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In this paper we discuss what we 
should teach about control chart 
techniques and process capability in 
basic statistics. We also discuss 
how the topics might be taught in 
terms of a case study. 

i. Introduction 

The implementation of statistical 
process control involves achieving 
two related (but different) goals. 
The first goal is to achieve a state 
of "statistical control". A statisti- 
cally controlled process is a process 
that displays a consistent amount of 
variability about a constant mean. 
In practical terms, the process 
basically operates in the same 
fashion over time. Statistical con- 
trol is often demonstrated by using X 
and R chart techniques. Once 
achieved, this state of statistical 
control does not necessarily imply 
that the process is operating well 
enough to meet customer require- 
ments. Control only tells us that no 
unusual process variations are being 
observed. The second goal is to 
achieve "capability". A capable 
process is one that is able to meet 
customer requirements (or product 
specifications). When both of these 
goals have been met, the process 
consistently meets customer require- 
ments. 

2. Using a Case Study to Teach 
Control Chart Techniques 

The following is a modification of 
a case in Mendenhall, Reinmuth, and 
Beaver [3]. Their case was in turn 
based on a paper by James C. Seigel, 
"Managing with Statistical Models", 
SAE Technical Paper No. 820520, 
Society for Automotive Engineers, 
Inc., Warrendale, PA, 1982. 

The Fort Motor Company produces 
the various parts for its vehicles in 
many different locations and brings 
these parts to central assembly 
locations. It is vital that these 
parts be within specification limits 
in order that they be assembled into 
a working, nondefective entity. Ford 
was having serious problems with a 
process used to harden the fuel pump 
eccentric of a 3.8-1iter, V6 engine 
camshaft. The process produced 
inconsistent case hardness depth, 
causing 12% rework and 9% scrap. 
Excessive drill bit breakage occurred 
at the next operation in which an oil 

hole was to be drilled near the 
hardened fuel pump eccentric. 

The hardening process was auto- 
mated. However, an electric coil 
used in the process could be 
adjusted. To begin study of the 
process, one of Ford's problem solv- 
ing teams selected thirty consecutive 
samples of n = 5 hardened fuel pump 
eccentrics. For each eccentric, the 
team measured the hardness depth at 
the eccentric lobe "nose". For each 
sample, the team calculated the mean 
X and range R of the n = 5 hardness 
depth readings in the sample. A plot 
of the thirty means and ranges 
obtained is given in Figure i. 

A process is said to be in statis- 
tical control if it displays a 
consistent amount o_ff variability 
about a constant mean. Since the 
sample means and ranges in Figure 1 
seem to exhibit substantial varia- 
bility, the above process is probably 
not in statistical control. We will 
soon calculate control control limits 
to determine more precisely where the 
process has gone out of control 
(changed its variability and/or mean 
level). However, the problem solving 
team obviously did not have these 
limits to work with as it collected 
its samples because (as we will see) 
we use the samples to calculate the 
limits. Nevertheless, the team did 
take various actions to bring the 
process back into control when an 
intuitive assessment of the mean and 
range or other conditions indicated 
the process had gone out of control. 

Specifically, at point A, which 
corresponds to a low average and high 
range, the power on the coal was 
increased from 8.2 to 9.2. At point 
B, which corresponds to an average 
and range that do not seem to indi- 
cate a problem, the team discovered 
and straightened a bent coal. At 
point C, which corresponds to a high 
average and high range, the power on 
the coil was reduced to 8.8. At 
point C, which corresponds to a low 
average and high range, the coil 
shorted out and needed to be 
straightened. At this point, the 
team devised a gauge to check the 
coil spacing at the camshaft. At 
point E, which corresponds to a low 
average, the team decreased the 
spacing between the camshaft and the 
coil. At point F, which corresponds 
to a low average and high range, the 
first coil was replaced with a second 
coil of the same type. 
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Note that most of the actions were 
taken when particularly large or 
small sample averages and/or ranges 
indicated that there were unusual 
sources of process variation. Such 
unusual sources are called assignable 
causes of variation. Assignable 
causes are intermittent or permanent 
changes that are not common to all 
process observations. These causes 
can often, as in the present case, be 
remedied by local supervision. 

To more precisely determine when 
the process was out of control, we 
can calculate control limits. Sup- 
pose that a population has mean u and 
standard deviation a and is (or is 
close to being) normally distri- 
buted. Then, the probability is high 
that the mean of a sample of n 
observations randomly selected from 
this population will be in the 
interval 

[~ - 3 O O 
_ , ~ + 3 _--~--] . 

Jn Jn 

If a sample mean X falls outside of 
this interval, it is reasonable to 
conclude that the true population 
mean u(and/or the population standard 
deviation o) has changed. For 
reasons to be soon discussed, we 
estimate ~ and o by using the 
following procedure. We select K 
samples, each consisting of n process 
observations. Here, (in most 
situations) K should be at least 25 
and n should be at least 3 or 4. 
Also, each sample should be a 
rational subgroup (a set of obser- 
vations obtained while process 
conditions are not allowed to change 
substantially). Then if X i and 
R i denote the mean and range of 
sample i (for i = 1,2,...,K), we 
calculate 

K K 
7. X. 7. R. 

i=l i i=l l 
X = and R = 

K K 

We estimate ~ by X and o by 

^ R 
o - 

d 2 

where do is given in Table 1 (see 
Burr [I~). It follows that the 
interval 

[~ - 3 ~, ~+ 3 
/n /n 

is estimated by 

= - _  _ _  _ _  

[X  - A 2 R  , X + A 2 R  ] w h e r e  A 2 - 3 
i 

d2Jn 

(see Table i). 
The upper and lower control limits 
for the X chart are 

UCL~ = X + A2R and LCL~ = X - A2R 

Without giving the logic, the upper 
and lower control limits for the R 
chart are 

m 

UCL R = D4R and LCL R = D3R° 

See Table 1 for values of D 4 and D 3. 

For example, X = 4.29 and R = 1.80 
for the thirty consecutive samples of 
n = 5 hardened fuel pump eccentrics 
in Figure i. Therefore, since Table 
1 tells us that A 2 = .577, and D 3 
= 0, and D 4 = 2.115, we have 

UCL~ = 5.35 LCL~ = 3.25 

UCL R = 3.80 LCL R = 0 

These control limits are illustrated 
in Figure 2. 

Examining Figure 2, we see that 
there are a substantial number of 
sample means and sample ranges 
outside of the control limits. One 
must be careful in interpreting the 
meaning of such results. To see 
this, we begin by considering a 
simpler situation. Suppose that we 
had observed the X and R charts in 
Figure 3. Before using the X chart, 
one should examine the R chart. Note 
that since the sample ranges are 
inside the control limits, the 
process is in control with respect to 
its variability. This means that the 
process is exhibiting a consistent 
amount of variability. A consistent 
amount of variability should exist 
before using the X chart control 
limits. 

I 

a = (R/d2) 
LCL~ = ~ - 3 - X - 3 

Jn ./n 

w 

= X- AR 
n 

I 

a = (R/d2) 
LCL~ = ]J + 3 - X + 3 

,/n ./n 

- -  m 

= X + AR 
n 
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This is because these control limits 
assume that a remains constant over 
time. At this point, it is important 
to point out why we estimate a in the 

chart control limits by using 
R/d 2 rather than by using the 
sample standard deviation S obtained 
by lumping all of the observations in 
the K samples of n observations 
together into one sample. Note from 
Figure 3 that, because the process is 
out of control with respect to its 
mean, the range of the observations 
obtained by lumping the observations 
in sample 12 and 15 together into one 
sample is substantially larger than 
the average of the ranges of the 
observations in samples 12 and 15 

RI2 + RI5 

Therefore, if the process is out of 
control with respect to its mean, the 
standard deviation of the sample 
obtained by lumping together all of 
the observations in the different 
samples will provide a substantially 
larger estimate of the population 
standard deviation a than R/d2, 
which employs the average of the 
ranges of the K samples of 
observations. Note that the number 
of observations in each of the K 
samples is fairly small (3,4, or 5) 
and observations are (usually) taken 
close together in time so that each 
of the samples will be a rational 
subgroup (a set of observations 
obtained while the process conditions 
are not allowed to change 
substantially). In this way we hope 
to make the ranges of the K samples 
fairly consistent and a reflective of 
the true process variation. Using 
the average of the ranges will 
hopefully give an accurate estimate 
of the standard deviation of a 
process that exhibits consistent 
variability. Of course, the ranges 
of the K samples might not be fairly 
constant. This what happened in 
Figure 2. Note that various sample 
ranges are outside of the control 
limits. Therefore, the process is 
out of control with respect to its 
variability. Specifically, since 
various Ri's are quite large 

R = 

K 

~. R. 
i=l 1 

provides a larger estimate of the 
population range and a larger 

estimate R/d 2 of the population 
standard deviation that would be 
obtained if the process were in 
control with respect to its 
variability. This means that the 
control limits for the X chart and 
for the R chart are more spread apart 
than they would be if the process 
were in control with respect to its 
variability. Therefore, we might not 
be detecting all of the sample means 
and ranges that indicate the process 
is out of control. Furthermore, a 
large X- accompanied by a large R does 
not necessarily mean that the 
population mean level has changed. 
For example, consider XI2 and 
RI2 in Figure 2. A~though X12 is 
larger than UCL~ = X + A2R , the 
large RI2 indicates that the 
process at the time sample 12 was 
observed was exhibiting more varia- 
bilit Z than the variability reflected 
by A R (R is, remember, the average 
of t~e ranges). Therefore, we do not 
know whether the fact that XI2 is 
larger than UCL~ is due to the fact 
that the population mean level has 
increased or to the fact that the 
population variability has increased 
or to both facts. Another way to 
look at this is to note that a t-test 
would tell us to reject the null 
hypothesis that the population mean 
level at the time sample 12 was taken 
was constant at X if 

X - X 
12 

> 3 s12/J~ 

that is, if 

XI2 > X + 3(S12/J5) . 

Because the t-test uses the standard 
deviation of sample 12, which is 
large because RI2 is large, it 
would probably not allow us to reject 
the null hypothesis that the popula- 
tion mean level has changed. This 
does not mean that the t-test is a 
better procedure than control 
charts. In fact, the t-test poten- 
tially hides information that is 
provided by the control charts. In 
particular, if we use the t-test 
without noting the movement of the 
sample means and ranges over time, we 
might not note that a sample standard 
deviation (SI2) substantially 
larger thanthe standard deviations 
of other samples is what causes us to 
not reject the null hypothesis of 
constant mean level at the time 
sample 12 was taken. Therefore, we 
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might be fooled into believing that 
the process is in control. In 
contrast, the X and R control charts 
make clear both a large XI2 and a 
large RI2. Thus, we know that a 
problem does exist. In general, 
although it sometimes initially 
occurs that control limits such as 
the ones in Figure 2 are the best we 
can do, such limits provide 
substantial information about which 
sample means and ranges are out of 
control. This indicates what 
assignable causes need to be 
investigated and remedied. Indeed, 
we recall that at point A through F 
in Figure 2, Ford took actions to 
remedy the indicated problems. If we 
examine the actions taken at points A 
through E, we might say that the 
problem solving team has learned that 
the power on the coil should be 
roughly 8.8 and that it is important 
to monitor the spacing between the 
camshaft and the coil and to check 
for bent coils. This knowledge can 
hopefully be used to keep the process 
in control. If we believe that use 
of this knowledge will for the most 
part eliminate the assignable causes, 
we would recompute new X and R chart 
control limits by eliminating the 
X~'s and R~'s that were beyond 
t~e contro~ limits and monitor future 
means and ranges by using the new 
control limits. However, recall that 
at point F the team replaced the 
original coil with a new coil of the 
sametype. If it is felt that the 
new X and R chart control limits 
calculated from the original coil 
apply to the new coil, we can monitor 
the initial performance of the new 
coil by using these limits and then 
compute newer limits by using samples 
obtained from the new coil. When the 
problem solving team collected thirty 
samples of n = 5 observations, the 
results and control limits in Figure 
4 were obtained. 

Since no sample means or ranges 
are outside of the control limits, 
the process seems in control. It 
seems that the assignable cause 
variation has been removed. What 
remains is usual process variation. 
Usual process variation results from 
a combination of common causes of 
variation and chance causes of 
variation. Common causes of process 
variation are significant sources of 
variation that influence all process 
observations. A common cause of 
process variation might be obsolete 
equipment. For example, a poorly 
designed coil. Chance causes of 

process variability are small 
influences that cause variation even 
if we assume that all production 
conditions are being held as constant 
as humanly possible. Even though the 
process is in control (assignable 
causes have been removed), the usual 
process variation might cause the 
process to not meet individual 
product specifications. Once the 
process is in control, we may judge 
whether the process is meeting 
individual product specifications by 
calculating the natural tolerance 
limits. 

B m 

[ LNTL, UNTL] [X 3 R - ~2 = - ~2, X+3 1- 

Note that the above interval is an 
estimate of the interval [u - 3o, 

+ 3o]. Therefore, if the process 
is in statistical control, and if the 
population of individual process 
measurements is not far from being 
normally distributed with mean ~ and 
standard deviation o, the above 
interval contains substantially all 
individual process measurements 
(almost all product specifications 
are written for individual measure- 
ments). Thus, we wish to have both 
natural tolerance limits for a 
statistically controlled process 
inside the required product specifi- 
cations. This tells us that substan- 
tially all individual process measure- 
ments are within the product specifi- 
cations. As long as the process 
remains in control (as indicated by 
the X and R charts), we can be confi- 
dent that we are meeting specifica- 
tions. Using X = 4.43 and R = 1.6 
from Figure 4 and d 2 = 2.326 from 
Table i, the natural tolerance 
intervals are 

[ LNTL, UNTL ] 

= [4.43 - 2.06, 4.43 + 2.06] 

= [2.37, 6.49]. 

Specification limits for the hardness 
depths were 3.0 mm to 5.9 mm. The 
natural tolerance limits indicate, 
therefore, that the process does not 
produce almost all hardness depths 
within specification. Assuming the 
hardness depths are normally 
distributed with mean X = 4.43 and 
standard deviation 

R 1.6 
d 2 2.326 

-- .6879 
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it follows that REFERENCES 

P(X < 3.0 or X > 5.9) 

3.0-4.43 5.9-4.43 
= P(Z < ) + P(Z > 

.6879 .6879 

= P(Z < -2.08) + P(Z > 2.14) 

= .0188 + .0162 

= .035. 

Therefore, the correct process is 
producing 3.5% out of specification 
hardness depths. At this point, the 
problem solving team had the coil 
redesigned to reduce the variability 
of the hardness depths. The X and R 
charts inFigure 5 were obtained. 

The process is in control. The 
natural tolerance limits are [LNTL, 
UNTL] = [4.45 - 1.30, 4.45 + 1.30] = 
[3.15, 5.75]. Recalling the 
specification limits of 3.0 mm to 5.9 
mm., the process is now capable of 
producing almost all individual 
hardness depths within specification. 

3. A Summary of What to Teach 

With the increasing use of the 
statistical techniques we have out- 
lined above, it is imperative that we 
include a discussion of statistical 
control charts and process capability 
in basic statistics courses. Topic 
coverage should include all of the 
following: i) Definition of common 
causes, chance causes, and assignable 
causes of process variability. 
2) Construction of X and R charts. 
3) Interpretation of X and R charts. 
4) Discussion of the concepts of 
statistical control and process 
capability and how these concepts 
differ. 5) Calculation of natural 
tolerance limits for a process. 6) 
Interpretation of the natural 
tolerance limits and comparison of 
these limits with the specification 
limits. It can also be useful to 
teach the calculation and inter- 
pretation of the capability index 
Cp . See Mendenhall, Reinmuth, 

an~ Beaver [1989]. In addition, some 
instructors might wish to cover 
control charts for attribute data. 
These might include d-charts (defec- 
tives charts), p-charts (fraction 
defective charts) and c-charts 
(defects charts). Again see Burr 
( 1 9 7 6 )  . 

i) Burr, Irving W., Statistical 
Quality Control Methods, Marcel 
Dekker, Inc., 1976. 

2) Deming, W. Edwards, Out of the 
Crisis, Massachusetts Institute of 
Technology Center for Advanced 
Engineering Study, 1986. 

3) Mendenhall, Reinmuth, and Beaver, 
Statistics for Manaqement and 
Economics, Sixth Edition, 1989, 
PWS-KENT, Boston, MA. 

Note: All control charts in this 
paper where copied (with 
permission) from Mendenhall, 
Reinmuth, and Beaver [3 ] (see 
pages 809 and 810). 

Figure i: Plot of the Thirty Means 
and Ranges 

I A 
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Subl~oup Number . 

Table i: Values of A 2, d2, D3, and D 4 

n A 2 d 2 D 3 D 4 

2 1.880 1.128 0 3.267 
3 1.023 1.693 0 2.575 
4 0.729 2.059 0 2.282 
5 0.577 2.326 0 2.115 

8 0.483 2.534 0 2.004 
7 0.419 2.704 0.076 1.924 
8 0.373 2.847 0.138 1.864 
9 0.337 2.970 0.1 64 1.816 

I0 0.308 3.078 0.223 1.777 

11 0.285 3.173 0.256 1.744 
12 0.266 3.258 0.284 1.716 
13 0.249 3.336 0.308 1.692 
14 0.235 3.407 0.329 1.671 
15 0.223 3.472 0.348 1.652 

18 0.212 3.532 0.364 1.638 
17 0.203 3.588 0.379 1.621 
18 0.194 3.640 0.392 1.608 
19 0.187 3.689 0.404 1.596 
20 0.180 3.735 0.414 1.586 

21 0.173 3.778 0.425 1.575 
22 0.167 3.819 0.434 1.566 
23 0.162 3.858 0,443 1.557 
24 0.157 3.895 0.452 1.548 
25 0.153 3.931 0.459 1.541 
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Figure 2: Control Limits for the Sample 
Means and Ranges in Figure i. 
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Figure 5: Control Charts Obtained by 
Using the Redesigned Control 
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Figure 3: Control Charts Illustrating 
Ranges in Control and Means 
Out of Control 
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Figure 4: Control Charts Obtained by New 
Coil of the Same Type as the 
O r i g i n a l  
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