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ABSTRACT 

Estimating the population total in two-stage 
survey sampling is considered, making use of a 
(superpopulation) model. The problem is then 
really one of predicting the unobserved part of 
the total, and the concept of predictive likeli- 
hood is studied. Prediction intervals and a pre- 
dictor for the population total are derived for 
the normal case, based on predictive likelihood. 

I. INTRODUCTION 

Two-stage surveys are used in sampling from 
finite populations of, say, N primary units or 
clusters, where each primary unit consists of 
mi secondary units. N is assumed known, but 
the mi 's  are unknown before sampling. Let ylj 
be the value of the variable of interest for sec- 
ondary unit j of i ' th primary unit. The problem 
is to estimate the total 

IV mi 

, -  E Ey, . 
i=  1 j =  1 

An example of this situation is considered in 
Thomsen and Tesfu (1988), with t being the size 
of a particular population. The prhnary units 
are certain administrative units, the secondary 
units are households and yij is the number of 
persons in household j of the i ' th administra- 
tive unit. 

We assume that, before sampling, other mea- 
sures of the sizes of the primary units are avail- 
able to us. Let xl,.-.,  xg  be these measures and 
let X -  ~/N= 1 *i. 

The salnpling plan is as follows: At stage 
1 a sample s of size no of the primary units 
(1, . . . ,N) is selected according to some sam- 
piing design, and at stage 2 we select for each 

i E s a sample si of size ni of secondary units 
ushlg possibly a different sampling design than 
at stage 1. The designs are assumed to be 
non-hlformative, i.e. they do not depend on the 
yij 's  mid mi's .  E.g., in Thomsen and Tesfu 
(1988) the two-stage sampling plan is to use 
pps-sampling at stage 1 (letting selection prob- 
abilities of primary units be proportional to the 
zi's) and simple rmldom sampling (srs) at stage 
2. 

The total sample size is n = ~ i e ,  ni and 
our data now consists of y(s)  = {yij  : i E s, 
j E si} and r e ( s ) =  {mi  : i E s}. Let 
y = (y(s), re(s)). For the pps-srs sampling 
plan mentioned above a commonly used design- 
unbiased estimator of t is the modified Horvitz- 
Thompson estimator (see for example Cochran 
(1977), chapter 11) 

iHr _ __X ~ miYi (1) 
n°  ~. T,i 

where ffi - E j e s i  yij/ni. 
In this paper a (superpopulation) model is 

adopted, regarding mi,  yid as realized values of 
random variables Mi, Yij for j - 1,.. . ,  Mi and 
i - 1, . . . ,N.  M = (M1,. . . ,MN) is assumed 
independent of all Y~j, and further: 

E ( M i ) -  f l x i ,  V ( M i )  - ~r2v(xi), (2) 

( M j  ) - O, 

Cov(i'~j, t"}k) - pr :  if 

Cov(t]j,  t}k) - 0 if 

, and 

k # j  
l # i .  

Let ~ - (fl, cr ,#,r ,p) with p >_ 0 and let v8 = 
Ei~,  v(xi), v~ - Ei¢.~ v(x i ) .  Typically v(x) - 
z g wi th0_<g_< 2. 

RoyaH (1976) considers a similar model 
for Y~d, assuming the mi 's  are known, while 
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Royall (1986) also considers unknown mi's with 
a model similar to (2). 

The total t is now a realized value of a ran- 
dom variable T, where T can be expressed as 

T -  ~ i e ,  ~]je,~ ~J  + Z with 

Mi 

Z - ~ ~ ~,/-t- ~ ~ Yi./. (3) 
iEa d~ai i~a d=l 

Expressing the total T on this form we see that 
the problem can be described as one of predict- 
ing the unobserved value z of the random vari- 
able Z. It is often clarifying to write a predictor 

of T on the form 

- ~ ~ Y~j + 2 (4) 
iE8 jEsi 

where Z then implicitly is a predictor of Z. 
From this point of view THT, given by (1), 
does not look like a reasonable predicor. Royall 
(1970) seems to have been the first one to rea- 
lize the value in representing any predictor on 
the prediction form (4), see also Smith (1976). 

Modelling the population in survey sampling 
problems has been and still is controversial. An 
important aspect of this issue is that the like- 
lihood principle in a sense makes it necessary 
to model the popttlation. Without a model 
the only stochastic elements are the samples 
s = {s, s i : i  E S}, and the likelihood func- 
tion is then flat (see, e.g., Cassel et al., (1977)), 
which means that from the likelihood principle 
pohlt of view the data contahls no information 
about the unobserved yij's mid mi's. To make 
inference we therefore need to relate the data to 
the unobserved values somehow, and the most 
natural way of doing so is to formulate a model 
(see also remarks by Berger and Wolpert (1984, 
p. 114)). 

The random variables observed are Y(s) ,  
M(s)  and s, where s now is ancillary. The like- 
lihood principle implies that inference should 
depend only on the actual s observed mid not 
on the sampling design. This is called the pre- 
diction approach to survey saanpling and will 
be adopted in this paper. Hence everything is 
considered conditional on s. The prediction ap- 
proach aims at choosing a predictor that is good 

for the actual s obtained and has given siglfi- 
ficant contributions to a better understanding 
of several problems in survey sampling, some 
of which are mentioned in Thomsen and Tesfu 
(1988). It also enables one to use more conven- 
tional statistical methods, although the prob- 
lem is not to make ilfference about 0 but rather 
predict Z. Hence/9 basically plays the role of a 
nuisance parameter. 

To predict Z we shall use the concept of pre- 
dictive likelihood, a non-Bayesian likelihood ap- 
proach to prediction problems in general. One 
caa argue that in the context of a superpopula- 
tion model survey sampling provides one of the 
more natural prediction problems in statistics, 
and predictive likelihood could therefore serve 
as a basis for essentially all problems of this 
kind in survey sampling. Some major references 
to the general theory of predictive likelihood 
are Hinkley (1979), Mathiasen (1979) and But- 
ler (1986). A review of some of the suggested 
likelihoods is given in Bjcrnstad (1990). 

Section 2 introduces the concept of predic- 
tive likelihood and shows how predictors and 
prediction intervals can be constructed from a 
predictive likelihood. 

In Section 3 a predictive likelihood is derived 
for the normal model. The usual approaches 
to obtain a predictive likelihood do not work 
in two-stage sampling, mainly because Z is a 
sum of a stochastic number of random variables. 
Therefore a modification is suggested. 

The predictor obtained from the predictive 
likelihood is given by: 

20- E$(Zly)- ~-~(m,- n,) x 
iE8 

1 - / i  ni~ Yi ~ + ] 1 -  b+ n~ 1 -  ~+ n~ 

Here, yi - ~]je,, yid/ni and 0 - (~, ~-, t~,/3, &)is 
the MLE. With w ~ -  ~ie~ zi 

- { Z  (5) 
dE8 

Since fl is the weighted least squares estimator 
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it is the best unbiased estimator of/3. Let wi = 
(1 - / i ) / (1  -/~ + ni/~). 

Writing Zo = EiE, Ejf!,i(wi~ -[- (1 - wi)yi) -t- 
Y]iC.s(~x.i)ft we see from (3) that predicting Z 

by Z0 means that for i ¢ s each unobserved 
Y~j is predicted by /2 and Mi is predicted by 

/3xi. For i E s, j ¢ si, Yij is predicted by 

Wilt  + (1 - wi  )ffi. 
Tkree prediction intervals for Z based on 

similar predictive likelihoods are constructed. 

They are all of the form Zo + u (a /2 )T V p (Z )  
where u ( a / 2 ) i s  the upper (a/2)-point  of 
N(0, 1). Vp(Z) is a measure of the uncertainty 
in predicting Z of the form Vr,(Z ) - Vg(ZIy)+ 
(term for parameter uncertainty), see (18). 

With vi - ~ i ¢ ,  v(zi), 

v~(zly) - "r 2 ~ ( m , -  . , )  x ( 6 )  
iEa 

n i p  + ( - - 1 )  
1 - p .  1 - p + n i p  m i  n i  p. 

1 -  p ) + r2(flX~ + p(r 2 v~ 
1 - p + nip 
+,o ~ ~.~(~.,- 1) )+  ~ ~ v , .  

For large no, the three intervals are practically 
identical. However, for small no they differ sig- 
nificmltly. To illustrate this colffidence levels 
are estimated by simulation for 1 - a  = .95, 
no = 6, N = 10, v( , )  = z and selected values 
of (~:1,..., x/v) and 0. 

In a subsequent paper a more comprehen- 
sive simulation study for estimating confidence 
levels will be undertaken, as well as a consider- 
ation of optimality for model-unbiased predic- 
tors. 

2. PREDICTIVE LIKELIHOOD 

We shall here give a brief general introduc- 
tion to the concept of predictive likelihood. 
For a more complete exposition we refer to 
Bj0rnstad (1990). Let Y - y be the data. The 
problem is to predict the unobserved or future 
value z of a random variable Z usually by a 
predictor and confidence interval for Z. It is 
assumed that (Y, Z) has a probability density 
or mass function (pdf) fe(y,z) .  In general we 

let f0(') and fe('l ') denote the pdf and condi- 
tional pdf of the enclosed variables. The joint 
likelihood function for the two umknown quan- 
tities, z mid 0, is given by ly(z,O) = fe(y,z) .  
The aim is to develop a likelihood for z, L(z[y), 
by eliminating 8 from lu. Any such likelihood 
is called a predictive likelihood. 

Different ways of eliminating 0 then give rise 
to different L. The two main type of sugges- 
tions are the conditional predictive likelihood 
L~, essentially suggested by Hinkley (1979), and 
the profile predictive likelihood Lp, first con- 
sidered by Matlfiasen (1979). Let R = r(Y, Z) 
denote a minimal sufficient statistic for (]% Z). 
Then 

/ ~ ( ~ i y ) -  re(u, ~)/fe(~(y, ~)) (T) 

L~(~Iu) - m~x re(U, ~) - f~.(U, ~) (S) 
8 

Typically, L~ and Lp are quite similar when suf- 
ficiency provides a genuine reduction and the 
dimension of 8 is small. 

In linear normal models, Lp will ignore the 
number of parameters aald can be nfisleadingly 
precise. A modification of Lp, Lmp, that ad- 
justs for this was suggested by Butler (1986, 
~ejoinde~), ~ee ~1~o Bj~.~st~d (1990). Let Y = 
(Xl , . . . ,Xn)  and Z - ( X l , . . . , X ~ )  , and assume 
that all Xi's and Xj 's  are bldependent. Let 
6 - (/71, ..., 8k). Then Lmp is given by 

L.,,(~Iu) - L~(~IU). tI'(~.)I1/2/IH.H'I ~/~ 
(9) 

Here, 1"(8) - {I~(0)} is the "observed" 
information-matrix based on (y, z), i.e. I~j(0) - 

-O~ log fa(y,z)/OOiOOj. H~ - H~(t~), and 
a~(o) is the k × (n + m) m~trix of second-order 
partial derivatives of log fo(y,z)  with respect 
to 0 and (y,z). We shall aSSUl'ne that any L 
considered is normalized as a probability distri- 
bution in Z. The mean and variance of L are 
then called the predictive expectation and the 
predictive variance of Z, denoted by Er,(Z ) and 
I.~(Z). Ev(Z ) is then a natural predictor for z, 
called the mean predictor. L(z[y) also gives us 
an idea on how likely different z-values are in 
light of the data, and can be used to construct 
prediction intervals for z. An interval (ay, by) 
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is a ( 1 -  a )predic t ive  interval based on L(zly) 
if ~ L(z[y)dz - 1 -  a. A simplified (quasi) 

(1 - a) predictive interval is of the form 

E (Z) ± (to) 

where u is the upper (a/2)-point  in the ac- 
tual (exact or approximate) conditional distri- 
bution, given y, of ( Z -  E~(Z[y))/v/re~(Z[y ). 

3. PREDICTOR AND PREDICTION INTER- 
VALS IN TWO-STAGE SAMPLING BASED 
ON PREDICTIVE LIKELIHOOD 

In two-stage sampling, Z is given by (3), and 
is a sum of two mixtures. Therefore, hlstead 
of considering a predictive likelihood for Z di- 
rectly, we look at a joint predictive likelihood 
for Z and M(~) = (M i, i ~_ s). It has the 
followhlg form 

L(z, m($)ly) - Lm(~)(zly)L(m($)ly) (II) 

Lm(~)(zly) is a predictive likelihood for z con- 
ditional on M(] )  = re(i) ,  i.e. based on 
fo(y, zlm($)). L(m($)ly) is a predictive like- 
lihood for m(.~) based on fo(y,m($)). Then 
E~, lip follow the usual rules for double expec- 
tation, i.e. 

E ~ ( Z ) -  Ep{Ep(ZIM($))} (12) 

V p ( Z ) -  E~,{Vp(ZIM(g))} 

+Vp{Er,(ZIM(g))} 

In (12) Ep(Zlm(])) and Vr,(Zlm(~)) are the 
predictive mean and variance for Z from 
Lm(,) (z[y). In principle we can derive L(z[y) 
as the marginal likelihood from L(z,m($)[y). 
The advantage of (11) is that we are able to 
obtain Ep(Z) and Vv(Z ) without actually de- 
riving L(zly ). 

Under the model (2) we 
can factorize fo(Y, z,m(~)) = f,r,~(m(s), m(~)) 
• fu,r,p(y(s), zlm(s), re(S)) and it is readily seen 
that applying L~, given by (8), to the terms 
on the right hand side in (11) in fact gives us 
Lr,(z , m(~)[y) = max~ fo(Y, z, m($)), i.e. 

Lp(z,m($)ly) - L~(~),r,(z[y)Lr,(m($)[y). (13) 

It follows that  Ep(Z) and Vr,(Z ) based on 
Lr,(z,m(~)ly ) can be derived by (12). We note 
that L¢, given by (7), has the same property, 
i.e. Le(z, m(])[y) - Lm(D,e(z[y)Le(m($)[y). 

N o r m a l  m o d e l  

It is now assumed that model (2) holds and 
that  ~ j ,  Mi are normally distributed. 

We shah first consider the second likelihood 
in (11), L(m(~)[y), using Lp. Let t(k)(~) denote 
the k-dimensional multivariate t-distribution 
with u degrees of freedom (d.f.) and variance- 

covariance matrix ~, i.e. t(k)(~) is the distri- 
bution of (U/W)x/-ff where U ,-~ Nk(0, ~) and 
W 2 ~ X~. 

Let X(~) be the vector (mi : i 9 ( s ) .  
Then Lr,(m($)[y ) leads to a multivariate t- 
distribution, specifically Lp(m(~)[y)is such 

.(N-no)(v) where that  [ M ( ~ ) - / g X ( ~ ) ] / #  ,,~ trio 
the m.l.e, are /3, given by (5), and &2 = 
! .  ~iea(m i _ ~ , i ) 2 / l ~ ( ~ g i ) .  Y - (vii) with 

2 vii - v(mi) + zi/wo and vii - z i z j /w,  for 
i ¢ j .  It follows that Er, (Mi) - flmi, Vp(Mi) - 

,,,o ) + no-2 i /w,)  and the predictive co- 
variances are Cov~(Mi, Mj) - no &2.mimj/w, 

n 0 - -  

for i ~ j .  This implies that  

E p ( ~  Mi) - /3X~ and (14) 

i¢a n o -  2 w s  

L~ and Lmp (for i ~_ s), lead to 
moments similar to (14) with n o -  2 replaced 
by no - 5 and no - 4 respectively. 

Let us now consider the first term in ( l l ) ,  
Lm(~)(z[y) based on fo(Y, z[m(~)). For tlfis like- 
lihood we will restrict attention to Lv, i.e. de- 
riving Lm(~),v(zly ). The m.l.e. /2,#2,/5 can be 
expressed the following way: 

n i  _ ~-~ n i  

lea "E 

+2 _ _1 ( SSE 
n \ I - #  

ni( i - #)2 ) 
+ ~ l - / ~ + n i ~  "E 

and jb is found numerically, maximizing 
- ( n / 2 ) l o g ' ~  2 - ( n / 2 )  E i e ,  log(1 - ~ + ni~)+ 
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((n - n0) /2) log(1  - , 5 ) .  Here, S S E  = 
~ i e ,  ~-<ie, ,(Yii-  9i)2. When  ni = c, for all 
i ~ s, then /2 - .O - ~ie~g i /no ,  #2 = 

S S / n ,  f, - max  (0,1 - ---~ " ~ - I  Sffff), where S S  -- 
# ,  

Consider first the case when p and r are 
known. Then /2  is given by (15) with/9 replac- 
ing/~. In this case L~(~),v(zJy ) is such tha t  Z is 
normally dis t r ibuted with 

Ep(ZIm(~))- ~ - ~ ( m i -  ni) x 

1 - p ;, nip + 9~ 
1 - p + nip I - p + nip i¢.s 

m i  

V~(ZIm(~)) - V(ZJy,  m(~)) + 

ni  mi q- 

1 - p  )2  . 

1 - p + n i p  

(17) 

 (mi - x 
i~s 

When p , r  are unknown,  L,.n(,),p(zJy) will for 
large no be approximately  such tha t  Z is 
normally  dis t r ibuted with E p ( Z l m ( $ ) ) a n d  
Vv(ZIm(g))  given by (16) and ( 1 7 ) w i t h  
~,÷~ replacing p,'r ~. It now follows, from 
(13), (14), ( 1 6 ) a n d  ( 1 7 ) t h a t ,  approximately,  
Lv(z ,m($)Jy  ) has Ev(Z  ) - Zg(ZJy ) and 

~2 
y,.( z )  - va( z l y )  + 

mi - ni 

iEs 

. _ _  + / ~ . 2 .  + h(2) .  
Ws Ws 

Here, V$(ZIy) is  given by (6) and 

no 5 2 x 
h(k) - no - k 

,~i , + - -  v ~ +  - -  

ZiGs 1--fiTnifi nO Ws 

no - k " w, .¢. 

The predictive likelihood 

m( )lu) - 

leads to the same Ep(Z)  wlfile Vp(Z)equals  (18) 
with  h ( 5 ) i n s t e a d  of h(2). Wi th  

we get the same Ep(Z)  and Vv(Z ) equal to (18) 
with  h(4). 

It can be shown that ,  conditional on y, (Z - 
Za(Z ly ) ) / v /Vo(Z ly  ) is asymptot ical ly  g ( 0 , 1 )  
as N -  no --* oo provided tha t  the zi 's  are 
bounded  as N - n 0  ~ oo. Hence Zly is ap- 
proximately  normal  for large N - no, and the 
quasi (1 - a ) p r e d i c t i v e  interval given by (10) 
b ecomes 

E (Zlu) ± u 

where u (~) is the upper  a /2 -po in t  in N(0,  1). 
This amounts  to regarding N ( E p ( Z ) ,  Vp(Z)) as 
a predictive dis tr ibut ion for Z. Vp(Z) equals 
(18) if the interval is based on Lp(z ,m(~) ly) ,  
while L(p,~) has (18) with h(5) and L(p,mp) has 
(18) with h(4). Let us denote these predict ion 
intervals by Ip, Ipc and Imp. Clearly Iv C Imp C 

/ p c .  

For large no there is practically no difference 
between these intervals.  However, for small no 
they do differ. To find out how the intervals 
perform for smaU no (and small N)  a simulation 
s tudy with no - 6 and N - 10 was done to esti- 
mate  the COldidence levels Cp - P ( Z  e Ip(Y)) ,  
C w - P ( Z  e I w ( Y ) ) a n d  Crop = P ( Z  C 
I ~ v ( Y ) )  , all conditional on s. The approxima- 
tions to  Lm($),p and to the dis tr ibut ion of Z 
given y are not valid for small no and small 
N - no. Still, it is of interest  to find out how 
the coverage properties of the different intervals 
are in this case. In a later paper  a more com- 
prehensive simulation s tudy will be under taken,  
including also large no, N -  no cases. 

The simulation s tudy considers the following 
two main cases, wi th  s - ( 1 ,2 ,3 ,4 ,5 ,  6), 1 - a  - 
.95, v ( x ) -  x and n i -  c, Vi e s. ( I ) x l  - ~2 

= x 3 -  5 0 , ~ 4 -  x h -  30, x 6 - x z -  ¢ 8 -  100, 
x0 - ~10 - 50; c -  3,10. (II) ¢1 - ¢2 - z3 - 
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5000, z4 = z5 = 3000, z6 = z7 = zs = 10000, 
z0 = zl0 = 5000; c = 10,400. 

Case (I)" Two values of/z are considered, # - 
5,100. For # > 100 the confidence levels 
seemed to be essentially equal to the confidence 
levels when # = 100. With  regard to cr, fl the 
levels seemed to depend essentially on the ratio 
fl/o" and we consider fl/o" = .75, 1, 1.5, 2, 3. 

( Ia)- /z  - 100, I- - 1, 5 and p - . 1 ,  .5, .9. The 
confidence levels are approximately constant for 
all the various chosen values of 0. Based on 
simulation of 60,000 observations of (y,z) we 
find C p -  .924, Crop- .973, C p c -  .992. 

Table 1. Confidence levels for case (I) and ~u- 
5, r -  1; 1 - a - . 9 5 .  

.1 
Cp.5 

.9 

.1 
C~p .5 

.9 

.1 
Cpc .5 

.9 

• 75 1 1.5 2 3 

• 929 .936 .932 .937 .927 
• 930 .921 .913 .899 .891 
.920 .923 .899 .895 .889 

• 971 .973 .962 .961 .948 
• 967 .959 .943 .927 .905 
• 961 .952 .930 .919 .904 

• 990 .991 .984 .980 .967 
• 989 .981 .971 .958 .930 
• 986 .978 .958 .948 .922 

Table 2. Confidence levels for case (II) and (r - 
f l -  1, 1 -  a -  .95. 

.01 
c,, 

.50 

.01 

Crop .10 
.50 

.01 
Cpc .10 

.50 

.01 .05 .20 

10,400 10,400 10 400 

.923 .936 .940 .926 

.923 .929 .920 .874 

.929 .896 .870 .864 

.974 .970 .944 .949 

.973 .961 .923 .889 

.971 .922 .872 .866 

.994 .989 .951 .975 

.994 .982 .928 .911 

.994 .951 .876 .873 

(Ib)' ~u - 5, 7" - 1. Table 1 is based on simula- 
tion of 5000 observations of (y, z) in each case. 

Case (II)" We consider fl - a - 1. It seems 
that  the confidence levels depend on ~u, 7" only 
through the coefficient of variation, r//z.  Table 
2 is based on simulation of 5000 observations of 
(y,z) in each case. 

When no = 6 and N = 10 Ip is clearly too 
short generally. /pc is typically too wide, espe- 
cially when p is only moderately large. Overall, 
Imp seems to have coldidence levels closest to 
.95 of the three hltervals. 
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