
A REVIEW OF THREE EDITING AND IMPUTATION SYSTEMS

Mark Pierzchala, National Agricultural Statistics Service (NASS)
Room 4168 South Building, USDA, Washington, DC 20250-2000, 202-447-5333

KEY WORDS: Error Localization, Edit Analysis, Ex-
pert System, CATI, CAPI, Survey Integration, GEIS,
Blaise, SPEER, Fellegi and Holt systems.

Systems Evaluated
Blaise 1 version 2.22, Netherlands Central Bureau of
Statistics
Generalized Edit and Imputation System (GEIS), version
6.1, StatisOcs Canada
Structured Program for Economic Editing and Referrals
(SPEER), U. S. Bureau of the Census

Checklist
The three systems were evaluated in part by using a

checklist of about 250 editing system features. The
checklist was written by the author but is based heavily
on the work of Paul Cotton (1988). Versions have been
reviewed extensively by many people. A copy can be
found in the report of the Subcommittee on Data Editing
in Federal Statistical Agencies (1990). A copy of the
blank checklist in either ASCII or Word Perfect format
may be obtained from the author.

Method of Evaluation
Nine questionnaires, including NASS's biggest and

most complicated, have been programmed into Blaise by
various people in the agency. By contrast, one section
each from two questionnaires have been progr,'unmed
into GELS, and only one section from one questionnaire
has been programmed into SPEER. This latter section
was programmed into all three systems for the purposes
of this evaluation. On the other hand, references to other
sources of information has been fairly even as demon-
strated in Table 1.

Table 1. Author 's Familiarity with the Systems

Evaluation Method Blaise GEIS SPEER

Programming 9 forum 65 vats 45 vats
(notes) (2 as CAPI)(fr 2 forms)(fr I form)

Papers read (about) 6 l0 8
Documentation Yes Yes None
Discussions Many Many Many
Demonstrations

by team members 2 2 3
Checklist Yes Yes Yes

Processing Flow
Before it is possible to discuss the three systems, it is

necessary to describe which functions of the survey pro-
cess each system addresses. FoUowing is a useful table.

Table 2. Parts of Processing Flow Handled

Function Blaise GEIS SPEER

Pre-survey
edit analysis (FH)

Primary data entry
after collection (I) Yes

CATI / CAPI (I) 2 Yes
Complex codin~ (I) Yes
On-line, manual edit Yes
Automated error

localization (FH)
Model-based

imputation Yes
Hot- / cold-deck

imputation
Macro-editing ~
Survey management

reports Yes

Yes Yes

Yes

Yes Yes

Yes Yes

Yes
e , - ,

Yes Yes

Functions that are specific to Fellegi and Holt sys-
tems are bolded and labelled (FH). Those that are specif-
ic to integration systems are underlined and labelled (I).
Blaise is an integration system, while GElS and SPEER
are Fellegi and Holt systems.

Integration Contrasted with Fellegi and
Holt

An integration system seeks to perform as many dif-
ferent survey functions as possible within one system.
Common to all integration systems is a "specifications
generator". In a specifications generator, all infom~ation
about the questionnaire is stated, such as data ranges,
routes, file structure, and edits. Tiffs information is used
to generate separate modules for data collection, data en-
try, editing, and the like. Thne is saved by the elimination
of multiple specification of the data and by elhninating
conversions from one data set to another. Where a person
must perforn~ a function, such as questionnaire review or
coding, it is performed on-line, eliminating cyclic pro-

111

cessing. In addition, data file setups for databases and
statistical packages may be automatically generated from
the information stated in the specifications generator.

By contrast, Fellegi and Holt systems are more fo-
cused on the post-collection micro-editing part of the
survey process. They process data in batch though
SPEER has an on-line aspect also. The role of the data
editor is reduced in the processing of data and increased
in the pre-survey analysis of edit specifications. Though
Fellegi and Holt systems reduce the amount of editing
done by people, there is still a need for a considerable
amount of pre-processing. Imputation can be almost to-
tally automated, and can be either model-based, or do-
nor-based. Fellegi and Holt (1976) state four principles
of editing: 1) that each record should satisfy all edits, 2)
that correction should be accomplished by making as few
changes as possible, 3) that editing and imputation are
part of the same process, and 4) that the imputation pro-
cess should retain the structure of the data.

Fellegi and Holt also give a mathematical procedure
for edit and imputation of categorical data. In this proce-
dure, explicitly written edits are used to generate implicit
edits. For example (to take a case in the continuous do-
main) if I < afo < 2 and 3 < b/c < 4 are explicit edits, then
3 < a/c < 8 is an implied edit. These implied edits are
used in two ways. First they are inspected to determine if
the data are being constrained in an undetermined way.
Second, the implied edits taken together with the explicit
edits form a "feasible region". According to Fellegi and
Holt, if imputations are made such that the imputations
fall within the feasible region, then all the edits are auto-
matically satisfied. Error localization is the process
where the system determines for which fields imputa-
tions should be made. GEIS and SPEER extend the the-
ory of Fellegi and Holt into the continuous realm.

General Features
Before an organization should undertake a formal

evaluation of an editing system, four questions must be
asked: 1) Which kinds of data and surveys must be han-
dled? 2) Where must it fit into the survey processing
flow? 3) Which environments must it operate in? 4)
Which kinds of edits can it handle? For the three systems
in this paper, the answers to question 2 has already been
provided in Table 2. The answers to questions 1, 3 and 4
appear below in Tables 3, 4, and 5.

Table 3. Kinds of Surveys and Data Handled

Survey Tvp_e Blaise GEIS SPEER

Economic Y
Social Y
Demographic Y

Y Y

Data Type Blaise GEIS SPEER

Continuous Y
Categorical Y
Character Y

Y Y

Table 4. Environments and Subsidiary Software

Operating System Blaise GElS SPEER

MS DOS Y Y
OS12 ~ ~
UNIX Y
MVS Y
CMS ~ ~
VMS

Y

Y

Hardware Blaise GEIS SPEER

Personal Computer Y Y Y
Local Area Network Y Y
Mainframe / mini Y Y

Subsidiary_ Software Blaise GElS SPEER

Appl Developer Turbo Pascal Oracle Fortran
End User Oracle

Mode of Use Blaise GEIS SPEER

Batch Y Only Y
On-line Primary Y

Table 5. Types of Edits Handled

Type of Edit Blaise GEIS SPEER

Linear Y Y
Ratio Y Y# Y
Conditional Y
Existency Y Y#
Consistency Y Y Y#
Additivity Y Y Y%
Multiplicativity Y Y# Y#
Bounds Y Y Y%
Route Y
Valid Value Y
Historical Y
Levels of failure Y continuum
Stat Outlier Detection Y%

Y#, Requires some kind of restatement; Y%, Not part of
edit analysis; Y, Primary edit type.

112

GEIS and SPEER are limited to certain kinds of edits
and to continuous data. This is due to the mathematics in-
volved in edit analysis and error localization.

Blaise

Blaise Vision
The functions of data entry, editing, computer assist-

ed data collection, coding, and survey management are
integrated in one system. Instruments are programmed
by subject matter specialists while systems development
is handled by systems personnel. Development and pro-
cessing are done in a paperless environment. The system
must be easy to use and, where appropriate, menu driven.
The data editor is held to be fully knowledgeable and
competent to make all necessary changes. The system
must be able to handle all data types, questionnaire sizes,
and data structures encountered in the Netherlands Cen-
tral Bureau of Statistics (CBS). Finally the system is to
operate either on LANs (for in-house work) or on porta-
ble computers (for CAPI). It is the standard editing sys-
tem of the bureau.

How Productivity is Promoted
Since the whole bureau uses a standard system the

subject matter departments are relieved from the neces-
sity of having to produce, test, and maintain their own
systems. By using an integration system with its data dic-
tionary, one programmer can develop an application in
all of its manifestations. For example, one instrument can
be written for CATI and editing. By entering the data into
and editing within one instrument, and then having the
system produce a file setup for a statistical package such
as SPSS, much time is saved by eliminating and reducing
conversions from one system to another. The interactive
editing environment promotes productivity by eliminat-
ing batch processing on printouts. In the batch environ-
ment, it may take several days to clean a form. In the
interactive environment, the results of changes are im-
mediately known, thus the questionnaire is handled once.
As the editor enters data or changes directly, the need for
data entry is reduced. Where one system is standard, ex-
pertise is built up throughout the bureau facilitating ex-
change of people and ideas between units.

How Quality is Improved
Quality of the data is improved through the promo-

tion of computer assisted data collection (CATI, CAPI,
and self-administered questionnaires). Here editing is in-
cluded in the data collection where the respondent can
help clear up problems. As a result, post-collection edit-
ing is reduced. Any differences between collection and
editing instruments are purposeful, not accidental.

For surveys that are collected on paper, quality of the
process is improved because each form can be cleaned in
one session. The editor does not have to try to recall what
she was doing with the form one or more days ago. Also,
as the editor works with the instrument she learns which
mistakes are made most often by the interviewers and
can give them feedback. This is because all errors must
be corrected or the error signals must be suppressed. The
file of suppressed error signals can be used to monitor ed-
itor actions. As data are processed more quickly, the
timeliness quality of the data is improved.

Types of Edits
Virtually any kind of mathematical statement can be

used as an edit in the Blaise system as shown in Table 5.
As Blaise is not a FeUegi and Holt system, it is not con-
strained by the underlying mathematics to a specific data
type (i.e., continuous vs. categorical), nor to types of ed-
its (e.g., linear mathematical expressions). Extremely
complicated conditional edits of great length are al-
lowed. Edits based on external data can be written, either
by reading other Blaise data files or ASCII files. Some
edits are implicitly stated either in data definition or in
route statements (as in a CAPI instrument). Model based
statistical edits are possible if the proper information is
made available through external files. Two levels of edit
failure are allowed, suspicious and dirty. The suspicious
error signals can be suppressed, the dirty ones cannot.

Survey Management
Survey management here is defined as generating in-

formation on the progress of the survey and being able to
act on that information by making forms go where they
need to go. Blaise has some survey management capabil-
ities but these can be improved.

Abacus is a tabling program that can be used to pro-
duce reports on response rates, processing flows, cleanli-
ness status etc., for each application. Tables are
interactively generated. Abacus operates either on Blaise
or ASCII files. It can produce counts, totals, averages,
and percentages though it is not meant to be a full-
fledged summary system. Continuous variables can be
summarized in categories. The Blaise system generates
an Abacus setup so that data definition does not have to
be repeated. This latter feature has broken down on occa-
sion for large questionnaires (it is being fixed in version
2.3). As a result the setups had to be corrected once or
twice. First attempts to produce an Abacus table are like-
ly to be confusing and the booklet that comes with Aba-
cus does not contain enough examples. However, the on-
line documentation is context-sensitive and good, and
once leamed, the programming is easy and fast. Table
specifications can be saved and called from DOS so that
the end users do not have to generate them from menus.

113

Blaise has fairly good flexibility in the choice of
records to be read out of the system, based on the status
Clean, Suspicious, or Dirty, and on whether the report is
New (never been read out), Old (been previously read
out), or Changed (been previously read out but has been
subsequently changed). More flexibility is needed in-
cluding the ability to read out records by ID or by class
(e.g., stratum number). The same flexibility is needed in
the batch check as this tends to be an all or nothing affair.
The editor has great flexibility in choosing records to call
up for interactive processing including access by ID, val-
ues of designated variables, and status of the report.The
Blaise indexed file structure allows for fast access to the
chosen record.

Blaise does not have an audit trail nor does it auto-
maticaUy generate error counts. The lack of these fea-
tures can probably be attributed to the vision of how the
CBS editor is to do her job. Typically she will enter and
edit the data at the same time. Hence data will in some
cases be changed as they are entered (before they are
captured). An audit trail and error counts do not have as
much value in this scenario because of the many changes
that are made before they can be generated. In one sur-
vey, NASS has used Abacus to generate error counts but
this involved programming indicator variables in Blaise
to indicate when an error was violated. This is not a very
satisfactory solution because if an edit statement must be
changed, the programmer must remember to change the
calculation for the indicator variable as well. As well,
NASS has captured raw data in Blaise and edited a copy
of the raw data file. Then the two files were compared in
SAS. This is an advance from current procedures where
an intensive hand edit is done before data capture, but it
is not enough. These gaps are methodological in nature.
Properly summarized audit trails and error counts can be
used to provide feedback on the performance of the sur-
vey, assuming that data are captured before the edit.

System Items
Blaise has been developed in modules which facili-

tates further system improvement. For the applications
developer, an integrated development environment is
provided including a powerful easy-to-use text editor, a
syntax checker, and a compiler. If the syntax checker de-
tects an error, checking will stop, a message will be dis-
played, and the programmer will be asked if he wants to
invoke the text editor. If yes, the system will place the
cursor at the spot where the error was detected. This is
the correct place about 98% of the time. On the other
hand, the syntax checker will catch only one error at a
time and must start at the beginning of the instrument
each time it is invoked. Some developers in NASS have
commented that they would like the syntax checker to
catch several errors at once. Utilities for defining exter-

nal files or for reading data in and out of Blaise are part
of the system and are accessed through the menus. Auto-
mated file setups for SPSS, Paradox, Stata, and Abacus
are provided as they are standard packages in the CBS.
In order to connect with other packages, a wide variety
of ASCII setups can be generated. The Blaise system is
accessed with an easy-to-use and dynamic menu system.
Some facilities such as reading files in and out of Blaise
can be done either through batch calls or the menus. The
coding facility allows either step-wise or dictionary cod-
ing and has worked well in one small NASS survey.

Features that should be added are the ability to make
system calls for user defined functions and the capability
to generate file setups for additional packages such as
SAS.

Edit Writing (Instrument Writing)
Instruments are written in Blaise, a structured lan-

guage. There is a paragraph each for data definition,
route statements, suspicious errors, and dirty errors. This
seems to facilitate programming for the subject matter
specialist as it helps him to keep organized. For compli-
cated instruments, the paragraphs can be built into blocks
and the instrument built from the blocks. Once a block is
built, it can be used many times, in the same instrument
or in different instruments. Tables up to thousands of
cells are fairly easy to set up in Blaise and have powerful
repetitive capabilities. Boolean operators (AND, OR,
ELSE, IN, NOT) greatly facilitate programming.

Feasible regions are defined in Blaise edits. A typical
edit in Blaise might look like:

If stratum <= 50 then

20 <= farmsize <= 200 "The faro size

is usually between 20 and 200

acres. ";

endi f;

Extemal files can be referenced in edits, but are
somewhat difficult to specify. There are no GOTO state-
ments in Blaise, a fact that the CBS heralds as a great ad-
vance in instrument design. This feature, an integral part
of the structured approach, certainly makes it much eas-
ier to determine what is happening in the code when de-
bugging than with systems that use GOTO statements.

Blaise instruments are meant to be written by subject
matter specialists. In NASS, this has proved to be possi-
ble as several small to medium instruments have been
written by state office personnel with little or no training
and some support from the author. In headquarters, large
instruments have been programmed, again without train-
hag and very little support from the CBS. On the other
hand, NASS does not use the full power of Blaise and
thus some instruments are longer and more complicated
than necessary.

114

Data Review and Correction
This feature is one of the stronger points of editing in

Blaise. Data review and correction occur primarily
through on-line sessions although deletions and imputa-
tions can be carded out in batch as well. Blaise has a very
dynamic user interface with menus for form selection,
pop-up windows for messages, full-screen mobility us-
ing Pg Up, Pg Down, arrows, and some function keys.
Especially valuable are the Ctl End and Ctl Home keys
which get the editor to the next cell involved in an error
and pops up the error message. This allows errors to be
found very quickly in large instruments which take up
many screens. Variables must all be named (e.g., farm-
size) but can be numbered as well. The numbers can be
used to jump from one variable to mother which is an-
other quick way of navigating through a large question-
naire. Errors are signalled by numbers which appear to
the left of the cell value. Suspicious (soft) error signals
are flagged by unbolded numbers while dirty (hard) error
signals are flagged by bolded numbers. The number that
makes up the error signal tells how many edit failures the
cell value is involved in. For example, the numbers '12'
(read one, two), would indicate that the cell value is in-
volved in one suspicious edit failure and two dirty edit
failures. The editor can re-edit the form at any time by
pressing the F3 key thus gaining immediate feedback on
his actions. Suspicious errors signals can be suppressed,
dirty ones cannot (though in NASS a procedure has been
invented that allows selected dirty signals to be sup-
pressed). Blaise tables allow the editor to view a large
number of variables at one time.

A few improvements can be made. For example, a
counter should be displayed at the top of the screen that
tells the editor how many forms are left to be inspected.
An "undo" option for the last editor action would also be
a nice addition (currently, all changes can be undone).

Support, Updates, and Training
Written documentation is available in English and is

quite good as far as it goes. Users can program sophisti-
cated applications by reference to the manuals and with-
out training though in this case the full power of the
system is not likely to be exploited. Documentation con-
sists of an Introduction, a Language Reference Manual,
a System Description, a manual for editors, a manual for
interviewers (for CAT[and CAPI), and a short manual
for the Abacus tabulation package. Needed further is an
applications manual which would guide the applications
programmer from start to finish in producing the instru-
ment. Updates come every six months to a year. New
versions come every year or two. Each new update or
version has had some nice enhancements.

Blaise is sold "as is" meaning that no support is of-

fered. This fact puts off a lot of potemial buyers. The
CBS may yet offer support for the system. Why, one
must ask, does the CBS produce the system in four lan-
guages (Dutch, English, French, and Spanish), provide a
method for conversion to other languages, and documen-
tation in English as well as in Dutch? It would be nice if
support were offered either directly or through a North
American contact and a training course held in North
America at least once a year. This could easily be accom-
plished as the CBS regularly conducts training for its
own employees.

The current version of Blaise is 2.3 which includes a
forms manager and call scheduler for CATI.

Integration
NASS has done some initial evaluation of Blaise as a

CAPI system. Two large instruments have been created,
one of which was tested in the field and worked well. The
other, representing NASS's largest survey, will be field
tested in early 1991. This latter instrument will include
about 1000 variables. After the CAPI instrument is fin-
ished, it will be converted to an editing instrument. The
CBS claims that an editing instrument and a CAPI/CATI
instrument can be created from the same code by compil-
ing the code in different modes. This is true, however
agency policy may prohibit some edits from being used
in data collection. In any case, it is better to start with the
CAPI instrument and then convert it to an editing instru-
ment than vice versa because the enumerator must use
the instrument in a much more sensitive environment.
For example, question wording must be exactly correct
for data collection, it does not have to exist at all for ed-
iting.

NASS has also used Blaise for high-speed data entry
in about three surveys, including item-code data entry in
one survey. Data entry has worked well. It does not have
all of the features of a commercial data entry program.
For example, verification is not possible and decimal
points must be keyed. In surveys where verification is re-
quired, NASS has used Key Entry III for data entry and
then has read the data into Blaise for editing.

Methodological Comments and Summary
Overall, Blaise is a very good system that is undergo-

ing continual enhancement. The author and an Interac-
tive Editing Working Group in NASS have
recommended its purchase for data editing in the agency.
Primary concems are methodological in that Blaise lacks
an audit trail or some other way of keeping track of what
changes are being made to the form. On the other hand,
Blaise works to reduce the number of errors made in the
first place through its promotion of computer assisted
data collection and integration of survey functions.

115

GEIS

GElS Vision
Applications development is carded out by a subject

matter specialist in conjunction with a methodologist.
The development is carded out through menus and by
entering information onto ORACLE screens. Edit analy-
sis tools are used before data are collected in order to
fine-tune the edits. Development can be carried out on a
microcomputer using the menu system, however major
testing and actual production are run in batch mode on
mainframes. Methodologists and systems people work to
develop the system. The functioning of the whole system
is organized through the database system ORACLE for
which the knowledge of a few procedures and commands
is sufficiem. GEIS is meant to handle all economic col-
lections in Statistics Canada. It is also just one part of a
major redesign project which will also include a Data
Capture and Collection (DC2) system, and a generalized
summary system.

A preliminary edit is carried out before the applica-
tion of the GEIS system. All coding and callbacks will be
handled in the pre-edit as well as reports of major impact.
At some point, however, the data will be given over to
GEIS for both methodological and productivity reasons.
The subject matter specialist is relieved of the tedium of
inspecting thousands of forms while her expertise is ex-
pressed in GEIS through edit specification, weighting of
the relative reliability of the variables, and by influencing
how imputation is done. Data processed in GEIS are not
further treated except for the few cases that GEIS cannot
handle. As GEIS is a Fellegi and Holt system, the four
principles previously stated must be considered part of
the GEIS vision.

How Productivity is Promoted
In Canada, large surveys may bring in hundreds of

thousands of returns. The preliminary edit may have to
deal with many of the problems that require callbacks or
special handling, but remaining changes will have minor
impact on the final estimates. These can be better han-
dled in GEIS. The system will delete and impute for val-
ues according to the Fellegi and Holt methodology, and
do it quickly and consistently, saving many person-years
of hand processing. The implementation of a tested, stan-
dardized system that will operate on a large number of
surveys will decrease the time spent in system develop-
ment, testing, and maintenance by subject matter depart-
ments.

How Quality is Improved
GEIS ensures that changes in data are made to as few

fields as possible and are made so that edits are satisfied.

This way the maximum amount of original data are kept
subject to the stipulation that edits are satisfied. Comput-
er actions do not depend upon enumerator judgement and
thus are more consistent (i.e., repeatable, reproducible).
Imputations are made with the intent of preserving the
multivariate structure of the data. To the extent that data
are processed more quickly, the timeliness quality of the
data is improved. Full reports are generated on the
changes made by the system allowing a determination of
the impact of the system on the estimates.

Types of Edits
The linear mathematical expression is the basic edit

in GEIS. Any edit that can be stated in linear form can be
handled by the system, with some caveats. For example,
the ratio edit 2 < a/b < 4 can be expressed as two linear
edits 2b < a and a < 4b. Tricks are applied to accommo-
date some kinds of edits, for example, if a > 0 then b > 0.
This is done by stating that b > k * a where k is a very
small constant. Thus if a = 0, then b can equal 0 also, but
if a > 0, then b > 0 is required. It is apparently not possi-
ble in GEIS to require that if a = 0 then b must equal 0.
This is a kind of edit that would be better left to the pre-
edit. IF-THEN (conditional) expressions are handled in
two ways. First is to rewrite the edit so that the IF-THEN
is no longer needed. Second is to split the file so that sub-
sets of records are operated on by different sets of edits.
Multiplicativity edits are troublesome. It is possible to
linearize such an edit with the use of logs but then other
edits which involve those same variables must also have
logs applied, a process which becomes very confusing.
However, 95% or more of all edits that were pro-
grammed in GEIS were either linear or ratio to start with
or easily linearized. There is also a univariate and bivari-
ate statistical outlier procedure which can also produce
edit limits. If the statistical edits are produced from a file
of previously collected data, then they can be included in
the edit analysis.

The biggest problem is with the number of edits that
can be stated at one time. Depending on the complexity
of the edits, how they interconnect, and thus how many
implied edits are generated, as few as l0 explicit edits
can exceed system limits, at least on a microcomputer.
Some applications have managed 40 or so explicit edits
at once. There is a similar limitation with the number of
variables that can be handled at one time with about 30
variables being the usual maximum though this too has
been exceeded on occasion.

There is only one degree of edit failure. Designations
such as hard or soft errors are foreign to the Fellegi and
Hold philosophy.

Edit Writing and Edit Analysis
The writing of edits is done in an ORACLE screen

116

designed for GEIS inpat. Either valid or invalid regions
can be specified with the valid choice being the preferred
statement. Edits must be labeled, to take an extremely
small example:

ED01 I pass I farmsize <= 200

ED02 I pass ~ farmsize >= 20

ED03 ~ pass ~ farmsize <= i000

ED04 I pass I farmsize >= I00

ED05 I pass I cropland <= farmsize

Edits are then grouped according to how they will be
applied to the data. For example:

G1 = (ED01, ED02, ED05)

G2 = (ED03, ED04, ED05)

Then each group undergoes edit analysi~ individually
and would be applied to different sets of data. For exam-
ple, group G I might be applied to stratum 50 and group

i G2 to stratum 51 where the file has been split.
The writing of the edits is quite easy. Harder is the de-

termination of edit limits, especially for those who are
used to writing edits for manual review. In this latter
case, limits are often set quite tightly, with the subject
matter specialist determining whether a change should
be made. In GEIS, since violated edits will cause at least
one value to be changed more care must be taken when
setting edit limits. To help the specialist set bounds, edit
analysis tools are offered. First, implied edits are gener-
ated. These have been explained above. For group G l,
one implied edit generated from edits ED01 and ED05 is:

cropland <= 200

This implied edit is obvious but some are not and it is
a good way to see if the data are being constrained in an
unintended way. A complementary analysis is to deter-
mine the worst possible records that can pass the system
without invoking an edit failure. This is done with the ex-
tremal points option. Extremal points are artificially gen-
erated records. For group G1, one extremal point is:

cropland = 0

farmsize = 200

These two edit analysis procedures are valuable,
however for large numbers of variables and edits, the
lists of implied edits and extremal points becomes quite
lengthy and sometimes cannot even be generated. Addi-
tivity edits involving several variables (e.g, a + b + c + d
+ e = f) greatly increase the numbers of implied edits and
extremal points. For example, in one analysis of 17 vari-
ables and 11 edits, 3 of which were additivity edits, 384
extremal points were generated and after 3 hours of
chugging, no implied edits were ever output. When two
of the additivity edits were removed, 76 extremal points

and 104 implied edits were generated. These were gener-
ated on an MS DOS microcomputer with a 386 proces-
sor. I do not know what the result would have been had
the same analyses been run on a mainframe.

A much smaller problem with the edit analysis is that
the output is hard to read. The implied edits are output in
a canonical form such as:

- valbuild + valother + valtnt <= 0

valother - valreal + valtnt <= 0

They would be easier to read if they appeared as:

valother + valtnt <= valbuild

valother + valtnt <= valreal

The extremal points are output in alphabetical order,
not in the same order that they appear on the question-
naire. This makes them harder to interpret. To take a tic-
titious example:

Order on questionnaire Appearance on printout
acres acres = I00
valland assets = 0
invtot invtot = 0
assets vaffarm = 200000
valfarm valland = 200000

Another way to evaluate the edits is to apply them to
data. This can be done on old data or on the first N
records of the current survey. This method of edit analy-
sis is much used. In other words, the specification of edits
tends to be an iterative process.

After imputation, follow-up edits are applied to make
sure that the imputations have satisfied the edits. These
follow-up edits are similar to the first set of edits except
that the bounds are slightly broader.

A further problem in writing edits is due to systems
limitations. Large questionnaires must be broken into
several parts. The difficulty is in handling variables that
are involved in edits in two or more sections. Suppose
variable x is found in edits in sections A and B and A is
processed before B. If the value of x is changed in A then
that change can be taken into account in B. However, if
the value of x is changed in B, then there is no way for
that change to be taken into account in A. This is handled
by giving these variables a high weight in the second sec-
tion which reduces their possibility of being changed.

S u r v e y M a n a g e m e n t

In GEIS, where the system takes all actions, the only
way that the statistician knows what is happening is
through reports generated by the system. GEIS provides
an abundance of automatically generated reports. The re-
porting capability of a database system such as ORACLE
and the existence of an audit trail give GEIS extraordi-
nary capability of reporting on the effects of editing ac-

117

tions. Most tables are easy to read though some of them
employ jargon that is not defined in the documentation.
Reports are provided on edit analyses, results of applica-
tions of edits, fields chosen for deletion, records chosen
for matching, results of imputations, plus many more.

In this evaluation, data were not run on a mainframe.
In speaking with the GEIS team, the microcomputer may
be used to set up specifications for mainframe process-
ing. On the mainframe these specifications are linked to-
gether with systems commands. Apparently some "hand
channeling" of jobs is still necessary though this will di-
minish with time.

Systems Items
GEIS is constructed in modules to facilitate develop-

ment. It is portable across architectures and operating
systems. The computationally intensive routines are
written in C which speeds processing. Development of
applications is done through menus and well-defined
screens. The ORACLE database environment provides
great flexibility in the reading out of records and for data
extraction.

Some of the procedures can take much time on a mi-
crocomputer. Once an implied edits routine ran for 2
hours and 28 minutes before it came back and said that it
had run out of space. In error localization, where the sys-
tem chooses fields for deletion in a succession of records,
GEIS can get bogged down (but not stopped) on a single
record. Some improvements can still be made on the
speed. However, some of these procedures will still take
several minutes which is not surprising when you consid-
er that optimizing routines from operations research are
being applied thousands of times in a row.

Data Review and Correction
After edits are written, they are applied and reports

are written on the extent of the edit failures. Next, error
localization is run to choose fields to be deleted. The
minimum change rule is adhered to, that is, the fewest
possible fields will be deleted. This is not always desir-
able, however, so the specialist can influence error local-
ization by weighting fields according to their reliability.

The preferred method of imputation is hot-deck im-
putation in order to preserve multivariate distributions.
Failing this, a choice of univariate or bivariate model
based procedures are available. Some users might desire
more flexibility in imputation. It does not appear possible
to use imputation methods that are not provided. For ex-
ample, in additivity edits, the minimum change rule
might not be appropriate. If the edit a + b + c -- d is failed
where d > 0, some specialists would rather that the val-
ues of a, b, and c be "scaled" so that their sum equals that
of d. This does not appear possible in GEIS (though this
might been done in a pre-edit).

The specialist sets up the imputation procedures in
much the same manner as the edits are, that is, through
ORACLE screens. Matching variables are specified as
are choices of imputation methods. The mechanics of
setting up the imputation specifications are quite easy.

Support, Updates, and Training
Documentation consists of one fairy good manual

and several scholarly reports that can be read to get an
idea of what the system is supposed to accomplish. The
mechanics of using the system are well documented with
the exception of jargon here and there that should be de-
fined. As GEIS represents a departure from manual re-
view, badly needed is an applications guide. A
questionnaire of 45 or 50 variables should be used as an
example of how an application might be programmed
from start to finish. In this applications guide, there
should be an indication of which edits should be applied
in the pre-edit and which should be applied in GEIS.
Also, there should be a discussion of how edit limits are
set and how imputation options are chosen. In speaking
with members of the GEIS team, this type of documen-
tation is being written. Statistics Canada will not license
the system to other agencies, at least in the near future.
Those wishing to review the system and/or methodology
may be able to secure a copy of the software if they are
willing to provide feedback.

The current version of GEIS in Statistics Canada is
version 6.2. Some screens and capabilities have been
added and processing has been speeded up.

Summary
GEIS is a well-thought-out, well-developed system

that a few in NASS have considered using for some sur-
veys after an initial processing of data (assuming a li-
cense could be arranged). Before this could happen
NASS would have to decide to use ORACLE as its data-
base system on its newly acquired LANs in its state of-
rices. Also, NASS would like to see GEIS used in
production for a few large surveys in Canada to see how
well it works.

SPEER

This system was evaluated in great part in the offices
of the U. S. Bureau of the Census with the aid of mem-
bers of the SPEER team. This was necessary because
SPEER is undocumented and requires the assistance of a
knowledgeable person to get applications running. For
this evaluation, the application was programmed by Tom
Petkunas of the U. S. Bureau of the Census while the au-
thor looked on and asked a lot of questions.

118

SPEER Vision
SPEER will model ratio edits because they are very

common in economic surveys and because within them-
selves they are amenable to edit analysis and error local-
ization. SPEER will make use of both batch processing
and on-line review of forms. Where possible, use will be
made of reported data. For example, responses are often
reported in wrong units. In these cases, the reported an-
swer will be converted to the proper units. It is not sought
to eliminate the specialist from review of forms, rather
this review will be structured around the Fellegi and Holt
methodology. The specialist will review records based
on certain criteria such as the size of the finn or on the
changes made in batch. Full reports will be generated and
the audit trail will be an integral part of the processing.
Before SPEER is applied, preliminary editing and fol-
low-up has been done in with another system.

How Productivity is Improved
The SPEER system does not necessarily reduce the

hours of manual review though this may happen. Rather,
the gains resulting from its application allow the analysts
to review more forms within a deadline. SPEER address-
es a particularly awkward processing situation where
forms are collected, keyed, and pre-edited in Jefferson-
ville, Indiana, and undergo a "complex" edit in Suitland,
Maryland. Under the old batch procedures, one cycle for
a particular form could take weeks as the editor would
have to obtain the form from Indiana. When it would ar-
rive in Maryland, it could well have been a different ed-
itor who continued the review. With SPEER's
combination of batch and on-line processing, this cycling
has been eliminated.

How Quality is Improved
Quality is improved because each form is handled

once by one editor. Full information is provided includ-
ing the values of all variables and feasible regions for the
important variables. Information is dynamically re-cal-
culated, including new feasible regions based on newly
imputed values of variables. An audit trail is an integral
part of the edited data record and full reports are gener-
ated.

Types of Edits
The basic edit in SPEER is the ratio edit. Other edits,

to the extent that they can be restated as ratio edits can be
handled in SPEER. Associated with SPEER are satellite
routines, while not part of the Fellegi and Holt method-
ology, can be used to state other kinds of edits. Additivity
edits are often included there. Conditional edits are han-
dled either by rewriting the edit into a ratio edit without
the IF - ENDIF or by splitting the file. Many edits will

have been included in the pre-edit conducted in Indiana.
Another requirement is that all of the ratio edits be con-
nected to each other. This requirement is usually no prob-
lem for most economic surveys but is not always
satisfied in a few cases such as agricultural surveys. For
example, the ratios

30 < corn bushels / corn acres < 180

5 < oats bushels / oats acres < 80

will not usually be connected together. Nevertheless, the
SPEER team has found a way to apply the system to the
Census of Agriculture.

Edit Writing and Edit Analysis
The mechanics of stating the ratio edit bounds are

quite easy. The specialist provides a list of lower and up-
per bounds for each ratio. Harder to fathom is the way
that the variables are organized in SPEER. They are
classed as either "basic", "satellite", or "detail" items.
The basic items are the most important and are edited
against each other simultaneously through ratio edits.
They are typically scattered throughout the question-
naire, being perhaps, the one or two most important vari-
ables of each section. Satellite items are second in
importance and will typically relate to only one or a few
of the basic items. The detail items are third in impor-
tance and represent an addend of a sum and the like.
These can be involved in additivity or other consistency
edits in satellite routines. These definitions are not set in
concrete and a questionnaire can be represented in sever-
al different ways.

SPEER generates implied ratio edits which are in-
spected to determine if the data are being constrained in
an unintended way. The bounds of the ratio edits are set
through an iterative process which usually includes the
testing of bounds on previous data. A statistical program
in SAS has been written to facilitate this analysis. The
programmer sets bounds for both a batch and an on-line
manual edit. Actions taken in the batch processing can be
overridden in the manual review. Unique to SPEER is an
ability to widen bounds by the use of a multiplier which
can be set either variable-by-variable or for a set of vari-
ables. Thus it is difficult to speak of levels of edit failure
in SPEER. Also, SPEER has an extremal points capabil-
ity though it is not called as such. The screen for the on-
line part of SPEER generates bounds for each variable.

Additivity edits and the like which are written in the
satellite routines are written directly into the system code
in Fortran. The programmer must know both the system
and Fortran in order to write these edits. These edits are
not involved in edit analysis.

Survey Management
All callbacks and a pre-edit will have been conducted

119

before SPEER is applied. A batch run will be conducted
on a mainframe where deletions and substitutions will be
made. Generated as part of the batch processing are re-
ports and an audit trail which will be available in the
manual review. Forms are selected based on pre-set cri-
teria such as size of finn or the character of changes made
in the batch run. The manual review will be conducted on
microcomputers, perhaps on a LAN. The editor will not
require the paper form as all information is available to
him. The form will be reviewed once and then stored.

System Items
SPEER is developed in modules which facilitates im-

provements. It is portable across architectures and oper-
ating systems. The use of Fortran as the base language
provides great flexibility, particularly in the choice of im-
putation methods.

A screen has been developed so that subject matter
specialists can more easily enter ratio edits. However
further screens should be developed for all edit and im-
putation specifications. These screens should be tied to-
gether with a menu system so that the user does not have
to know where in the system code various steps must be
written.

The SPEER team spends a great deal of time custom-
izing the system to various applications. SPEER does not
enjoy the level of support as does Blaise in the Nether-
lands or GEIS in Canada. Much better would be an ar-
rangement where the systems people would concentrate
on developing the system and the subject matter special-
ism worry about the applications programming.

Data Review and Correction
SPEER does a rather neat job of tying the batch
processing to the on-line manual review. This is
accomplished by the way information is presented on the
screen. For each of the basic items the corrected (current)
and reported values are displayed as are a status code and
the lower and upper limits of the feasible region for each
variable. Two lines of the screen might look like"

Mnem Corr Reprt st lower uooer

femp 1150 1150 r 492 1161

fapr 22780 15381 x 16172 23245

If the variable is outside the feasible region, it is high-
lighted. A change made in value of a variable will cause
the lower and upper limits of all the basic items to be re-
calculated. If the editor wishes to accept values which vi-
olate the edits then she can use the multiplier to widen the
bounds.

In the example above, the change in the variable fapr
could have been made either in batch or in the on-line re-
view. It could have been made either through the appli-
cation of one of a succession of model-based imputation

options or manually.
Any model-based procedure can be coded into

SPEER. However, the procedure is coded directly into
the system code rather than through some user interface.
Again, the assistance of the systems programmer will be
needed. Donor imputation is not currently an option.

Movement in the screen and between screens could
be improved. In order for the editor to get to a value, she
must make a selection in a menu and type the name of the
variable. Much better would be the use of arrow keys for
navigating the screen. Another addition that would help
would be the use of Pg Up and Pg Down keys in order to
move between screens.

SPEER has the capability of modeling editor behav-
ior as in an 'expert system', however, this was not tested
for this evaluation.

Support, Updates, and Training
The systems aspects of SPEER are undocumented

nor are manuals available. This plus the fact that edits
and imputations are written directly into the system code
make it very difficult to consider using outside of the Bu-
reau of the Census. The methodology behind SPEER has
been amply documented in a series of articles written by
Brian Greenberg and his colleagues.

References
Cotton, P. (1988), "A Comparison of Software for

Editing Survey and Census Data". Presented at the Sta-
tistics Canada Symposium 88: The Impact of High Tech-
nology on Survey Taking, Ottawa, Canada.

Fellegi, I. P. and D. Holt (1976), "A Systematic Ap-
proach to Automatic Edit and Imputation", Joumal of the
American Statistical Association, Volume 71, Number
353, Applications Section, 17 - 35.

Hanuschak, G. et. al. (1990), "Data Editing in Feder-
al Statistical Agencies". Statistical Policy Working Paper
18, Subcommittee on Data Editing in Federal Statistical
Agencies, Federal Committee on Statistical Methodolo-
gy, Office of Management and Budget, Washington, D.
C. (contains editing checklist and glossary of editing
terms).

Pierzchala, M. (1988), "A Review of the State of the
Art in Automated Data Editing and Imputation". NASS
Staff Report No. SRB-88-10, USDA, Washington, D. C.

Footnotes
1/Blaise rhymes with fez. Blaise is the first name of

the mathematician Pascal whose name was taken for the
programming language in which Blaise is written.

2/CATI = Computer Assisted Telephone Interview-
ing, CAPI = Computer Assisted Personal Interviewing.

3/Reviewed by Rita Hohenbrink, formerly of NASS,
now with the Department of Energy.

120

