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practice in sampling, placed 
Abstract in the context of probability 

theory. We hope to show the 
The derivation and correspondence between the two 

development of weights for approaches to estimation and 
sample surveys has come almost how for certain classes of 
exclusively from the sample distributions the two 
survey tradition. Yet the approaches lead to the same 
forms of sampling that are results, but via different 
most commonly used have direct paths. The paths are what 
interpretations as 
realizations of stochastic 
events arising from well 
defined probability 
distributions. This paper 
attempts to develop weights 
for estimators from sample 
surveys using maximum 
likelihood methods applied to 
the likelihood functions for 

make this investigation 
interesting, because they 
force the statistician to 
consider what assumptions are 
being made regarding how the 
data has arisen and whether 
the procedures used adequately 
reflect real life. 

In particular, we attempt 
different sampling designs. Of to deal with sample weighting 
particular interest is a as an adjustment for coverage 
derivation of stages of problems in the sampling 
weights analogous to those frame, where coverage problems 
used to correct for coverage are dealt with as a stochastic 
and nonresponse problems in event. This in turn leads us 
sample surveys, to consider models for the 

process of sampling and 
simultaneously for the 

1.0 Introduction development of the frame used 
for sampling. The models lead 

This paper is philosophical us to consider a number of 
in nature. It considers two issues related to bias, 
approaches to the same variance, and the assumptions 
problem: the derivation and that go into our estimates. 
application of weights as a 
method for estimation and as This paper will look at 
an adjustment for the various some of the literature related 
factors that impact the 
estimation process in 
statistics. The two 
approaches are the classical 
sampling approach to 
estimation and maximum 
likelihood estimation. 

This discussion is intended 
to be a review of current 

to model based estimation, 
coverage, and relationships 
between the two approaches, 
and then consider some 
specific models for sampling 
from a finite population and 
models related to how frames 
might be constructed. 
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2.0 Literature Review function based on the 
hypergeometric and multinomial 

The approach taken in this distributions which is 
paper crosses several broad informative and show that the 
areas related to survey 
sampling: weighting for 
coverage, the theory of 
inference in survey sampling, 
post-stratification, the EM 
algorithm. We will not 

customary estimator for the 
population total: 

Y = N (~y~l /n) 
is essentially maximum 
likelihood estimator. They 
extend their approach to 

attempt to give a regression estimators, some 
comprehensive review of all of special cases of unequal 
these topics, but rather will probability sampling and two 
point out a few of the stage sampling, and Bayesian 
references in the literature estimators. Our discussion 
which are most relevant to our of models for sampling and the 
discussion, resulting estimators, in many 

Rao and Bellhouse (1989) 
give an overview of the 
theoretical foundations of 
inference from survey data, 

respects, parallels the 
approach of Hartley and Rao. 
Royall takes a similar 
approach and, in addition, 
mentions briefly the case of 

including a discussion of the poststratification where the 
design-based vs model-based sizes of the poststrata are 
approach to survey sampling, known. 
Sarndal (1978) gives a 
comprehensive comparison of Not a great deal has been 
the design vs model-based written on sample weights for 
approach. Brewer and Sarndal coverage. Groves in his book 
(1983) discuss six approaches on Survey Errors and Survey 
to enumerative survey sampling Costs (1989) has a chapter on 
covering both classical and 
model based approaches to 
inference. Smith (1976) 
reviews the historical joint 
development of survey design 
and finite population 
inference. All of the above 
papers refer to the works of 
Godambe, Royall, and Hartley 

"Costs and Errors of Covering 
the Population". He refers to 
making poststratification 
weighting adjustments to 
adjust for undercoverage. 
Often coverage adjustments are 
considered as a special case 
of nonresponse adjustments. 
The most common approach to 

and Rao, all of whom attempted adjusting for coverage 
to link the survey sampling problems is through 
approach to estimation to the poststratification or raking 
classical approach. Godambe ratio estimation using 
(1966) considered the iterative proportional fitting 
likelihood function arising (Deming & Stephan (1940), 
from drawing a random sample Bishop, Fienberg, and Holland 
from a labelled finite (1975)) when only marginal 
population and found that the population totals are known. 
likelihood was flat and thus Kalton (1983) discusses 
provided no information for weighting adjustments for 
estimating a total Y. Hartley coverage using raking ratio 
and Rao (1968, 1969) and estimation and discusses 
Royall (1968), by ignoring the briefly its relation to log 
labels, arrive at a likelihood linear models. Cox and Cohen 
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(1985) discuss replacement (srswor). To 
poststratification adjustment make our discussion more 
where sizes of the poststrata concrete, let's consider a 
are known as an adjustment for simple example: our frame is 
both nonresponse and the population of teachers, 
undercoverage, and we want to estimate the 

total number of math teachers 
A comprehensive discussion in the population of all 

of the EM algorithm and its teachers. And no discussion 
wide range of applications is is complete without the 
given by Dempster, Laird, and introduction of confusing 
Rubin (1977). In our 
discussion of weighting for 
coverage, the EM algorithm is 
used as an iterative procedure 
for obtaining maximum 
likelihood estimates of 
population cell sizes in a 
manner similar to the use of 
iterative proportional 
fitting. 

notation, and so we have: 

N = Number of teachers of 
all types in the 
population 

T = Number of math teachers 
in the population 

n = the sample size 
t = the number of math 

teachers observed in 
the sample 

3.0 Sampling and Estimation 
under Different Situations, 
and Corresponding Models 

This section will consider 
different common sampling 
methods and develop the 
corresponding models to 
account for both the sample 

N and n are known and fixed, t 
is observed as a result of 
sampling, and T is to be 
estimated. 

The sampling statistician 
develops an estimator by 
considering the probability 
that a member of the 

design and issues in coverage, population/frame is selected, 
While we consider both the n/N, and uses this probability 
situation where we use simple to weight each member of the 
random sampling and stratified population to make him 
random sampling, we avoid any "represent" others not sampled 
discussion of clustered 
sampling so as to keep the 
models tractable. 

3.1 .Simple Random Sampling 
.without Replacement 

In the simplest situation, 

but in the population. The 
criterion used to develop an 
estimator is that it be 
minimum variance and unbiased, 
or minimum mean square error 
(and so possibly biased, but 
the extent of the bias is 
small and the gain in variance 
reduction is larger than the 

where we have perfect coverage bias squared). Derivation of 
of the population, the frame 
perfectly lists the entire 
population, but we may not 
have available on the frame 
the information we require. 
So we draw a sample from the 

such an estimator is a 
standard exercise early in any 
complete sampling text. 

The probabilist considers 
the probability distribution 

frame, typically using simple for the set of observations 
random sampling without collected, in this case the 
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hypergeometric distribution. 
Such a distribution for 

this case might look like- 

Stirling' s approximation 
applied to all the factorials 
in the combinatorics gives us: 

IT) C N-T ) t n-t 
p(t) - ............. 

^ N 
T = t - 

n 

We know N and n, and we 
observe t, the number of math 
teachers in the sample; we Now we make the problem 
want to know T, the number of slightly more complicated. 

which is the traditional 
estimator found in sampling 
theory. 

Suppose the frame does not 
have perfect coverage, but 
that we have some external 
information that fixes the 
population size. We have to 
consider two new totals as 
part of the estimation 
process. These are: 

M = the number of teachers 
of all types on the 
frame (while N remains 
the number in the 
population) , and 

math teachers in the 
population. The function 
above can be taken to be a 
likelihood function with T as 
the unknown parameter for 
which we are attempting to 
discover the most likely 
value. We can take the 
derivative of the above 
function with respect to T and 
calculate the maximum of the 
function to find the maximum 
likelihood estimator of T. 
Unfortunately, the function 
above is very difficult to 
manipulate, and we wind up 
resorting to indirect 
approaches or approximations. 
One approach is to calculate 

F = the total number of math 
teachers who are on the 
frame 

the ratio L(T)/L(T-I) and set and we have two events with 
it equal to unity. The point which we have to be concerned: 
at which the ratio is equal to the event of being included on 
unity is approximately where the frame, which we take here 
the maximum of L(T) occurs, to be a stochastic event, and 
The ratio L(T+I)/L(T) works the event of being sampled. 
equally well, though it gives We now have to consider 
a slightly different answer conditional likelihoods: a 
since both are approximations teacher cannot be sampled 
because of the integer nature unless he has been included on 
of T. The first ratio gives the frame. We can now write 
an MLE of" the likelihood function as: 

^ (N+I) 
T = t ..... 

n 

and the second gives a similar 
but different value. 

L(T, F) = 

= L(TiF) L(F) 
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which is the traditional 
The left half of the estimator and does not rely on 

likelihood assumes that F is the size of the frame. What 
now an observed value, and it does rely on is an 
this half of the likelihood assumption that all teachers 
deals with the probability of have an equal probability of 
the event of getting onto the getting on the frame, and an 
frame. In fact we do not know equal probability of being 
the value of F, how many math sampled, whether they are math 
teachers are on the frame, and teachers or some other type. 
this becomes a nuisance This point is crucial in 
parameter since it is understanding why a 
necessary to find the MLE for probabilistic/maximum 
T. To rid ourselves of this likelihood approach is useful. 
nuisance, we solve first for The development of the 
the MLE of F, and then likelihood functions forces us 
substitute this MLE into the to explicitly state the 
likelihood L(T]F) to solve for assumptions underlying the 
T. This sequential procedure selection process. 
is commonly used in problems Consideration of the coverage 
where parts of the likelihood of the frame as a stochastic 
are unobserved and other parts process also forces us to 
are "sufficient" in the formal think about whether the frame 
sense for estimation. This can be adequate as a 
procedure is also reminiscent representation of the 
of the EM algorithm in that we population. If the 
solve for an expected value assumptions underlying the 
first, and then use this value likelihood function are not 
to solve for the primary believable, then estimates 
parameter of interest, from the frame will not be 

unbiased for the population. 
The solution to the problem 

above, deriving an estimator 
for T, is : 

^ ^ N 
T = F - 

M 

and F is estimated from the 
second half of the equation 
by" 

^ M 
F = t - 

n 

for F into the estimator for 
T, we get: 

Another point to consider 
is that even in a very simple 
problem like this one, we have 
brought in outside information 
to the estimation process. We 
sample from the frame, but the 
weighting information uses the 
population size, which is a 
number not available from the 
frame nor the sampling 
process. It has to come from 
another source and must be 
incorporated as a parameter in 
the stochastic process to be 
used. These two points will 

Substituting the estimator be considered again in a later 
example. 

^ N 
T = t - 

n 

3.2 Stratified Sampling 

Stratified sampling leads 
us to consideration of two 
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special situations. The first 3.3 Control Totals for Post- 
is the situation where there Stratification 
is information available on 
the frame that can be used to The final part of the 
both partition the sample and discussion has to do with the 
also for use in establishing situation where information is 
parameters in estimation. In not available at the time the 
this case we can write down a sample is drawn (i.e. the 
likelihood function, such as frame does not have the 
the product multinomial or the information necessary to 
multivariate hypergeometric, partition the sample on some 
which has parameters key variable), but control 
corresponding to the sizes of totals are available for 
the strata, always for the weighting. The simplest 
frame and usually for the situation is the univariate 
population. When the sizes case, where control totals are 
are available for both the available for use in 
frame and the population, the estimation with a simple 
problem of estimation becomes random sample. The likelihood 
just the conditional function in this case is very 
likelihood problem described interesting and informative. 
at the end of the previous 
section. In this case the ~i I (Ni - T ~ 
assumption is made that the i M i - F 
probability of being part of L = ~ ................... 

the frame is different in e a C h o f  the strata. (N~M 

A situation that is only (Fii (Mi - F~) 
slightly more complicated is ~ t i n i - t 
found when the stratum sizes x .................... 
for the frame are known, but [M 1 

i %  

the stratum sizes for the knj 
population are not known, and 
the overall population size is In this likelihood, we see 
known. Using the conditional that there are no subscripts 
likelihood, weights are in the denominator of the 
derived for the part right side of the likelihood, 
pertaining to the frame, and indicating that the sample was 
then a proportional adjustment drawn as a simple random 
is made to the totals which sample without replacement, 
result to force them to add up and so all cases fall into the 
to the population total, sample with equal probability. 
Again, the assumption is made The sample can be arrayed 
that membership on the frame according to the categories of 
is a stochastic event, but as the variable used as a control 
an event that happens with total, and these are our 
equal probabilities across all sufficient statistics. 
the strata. Since we have However, the frame cannot be 
less information available for arrayed in such a way since 
estimation, we have to the information is not 
restrict the number of available on the frame. Even 
parameters to be estimated, though we do not have the 

sizes, Mi, to complete the 
likelihood, we can still 
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complete the estimation likelihood that makes use of 
process by acting as if we did all the information we have 
know these totals. Using the available. This is the 
same derivation process situation where we have two or 
described above in the first more control variables for 
section, we find that the M~ which we know control totals, 
are included in the estimators but do not have these 
for T i (the number of math variables available on the 
teachers) and F i (the size of frame. We can summarize this 
the frame for coverage group 
i), and these values cancel 
when the estimator for F~ is 
substituted in the equatlon 
for T i. In our notation we 
have: 

^ ^ N i 
T i = F i -- 

M i 

^ M i 
F i = t i -- 

n i 

and by substitution" 

T i 
N i 

= t i -- 
n i 

In this case, we have a 
great deal of information 

situation in tabular form, as 
seen in Table i. 

In this table, the t-- and xj 
the n..7 are known, the M.. are 1 1 

~re all unknown, and the N-- 
unknown but sums of the~e 
values are available as the 
control totals. This means 
that the N-. and the N+. are 
known, and we would lik~ to 
use these values in the 
estimation process. 

One common way to think 
about this problem is to 
consider the table above as a 
large four way table with 
incomplete data, and to use 
log likelihood techniques. To 
be consistent in our 
presentation, however, we will 
outline a different approach 

about the coverage variable in to the problem. Our approach 
the sample, and we know that is to write out the complete 
all cases in the sample were likelihood as if the Ni~ were 
drawn with equal probability, known and theeM~EM were ~nown, 
so the additional degrees of and to use th algorithm to 
freedom in the sample allow us estimate the parameters in the 
to assume different coverage likelihood, which in turn will 
rates - different give us our weights. 
probabilities of being 
included on the frame for the The EM algorithm is a two 
coverage groups - which is why stage procedure that allows 
we use the post-stratification one to estimate the parameters 
adjustment. Even though we do in a likelihood function in 
not know the totals for the 
coverage groups on the frame, 
we are still able to 
incorporate the population 
information into the 
estimation process. 

The final situation to be 
described is one in which we 

the presence of missing data. 
The first stage assumes the 
parameters are known, and uses 
these parameters to calculate 
expected values for all the 
unknown totals in the 
likelihood function, 
conditional on what is known 
about these totals. In this 

cannot explicitly write down a case, we would calculate the 
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expected values of the Ni5 
conditional on knowing th~ Ni+ 
and the N+5 , and  t h e  e x p e c t e d  
values of the M~ and N~ - 

mJ 
Mi~ conditional ~n the 
e x p e c t e d  v a l u e s  o f  t h e  Ni~ .  
The second stage assumes ~ii 

4.0 Conclusions 

The assumptions discussed 
in section 3.0 are essentially 
the same as those which apply 
when deriving sample weights, 
and in particular when raking 

the data are observed and uses is used to fit a sample to a 
this data and the density set of control totals. The 
function to estimate the purpose of this paper was to 
parameters of the likelihood show that these assumptions 
function. Since the data are are made explicit when the 
not all observed, the expected classical sampling and 
values calculated in the first estimation process is 

contrasted with maximum 
likelihood procedures which 
require definitive statements 
about how the data observed 
are generated. 
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Table i: Crosstabulation of Sample, Frame, and Population Data 
using Control Information 

Math Teachers 

1 
2 

Control ... 
1 i 

r 

Control 2 
i 2 ... j ... c 

Total Sample 
Control 2 

1 2 ... j ... c 
1 
2 

Control ... 

tij 1 i nij 

r 

Frame Totals 

1 
2 

Control ... 
1 i 

• • • 

r 

Control 2 
1 2 ... j ... c 

Mij 

Total Population 
Control 2 

i 2 ... j ... c 

1 
2 

Control ... 

1 i Nij 
• • • 

r 
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