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This paper is intended to be a development of the mixed 
framework for survey sampling. This framework is fundamen- 
tally a model-based, or superpopulation framework, but the 
effects of the complex survey sampling mechanism are studied 
explicitly. This viewpoint generates a variety of new possi- 
bilities for estimators that are easy to use and have superior 
properties to classical estimators under certain conditions. In 
this paper the range of possibilities are looked at, and exam- 
ples are given from the National Educational Longitudinal 
Survey of 1988. 

I. Theoretical Framework and Notation 

In the mixed framework the basis for inference is a joint 
distribution P(c~, X, Y) where Y is a response variable of in- 
terest, a is an indicator vector indicating which elements of a 
finite population axe selected into a sample, and X will be all 
covariates related to Y including those used in defining the 
complex sampling process (for example a size variable in PPS 
sampling or a dummy variable indicating clusters). A pos- 
sible reduction of this is P(a)t[(Y), which would be the P~ 
unbiasedness framework (see Cassel, S~rndal, and Wretman 
[1977]). 

The underlying superpopulation model for Y is as follows: 

y~ =/(~_~, ~) + ~ (1.1) 

where/3 is a parameter vector, and f is some parameterized 
vector function of z i. The residual ei has mean 0 and is uncor- 
related to z i. Let W be a subset of the X covariates which are 
used in the construction of the survey sample design (called 
design covariates in the literature). Let ri be the probability 
of selection of each unit i in the population i = 1 , . . . , N .  
Let r be the vector of ri .  Let r i j , r i jk ,  etc. be the joint 
probabilities of selection (see Hajek [1981]). Define II~o as 
the set of all nontrivial joint probabilities {xi} U {rij} U-- -  
that define the sample design P(s) fully. For example, in a 
fixed sample size systematic sampling process we can define 
the full sampling process either by assigning a probability to 
every sample p of size n or by defining joint probabilities of 
selection {ri}, {rrij},---,  {ri,,...i.}. Iloo and P(s) are equiv- 
alent. In this framework IIoo is assumed to be a deterministic 
function of W. Since W is a random variable Iloo will be also, 
though we will usually condition on the realized value of IIoo, 
which is the actual sample design. 

The problem to be studied is finding an estimator of the 
finite population mean I7". The problem is viewed as a predic- 
tive problem: the response variable is known for the sampled 
population and need to be predicted for the unsampled popu- 
lation. For unbiased prediction of the unsampled y~s it would 
be sufficient to specify t:(Yi~ = 0). This is usually difficult 
since there is only data from the y~s with c~i = 1, i.e., the 
sample y~s. However if C(YIHoo ) can be specified then this 
c£n be used for unbiased prediction, 

t'(YIIIoo,c~) = E(YIIIoo) (a.2) 

i.e., the relationship between Y and IIoo in the sample will be 

the same as the relationship between Y and IIoo among the 
unsampled elements in the population, leading to unbiased 
prediction of I 7 based on the modeling of Y and IIoo from the 
sarnple. This is called ignorability of the sampfing mechanism 
given IIoo: for a demonstration of the validity of (1.2) see 
Rizzo [1990]. For good studies of the underlying ideas of 
the mixed framework see the comment of Rubin to Hanson, 
Madow, and Tepping [1983]. One can also cite Little and 
R.ubin [1987], Chapter 12, and Little [1982], pp. 235 ft. A 
more extensive description is Sugden and Smith [1984] with 
related papers of Scott [1977] and Scott and Smith [1973]. 

In this paper as in Rizzo [1990] the following special as- 
sumptions are made: 

t) ~¢(YIIIoo): ~c(Yl~r) 

2) ~(y~l~) = ~'(u, l~l)  . (1.3) 

It is generally assumed that t~(yilri) is some linear combi- 
nation of functions of ri for the parametric finear regression 
predictors below or a smooth function f(ri) for the nonpara- 
metric regression predictors. Under Assumptions 1 and 2 and 
(1.2), tf(yilri,~i = 1)is equal to c(y~l~,~, = 0), leading to 
unbiased predictors of I7" based on specification of £(yi l r , )  
with the sampled elements (i.e., corresponding to ai = 1). 
For sufficient conditions giving the assumptions of (1.3) from 
(1.2) see Rizzo [19901. 

II. Alternative Estimators of I7" Using 

Ass.umption (1.3) 

The classical estimator of the finite population mean is the 
Horvitz-Thompson estimator when one has a complex sur- 
vey with differing first-stage probabilities of selection. The 
version of this estimator studied here is a conditional version 
that has superior properties conditionally to the classical ver- 
sion. This estimator is 

1 y i /Tr  i ZiEs YHT = 1 

= x 3-" y; (2.1) 
N ~ .  ~ria~ 

where a,~ = ~ ~ , c ,  ~"  
Suppose that £(yi]ri)  in Assumption (1.3) can be written 

as a linear combination of functions of ri, i.e., L'(yi]ri) = Hi')' 
with Hi = [ft(ri) ' ' ' fk(ri)] for some functions f t , ' ' ' , f k .  
(Usually fl  is just 1 corresponding to an intercept.) If we can 
specify this correctly based on the sample data the following 
predictive regression estimator can be an alternative" 

(2.2) 

(see Royall [1976] for the predictive estimator based on a full 
model z~fl). Essentially for each unsampled element in the 
population the unknown yi is predicted using the conditional 
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expectation based on the Iii7 specification, a t is the usual 
least squares estimator of 7 based on the sample. 

-~ = ( I I : I I , ) - ' l l ' y ,  (2.3) 

where y, is the vector of sampled y{s and II8 is the sample 
design matrix with rows Hi ,i E s. For a use of the proba- 
bility of inclusion as a response variable in the non-response 
situation see Little [1986] and David et al., [1983]. 

It will be shown below that under assumption (1.3) and 

the validity of the specified conditional expectation Yp is un- 
biased conditionally and unconditionally. 

A general predictive estimator will also be studied based 
on weaker assumptions: 

Y N P  = -~ Yi + . Yi • (2.4) 

The predictors in this case are based on a general £(y i[r i )  
specification: no parametric model is fit. The possibility 

studied in this paper is Y NN- Y NN is a nearest neighbor 
nonparametric estimator defined to be as close to the classical 
a 

Y H T  as possible while having superior conditional properties. 
It is described in section 5 below. 

III. Moment Properties of Yp and ~'HT.C 
in the Mixed Framework 

In this section the moment properties of ~'p and ~'HT, C 
are studied under the assumptions of (1.3) and a parametric 
form for ff_.(yilTri). We can write yi as follows- 

Yi : C ( y i l r i ) + e i  

= Hi ' /+  ei (3.1) 

for some row vector Hi = [ f ( r i ) - . - f k ( r i ) ]  of functions of the 
probability of selection. Under (1.2) and (1.3) we have 

£(ei)  = £(e i la i  = 1) = £(eila; - 0) - 0 (3.2) 

This is the 'gain' of (1.2) and (1.3)" under the full super- 
population model, ei contains systematic elements, but with 
the simple g?(yilri) specified, the expectations of the residuals 
from the model for sarnpled and unsampled population units 
are 0, leading to an unbiased predictor of Y- See Pdzzo [1990] 
for further details and a study of effects of misspecification 
of the form of C(yi[ri) .  

The actual predictive error of 1 ~'P - 12 under (3.1) will be 

1 ) - l  , 1 
I ~'p - I2 = ~- E IIi(II;H, II,e. - -~- E ei (3.3) 

i~s i~s 

from (2.2), (2.3), (3.1). See also Rizzo [1990]. 
We can find both conditional and unconditional moment = 

properties, i.e., we can find for example ~ ( Y p -  127" I Iloo,a~) 

and £(1 ~P - I 7" I Hoo). In the former case we are conditioning 
on the sample selected, and in the latter case we are looking 

at the properties of 1 ~P - I 7" over all possible samples, i.e., 
the distribution of a given Hoo. The latter case is essentially 
equivalent to a design-model or P{ unbiasedness operator. 
In this paper focus is on conditional properties. See Kizzo 

[1989] for a study of unconditional properties of 1~" p - I7". 
When conditioning is made on a everything is fixed except 

the {ei}.  e, consists of the sample residuals, a n d  Eie[., ei is 
a sum of the residuals of the unsampled units. Both sets of ei 

have expectation 0 by (3.2), thus I 5 p is an unbiased predictor 
of I7" conditionally (and therefore unconditionally as well). 

Computation of the conditional variance requires essen- 
tially specification of Var(ei lHoo).  Under similar assump- 
tions as given in (1.3) this can be reduced to Y a r ( e i [ r i ) ,  thus 

V a r ( e i [ r i , a , )  = V a r ( e i [ r , ) =  G , ( r i )  (3.4) 

for some function G,~ of ri .  In the paper G,¢ will be assumed 
2 See Rizzo [1990] or the constant function, i.e., G , ( r i )  = a¢. 

Rizzo [1989] for further details. Under this specification some 
straightforward algebra shows that 

var (~p - IT'lH~o,a ) = 

2 g - - n  
a,  E II, ( I I ' I I , ) - '  Hi + -  N2 

(3.5) 

See Rizzo [1989] for further details and the unconditional 
variance. Under (3.1) the predictive error of the classical 
estimator can be written as 

1 
Hi7 

iEs i~s  

1 1 1 +-~ ~ ~ , ( ~ -  ~)- ~_, ~, (3.6) 
Ot Tr Tf i -N  

iEs it~s 

The conditional expectation is nonzero (the first two terms 
are fixed constants conditionally). However it is easy to show 
that the unconditional expectation is asymptotically zero un- 
der the usual linearization arguments. The conditional bias 
in fact tends to be small with most samples, as can be seen 

in the examples below, l ~'tvN is designed to eliminate a good 

portion of this conditional bias. The variance of I~'HT -- 12 is 
also readily derivable and will not be given (see Rizzo [1990]). 

IV. An Example Comparing YHT and I~" p 

The following example uses data from the National Ed- 
ucational Longitudinal Survey of 1988 (NELS88) sponsored 
by the U.S. Department of Education and carried out by 
the National Opinion Research Center (NORC). The survey 
is designed to track students in the eighth grade (in 1988) 
over time and collect longitudinal information. Schools are 
clusters, and are selected proportional to size (of the eighth 
grade class) with differing sampling fractions within sampling 
strata. In this paper only the school data for 1988 are stud- 
ied, thus the clustering and longitudinal aspects do not come 
into play. The response variable used below is base salary of 
a beginning teacher with a B.S. The population of interest is 
restricted to four states in the Midwest (IL, IN, WI, and MI), 
and the target mean is the mean base salary for suburban, 
public schools. For more examples from the NELS88 data  
see Rizzo [1989]. 1 The responding sample size is 52 (there 
were 10 nonrespondents: we assume the response mechanism 
is ignorable for simplicity). The subpopulation of interest is 
a domain crossing sampling strata, in this case state strata. 
The probabilities of selection are related to size of school and 

198 



state.  The scatter  plot of the response variable against the 
log of the probabili ty is given as Figure 1 below. 
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Figure 1. Base Salary against Log (Probabi l i ty  
of Selection) 

As can be seen lineaxity in the logarithm is a reasonable as- 

sumption,  as is homoscedasticity. The  est imator  l~p based 

on this is t 5"P = 1.8078, or $18,078. The  corresponding clas- 

sical es t imator  is #HT = 1.7972. Assuming the predictive 
condit ional expectat ion E(yi l r i )  is of the form & + fl,(~.n r i )  
the following moments are est imated using the formulae of 
the previous section (and the obvious es t imators  of 7 and 

2 
(7" e ) "  

Bias 0 -.007 

Variance 8.11 x 10 -4 1.09 x 10 -a 

MSE 8.11 x 10 -4 1.14 x 10 -a 

The  est imator  17"p has a mean squared error that  is 71.1% 
of the MSE of fSHT giving an efficiency gain of nearly 30%. 
See Pdzzo [1989] for many other examples: generally I )p  
gives superior efficiency conditionally and unconditionally in 
NELS88 examples. See Rizzo [1990] for further discussion 
of this example and a study of the robustness of the results 
against  misspecification of g(yi[Tri). 

V. The  Nearest Neighbor Estimator 

As seen in the exaznple I)HT can be biased conditionally: 
the squared bias as given with the point est imate of bias was 
approximately 5% of overall MSE. Where does this bias arise 
from? It can be understood in the following simple example: 
suppose there are 200 items in a population with 100 having 
a probabil i ty of selection of .1 and 100 having a probability of 
.2. Suppose f (x i )  = 5 for rri = .1 and f ( x i )  -- 10 for r i  = .2. 
We expect  10 selected units from the r = .1 subgroup and 
20 from the r i = .2 subgroup unconditionally. Suppose in 
the sample selected we get 8 from the ri  = .1 group and 22 

from the ri  = .2 group. The conditional Horvi tz-Thompson 
es t imator  will weight the 8 in subgroup 1 by dividing by .1, 
and weight the 22 by dividing the .2. The ri  = .2 group 
wil be overrepressented conditionally- -in essence we will be 
predicting to a population with 80 in subgroup 1 and 220 in 
subgroup 2. 

If the probabilities are known for the populat ion by the 
analyst  as they are in the NELS88 example then this condi- 
tional bias can be corrected readily, leading to a new version 
of the Horvi tz-Thompson estimator with superior conditional 
properties.  

The est imator  is constructed in this way: we predict a 
~)i for each ri ,  i ~ s, by matching the ri ,  i ~ s to a 'nearest  
neighbor '  in the sample, i.e., the r j ,  , j  E s such that  [rj  - ril 
is minimized. Assume for now the {r j}, j E s are unique. 
Call this minimizing probability r(i)- Let Y(i) be the corre- 
sponding response. We predict Yi for i ~ s by using y(i). This  
methodology is similar in spirit to 'hot deck' imputat ion for 
nonresponse and matching adjustments for t rea tment  effect 
in observational studies (Rubin [1979]). The overall predic- 
tive mean es t imator  is 

i 6 s  

(5.1) 

If there are two units r j ,  j E s, of equal distance to r i ,  i ~ s 
(i.e., on either side) choose one arbitrarily. One can also use 
I log r j  - log ril  as a distance criterion, or other possibilities 
(this distance was actually used in the example below). 

The  predictive error I~'NtV -- I7" is as follows- 

Y N N - - } "  - -  

11 ~- ~ [ f ( T r ( i ) ) f ( r i ) ]  ~- e(i) ei 
LiEs 

(5.2) 
Let ni be the number of times yi, i E s, is used as a 

predictor.  Then the conditional moments  axe easy to obtain: 

1 
£(~" NN -- I") - -~ ~ [ f ( r ( i ) ) -  f ( r i ) ]  (5.3) 

2 N n 2 
var(IS"NN- I7"/ = a ,  2 -- (5.4) 

iEs 

Now suppose the {ri}, i E s are not unique. In this case 
use the sample mean at e a ~  unique xi as a predictor for a 
neighboring r i ,  i ~ s. The expectat ion and variance will be 
s traightforward to calculate. 

The  bias term for I ~'NN ought to be small for most samples 
if f is sufficiently smooth. Suppose for example that  I~1 
exists over the interval [0,1] and is bounded above by M. 
Then  

Thus  

- Of  f*(~(0)- f*(',)= ('~(,)- ~)GI~: 
r i  _< r~' _< r(i), 

r(i) < r~' < ri  . 

< [ r ( i ) -  f i l M  

I,F.(YNN -- IP)l < ma-x 17r(,)- f i l M  
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For most large samples the ~'+, i E s, should be sufficiently 
dense among the 7r+, i ~ s such that  this maximum will be 
small. If f is not smooth then the bias may not be small 
(the classical estimator will also suffer bias difficulties in this 
circumstance). 

In the NELS88 example cited in example 5 the actual point 

estimate for I~'NN was 1.7956. The conditional sampling 
properties show a bias of +.0002, which corresponds to a 
negligible squared bias, and a variance of 1.06x 10 -a.  Thus 

the overall MSE of I~'NN is about 6% better than the cor- 

responding MSE of I~'HT. The gain in efficiency is due to 
the utilization of the knowledge of the {a'i}'s in the popu- 
lation: knowledge certainly available to at least the person 

_ 

who selected the sample. Y N N  can also be viewed as a non- 

parametric version of Yp that will be certainly robust against 
misspecifications of the form of £(yi[ri) ,  unlike YR. 

VI. Further Results on the Relative 

Properties of ~'p, ~" HT, and ~NN 

In this section the relative variances of the three predictive 

estimates will be studied. From (3.3) the variance of ~'p can 
be written as 

,,,,r(~,,- ?): 

X N _ R i f f  s 

,J 
H.)-' ( ~ ~ n , )  

N - n  i¢, 

(6.1) 

The quantity ~ ~ i f ,  Hi is the mean of the Hi rows for 
the unsampled elements, which corresponds to a point in the 
design space. The first term in (6.1) is simply the leverage 
of the point ~ ~ i f s  Hi if it were a design point. Let 
PimPs be II',II, adjusted for sample means. Then assuming 
the intercept is included in the design matrix we can rewrite (6.t) 

var(l ~'P - I2) = 

x - + (P ,~ ,  - ~,)(p~p,)-1([=,,.+, _ [ : , )  
12 

+~~_~ (6.2) 

where iS+, : ~ E i ~ ,  Hi and h = -~ E i o  Hi, the corre- 
sponding sample means of unsampled and sampled units (see 
Weisberg [1985], p. 113). 

Suppose we look at the corresponding variance of l ~" H T -  ~/" 
From (4.4) 

( )+ 2 N n 
v ~ ( ~ ' . r  - ?1 : o~ N 

N n ( - - - - -  
X 

- -  7 [ ' i (~  ~ r 

2 N ; n  
= a e W ?  + 

1 
I)2-I- / V - n  

1 (6.3) 
N - n  

where wi = Nl---~_~( 1--!-- -- 1). The wi's can be seen readily to 
~ i ~ r  

2 add to 1. Thus the quantity a c ~ w/2 is the variance of a 

weighted mean of residuals. The variance of YNN -- I2 can 
also be put in the form of (7.3) with a different set of wi's 
that  add to 1. What  can now be said of relative variances? 
In the special case when P~, and /5 are equal 

var(~ p - Y) < var(lYHT - ]~ ) 

with equality only if the wi's are equal (which would corre- 
spond to equal r i ' s ) .  The special casse of equality of means is 
unlikely though as the unconditional expectations of P,,s and 
P, are different. In general the variance of I?p depends on the 
degree of extrapolation from Ps to P,,,, and the variance of 

~'HT and I ~'NN depends on the effective weights wi in both 
cases, and in general there is no domination result. There is 
a special case where domination is assured, however. The fol- 
lowing example from NELS88 is consistent with a null model, 
i.e., a conditional expectation C(yi[ri) equal to a constant. In 
this case there will be a domination result. The data  is base 
salary da ta  from Cathofic schools (from the same states as 
above). 
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Figure 2. Adjusted Base Salary against log(ri) ,  
Catholic Schools 
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Figure 2 shows a scatterplot of the response variable 
against the log of ri .  As can be seen the data is sparse 
but there appears to be no obvious relationship of yi to ri.  
There also appears to be heteroscedasticity which can be ad- 
justed for (see Rizzo [1989]), but a homoscedastic model will 
continue to be assumed for simplicity. 

In this situation f p  is the simple mean of the sample ob- 

servations. Y HT and Y NN are both weighted means. All 

estimates have 0 bias under the null model, and l ~" p dom- 

inates both f l i t  and f NN. The actual relative variances 

are 6.9 × 10 -4, 7.9 × 10 -4, and 1.08 × 10 -a for I~'p, l ~'HT 

and I~'NN respectively. The efficiency gain of Y p is 13% in 

this situation over l ~'HT. In a null model situation ~ p  must 
dominate in general. 

An example on the other hand where ~" HT will have a lower 

variance than ~'p is from the urban public schools. A plot 
of yi (the base salary) against l og ( r i ) i s  given in Figure 3 
below with an estimated predictive conditional expectation 
(assumed quadratic). 
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Figure 3. Adjusted Base Salary Against Log(ri),  
Urban Public Schools 

The point estimates and moment properties of the three 
estimators are given as follows" 

f P ~/HT YNN 

Estimate 1.7256 1.8028 1.7885 
Bias 0 +.0760 +.0906 
Variance 1.49 x 10 -3 5.45 x 10 -4 1.30 x 10 -3 
MSE 1.49 × 10 -a 5.80 x 10 -3 2.76 x 10 -3 

(Note: the squared bias estimate that is part of the MSE 
estimate is a square of the bias estimate minus the variance 

of the bias estimate.) As can be seen the variance of Yp 

is much larger than the variance of ~'HT. Essentially there 
is an extrapolation problem: the smallest ri in the sample 
was .0248, which was the 160 ~h smallest r i  of 670 in the 
population. The smallest population ri  was .0091 (In an 
independent sampling process there is approximately a 20% 
chance of failing to select 160 units in a row with ri  = .01, 
thus the occurrence is not incredible.) However it means we 
are extrapolating to these 160 population units with no data 

(this bad situation did not occur in the other two examples). 

The variance of YHT is smaller simply because there are no 
'small '  r i ' s  in the sample, thus there are no larger weights 

= 

wi in the weighted average. YHT essentially ignores the 160 
units, but the effect of this shows in the large bias of +.076. 

The zero bias of ~'p depends on the veracity of the quadratic 
model and the validity of the extrapolation to smaller r i ' s  
than those in the sample, thus the zero squared bias is likely 
to be very optimistic. It would be fairer to say all three 
estimators have difficulties in this situation. 

VII. Conclusions 

The methodology arising from the reducing assumptions in 
section 2 and 3 generates a new series of estimators that  are 
essentially model-based, but highly robust against model mis- 
specification because of the partial reliance on the randomiza- 
tion distribution induced by the sampling design. Only the 
relationship g(YIIIoo) needs to be specified, which follows di- 
rectly from the concept of ignorability. With assumptions 
1 through 3 one can justify the use of the simple predictive 

r_ 

regression estimator Yp,  which will be more efficient in gen- 
eral than the classical estimators with little loss in robustness. 
The main source of lack of robustness is likely to be in the 
specification of the form of the predictive conditional expec- 
tation and variance, but this can be partially alleviated by 

use of nonpararnetric fitting methods, l ~'NN can also be used 
as an alternative to give extra robustness against misspecifi- 
cation. 

This technique is used in this paper for descriptive mean es- 
timation, but it can be used as a replacement for p-weighting 
(weighting by the inverse of r i)  wherever p-weighting is used 
in either descriptive or analytic estimation. It is likely that  
when the weak assumptions of this paper are satisfied a gain 
in efficiency will result over p-weighting without the loss of 
robustness often endured with straight model-based estima- 
tors. 
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