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I should like to thank Sue Ahmed for organizing 
an excellent session. The large attendance attests to 
the widespread interest in the weighting of survey 
data. I should also like to commend the authors for 
their thought-provoking and valuable papers. I will 
comment on each of the papers in turn. 

Kish Paper 

As Leslie Kish notes, there is no readily 
available, simple yet comprehensive, treatment of 
weighting for survey practitioners. His paper is 
designed to fill this gap. In a short space he has 
successfully addressed a multitude of issues relating 
to weighting. In reading the paper I was stimulated 
to think of other aspects of weighting that I might 
have included. I will outline some of these below. 

First, I think it would be useful to discuss the 
data needed for weighting to compensate for nonres- 
ponse and noncoverage. In one type of adjustment, 
which I term sample weighting, respondents are 
weighted up to represent similar nonrespondents. 
The data requirements for this form of weighting are 
information for both the respondents and nonrespon- 
dents on the auxiliary variables used in the adjust- 
ment. Since often little is known about the nonres- 
pondents apart from information from the sampling 
frame (e.g., their PSUs and strata), there is usually 
a limited choice for creating weighting cells for this 
type of adjustment. Sample weighting attempts to 
compensate for nonresponse but not for noncoverage. 

Another type of adjustment is generally known as 
poststratification, but I prefer to term it a population 
weighting adjustment when it is used to compensate 
for nonresponse and noncoverage. Population 
weighting adjustments require information on the 
auxiliary variables for the respondents (but not for 
the nonrespondents) and knowledge of the population 
joint distribution across the weighting cells from 
some external source. Care is neeAed to ensure that 
the auxiliary variables are measured in a comparable 
way in the survey and in the external source. 

Raking is a form of weighting adjustment that has 
less detailed data requirements than those of 
population weighting adjustments. In addition to 
information on the auxiliary variables for the 
respondents, it requires external information on only 
the marginal population distributions for the auxiliary 
variables, not on their joint population distribution. 

Apart from its less detailed data requirements, 
another reason for using raking is to employ several 
auxiliary variables without resorting to separate 
weighting adjustments in a large number of cells. An 
alternative procedure for this situation is some form 
of response propensity weighting (Little, 1986). 

Another possible topic for the paper is the 
avoidance of weights. For instance, nonresponse 
adjustment weights may sometimes be avoided by 
making substitutions for the nonrespondents 
(Chapman, 1983). Similarly, noncoverage adjustment 
weights may sometimes be avoided in sample 
selection. For example, a sample of hospital patients 
may have to be drawn from an incomplete list of 
hospitals because the other hospitals do not have the 
requisite records (perhaps from abstracting services). 
The sample of hospitals may be drawn as a 
disproportionate stratified sample in order to make 
the resulting sample reflect the distribution of 
hospitals across the strata that would have occurred 
had the total population of hospitals been sampled. 

The issue of norming the weights often arises. 
Since government statistical agencies frequently want 
to estimate population totals, they may norm the 
weights to make their sum correspond to the 
population size. Researchers concerned with means 
and proportions and other standardized estimates, not 
totals, often norm the weights to sum to the sample 
size. The rationale here is that the sum of the 
weights can then be treated as comparable to the 
sample size in gauging the precision of the survey 
estimates. This, however, fails to take account of the 
fact that the use of weights for sampling frame 
inequalities and nonresponse and noncoverage 
adjustments leads to a loss of precision; under 
certain assumptions, the effective sample size is in 
fact reduced to (Ew~)21Ew~. This suggests the 
possibility of norming the weights to sum to the 
effective sample size, but even this is imperfect 
because it will not produce the appropriate effective 
sample sizes for subclass analyses. 

It is useful to note that imputation schemes for 
item nonresponse that assign values from respondents 
to item nonrespondents are closely related to a 
weighting procedure that replicates the weights of the 
respondents (Kalton, 1983). For univariate analyses, 
assigning the value of a respondent to a nonres- 
pondent is equivalent to adding the nonrespondent's 
weight to that of the respondent. 
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Kish notes that the use of weights for analytical 
statistics, like regression analysis, poses philosophical 
problems. This issue is a complex one, and as such 
may fall outside the scope of his paper. However, in 
view of the considerable importance of this issue, I 
would have liked to see some discussion of it. 

Cowan and Ahmed Paper 

Chuck Cowan and Sue Ahmed present an 
interesting approach to noncoverage based on 
maximum likelihood. In order to examine their 
approach, I will review the classical survey sampling 
approach for the same problems that they address. 

Consider, first, a simple random sample (SRS) 
from a frame with complete coverage of teachers to 
estimate the total number of mathematics teachers. 
The probability of t mathematics teachers in the 
sample is given by the hypergeometric distribution 

in the notation of Cowan and Ahmed. The sample 
proportion of mathematics teachers p = tin is un- 
biased for P = T]N and T = Np is unbiased for T. 

Now consider the problem of noncoverage, with 
M teachers on the frame. Then the total number of 
mathematics teachers in the population is 
T = M P + ( N - M ) P  o, where P and P0 are the pro- 
portions of mathematics teachers among the M 
teachers on the frame and among the (N-M) teachers 
not on the frame, respectively. As above, p is an 
unbiased estimator of P.  In order to estimate T, an 
assumption is needed about P0" A simple assumption 
is P0 = P,  in which case P0 may be estimated by 
p ,  and hence T may be estimated by T = N p .  

Next consider a stratified sample with 
noncoverage, with M i listed teachers and N i total 
teachers in stratum i .  Extending the SRS case, the 
total number of mathematics teachers is 
T = ~_,T i = ~ i P i + ( N i - M i ) P o i .  If the N i are 
known, and if the assumptions that Poi = Pi are 
made, T may be estimated by T - ~ t i p  i. This is 
akin to a two-phase sample: first, a SRS of M i of 
the N i teachers is selected for the frame in stratum i ,  
and then a SRS of m i teachers is selected from the 
M i teachers on the frame. Under the assumptions 
Poi = Pi,  the poststratified estimator T = ~ , N i p  i 
follows in a straightforward manner. 

Suppose now in the stratified example that 
N = ~ r  i is known, but that the N i are unknown. 
In this case T may be estimated by T = ~-,l~iPi, 
again assuming that Poi = Pi.  In this situation, 
estimators of N i are also needed, and this requires a 

further assumption. A simple assumption is that the 
rate of noncoverage is the same for all strata, in 
which case N i may be estimated by /Vi = NMi/M"  
This leads to the estimator I" = N ~ M i p J M .  

Finally, consider the situation with marginal 
controls for two control variables. In this case 
1 ~' = ~ ~ 0 p i j ,  under the assumptions that 
Poii = Pij" The  Nij may be estimated by the raking 
algorithm under the assumption that the noncoverage 
rate in cell (ij) can be expressed as 4~i/ = P i °j-  

The above estimators, based on a criterion of 
unbiasedness, are very similar to those derived by 
maximum likelihood by Cowan and Ahmed. For 
these simple situations, the forms of estimator to use 
with the classical approach are obvious. The 
assumptions involved under the classical approach are 
clearly identified and somewhat less stringent than 
those neeAed for the maximum likelihood approach, 
and the derivations are perhaps more straightforward. 
Moreover, the results for the classical approach 
generalize readily to the complex cluster sample 
designs that are widely used in practice. The 
extension of the maximum likelihood approach to 
complex sample designs is much more difficult. 

I feel that the strength of maximum likelihood 
methods lies in complex situations for which no 
obvious estimator can be identified under the classical 
approach. The systematic application of maximum 
likelihood procedures, with a clear specification of 
the assumptions involved, may then lead to estimators 
that otherwise would not have emerged. 

Cohen Paper 

Panel surveys like the National Medical Care 
Survey (NMES) and its predecessors, the Survey of 
Income and Program Participation, and the Panel 
Study of Income Dynamics face a problem of how to 
take account of changes in families over time in 
conducting longitudinal family analyses. Families are 
formed and dissolve, and change in composition, as 
the result of births, deaths, marriages, divorces and 
separations. By the nature of a panel survey the 
problems of family dynamics have to be squarely 
faced. It is worth noting that these problems also 
occur with cross-sectional surveys that collect retro- 
spective data on family members, but they are often 
side-stepped in the analysis. Steve Cohen's paper 
provides a clear discussion of the issues involved in 
dealing with family dynamics in the NMES. 

It is useful to separate the problem of family 
dynamics into two parts. First, what are the 
population parameters that provide meaningful 
summaries of family-level information? That is, what 
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quantities would be computed if the whole of the 
U.S. population were included in the NMES for its 
one year duration? Second, how are the sample data 
collected in the NMES used most effectively to esti- 
mate these population parameters? This includes the 
question of how the sample data should be weighted. 

Cohen indicates the need for two types of 
population parameters, means and distributional 
estimates, from the NMES. An example of the 
former is the mean annual expenditure for ambulatory 
physician contacts per family. An example of the 
latter is the percentage of families with expenditures 
for physician contacts above $2000 per year. Given 
the problem of family dynamics, one solution is to 
define such parameters only for stable families that 
do not change in composition at all during the 
reference period. The clear limitation of this solution 
is that it excludes a sizeable proportion of the 
population, and those excluded may well have 
different medical expenditures than those in stable 
families. 

Cohen describes three other strategies for 
handling family dynamics in family-level analyses: 
(1) to define a family as a set of individuals at a 
specific point of time, and to define the longitudinal 
family to comprise that set of individuals for the 
survey reference period; (2) to define longitudinal 
families by a set of rules that allow for some changes 
in composition; and (3) to deal with families that 
exist for only part of the reference period by 
weighting them in the parameter according to the 
proportion of the reference period that they existed. 
I will comment briefly on each in turn. 

The first strategy corresponds to what is done in 
cross-sectional surveys like the Current Population 
Survey, where retrospective data are collected on 
current family members. An aggregation of these 
data to the family level combines data of individuals 
who may have lived in other families during the year. 
For the NMES, Cohen suggests that families might 
be defined at the beginning or end of the panel. If 
this strategy is adopted, I would opt for the 
beginning of the panel. It is simpler from the 
weighting prospective, and data are intended to be 
collected for all family members under this def'mition 
throughout the reference period (although panel 
attrition will cause some missing data). Defining the 
family as it exists at the end of the panel presents the 
problem that data are not collected for nonkey 
persons in the NMES until they join the panel. It 
would, of course, be possible to impute their missing 
earlier data, but that seems to constitute an 
unnecessary amount of imputation. Whatever point 
of time is used, however, the basic objection to this 

strategy is that it does not truly reflect a family's 
experience. 

The second approach of def'ming longitudinal 
families to allow for some change of membership 
aims to reduce the losses from the strict no change 
definition. It seems to me that it would be hard to 
give meaningful interpretation to the results obtained. 
For example, a change by the addition of a birth or 
the loss from a death during the course of the 
reference period is likely to markedly affect medical 
expenditures. 

The third approach weights part-period families 
by the proportion of the period they were in 
existence. This is similar to the exposure to risk 
approach used in demographic and actuarial studies. 
The usual basis of this approach is that a person has 
a constant exposure to risk, and that the chance of 
becoming sick is therefore directly proportional to the 
length of time observed. I question whether the 
approach is appropriate for the NMES where family 
formation and dissolution are likely to be associated 
with atypical medical expenditures. In particular, 
how is the neexl for distributional estimates handled 
under this approach? 

In summary, I think that all the approaches have 
serious limitations. While I recognize the attraction 
of the concept of a family to analysts, it is perhaps a 
misleading one. In view of the difficulties created by 
family dynamics, the best approach may well be to 
follow Duncan and Hill (1985) and Ruggles (1990) in 
rejecting the family as the unit of analysis, and 
instead conduct analyses at the individual level. 
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