '  y P T  and Yw are obtained. This 
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process is repeated 2000 times. The biases of the 
estimators are small since we take the sample 
from a bivariate normal distribution and the 
regression line is linear. Further the bias is a 
part of the mean square error (MSE). Hence we 
only compare the mean square errors of the 
estimators. 

Let Y i denote any one of the estimators. 

The estimated mean square error is given as 

MSE--  1 V)2 2000  (Yi- 
1 

In the simulation, we let Y- -1 .  The relative 
efficency of Y PT to Y lrc is defined as 

1 /MSE(YpT ) MSE (Ylrc) 

e l =  1/MSE(Ylrc) = MSE(YpT ) • 

Similarly we define 

MSE(Ylrc) 

MSE(Ylrc) 
e 3 ~  

MSE(Ylr s) 

Table 1 gives the relative efficiencies of 
regression estimators for three strata. The 
s tratum weights are set equal to .3, .3 and .4 
respectively and the sample sizes are (nl, n2, 
n 3 ) = ( 5  , 5, 6), (9, 9, 12) and (30, 30, 40). 

When the sample sizes are small, i.e. (nl, n2, 

n3)--(5 , 5, 6), Ylrc has the smallest MSE when 

the fl's are equal, the relative efficiencies are 
less than unity. The preliminary test estimator 
and the weighted estimator are about equally 
efficient. But Yw has the smallest MSE when 
the fl's are very unequal and one coefficient has 
different sign, the relative efficiency e 2 is the 
largest. 

When the sample sizes are moderate, i.e. (n l, 
n 2, n3 )=(9 ,  9, 12), Y[rc again has the smallest 
MSE when the regression coefficients are equal. 
When the regression coefficients are unequal, 
Yw has the highest relative efficiency, though 
Y lrs is not too far behind. 

When the sample sizes are large, i.e. the case 
(30, 30, 40), and the regression coefficients are 
equal, the four estimator are essentially the same 
in efficiency. When the regression coefficients 

are unequal, the estimators y p T ,  y w  and Ylrs 

are better than Ylrc. Further y p T ,  Yw and 

Y lrs all have similar relative efficiencies. 

From the Monte Carlo study we conclude that 
the weighted estimator should be used when the 
sample sizes are moderately large since it has 
high relative efficiency. When the sample sizes 
are small, one may use the weighted estimator 
except when the regression coefficients are equal; 
in that case, the combined regression estimator 
should be used. 
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fll 

TABLE 1 

f12 

R e  1 a t  i v e  E l f  i c i e n c  i e s  o f  R e g r e s s  i o n  E s t  i m a t o r s .  

(n l ,  n2, n3)----(5, 5, 6) 

f13 CX e 1 e 2 e 3 

- . 5  

= 2  

- . 5  

_ _ 9  

- . 5  

= 2  

.4  

- . 5  

- . 5  

- . 5  

- . 5  

-- .5 

- . 5  

- . 5  

- . 6  

.5 

- . 5  

- . 6  

.5 

-- .5 

- . 6  

.05 .95 .88 .76 

.25 .85 .88 .75 

.50 .81 .90 .79 

.05 .96 .90 .78 

.25 .84 .88 .76 

.50 .80 .89 .77 

.05 .93 .95 .87 

.25 .88 .94 .85 

.50 .87 .95 .85 

• 05 1.01 1.18 1.13 
• 25 1.17 1.26 1.20 

• 50 1.20 1.27 1.23 

• 05 .99 1.14 1.08 

• 25 1.05 1.15 1.08 

• 50 1.05 1.13 1.07 

(ni ,  n2, n 3 ) - - ( 9  , 9, 12) 

.05 .98 .96 .91 

.25 .96 .98 .93 

.50 .93 .97 .92 

• 05 .99 .97 .92 
• 25 .95 .97 .92 

• 50 .92 .96 .90 

• 05 .99 1.02 .99 

• 25 .99 1.02 .98 

.50 .99 1.02 .99 

• 05 1.35 1.41 1.41 

• 25 1.29 1.31 1.30 

• 50 1.34 1.35 1.34 

• 05 1.16 1.24 1.24 

• 25 1.20 1.23 1.22 

• 50 1.20 1.21 1.21 

(n i, n~, n 3 ) - - ( 3 0 ,  30, 40) 

.05 1.00 1.00 .99 

.25 .98 .99 .98 

.50 .99 1.00 .98 

.05 .99 .98 .97 

.25 .99 .99 .98 

.50 .98 .99 .97 

• 05 1.07 1.09 1.09 

• 25 1.06 1.06 1.07 

• 50 1.07 1.07 1.07 

• 05 1.49 1.49 1.49 

• 25 1.47 1.47 1.47 

• 50 1.50 1.50 1.50 

• 05 1.32 1.32 1.32 

• 25 1.36 1.36 1.36 

• 50 1.28 1.28 1.28 
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