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I would like to congratulate all the authors on fine and 

interesting papers. I will limit my comments to the papers of 

Hulting and Harville, and Dol and Steerneman. 

Bayesian and Non-Bayesian Procedures for Small Area 

Estimation: Relationships and Computational Aspects 

This paper by Hulting and Harville is an interesing discussion 

of the general problem of estimating, and making inferences 

about, small area means. They approach the problem from the 

point of view of mixed linear model theory, and apply some of the 

results from that theory to the small area problem. The 

application of mixed linear model theory for the purposes of 

constructing small area estimates is not a new one, but Hulting 

and Harville go the aditional step and show us how to apply 

mixed linear model theory to construct variances and confidence 

intervals. They also bring in the tools of Bayesian analysis and 

the use of credible sets, and in addition tackle the problem of 

computational efficiency. I have the following remarks. 

Remark 1. The model they assume is the following 

! ! y,~ = ~ , ~  + k (1) ,.., , ~ i j V ~  "4- e i j  , 

where the subscripting refers to the j-th unit sampled from the i-th 

small area. Notice that a model is being applied at the micro or 

unit level. This implies a model at the small area level namely 

- ~ ~'~+~'  y ~ =  + ~ , ~  ~~, (2) 

where the means are calculated over the n i units in the i-th small 

area. Many researchers feel more comfortable with the aggregate 

level model in (2) than the micro level model in (1). A question 

that should be addressed is to what extent do the results of 

Hulting and Harville require only the macro level model in (2) 

instead of the micro level model in (1)? The assumption of 

normality would seem to play a key role here. 

Remark 2. The paper uses the basic idea of contructing 

estimated normal theory based confidence intervals. To what 

extent is it possible to use replication based inference, such as the 

Bootstrap, to construct confidence intervals for the small area 

problem? Such an approach would have to start with some kind 

of micro level model as in (1), but would presumably have the 

advantage of treating the underlying small area distribution of the 

units nonparametrically. Dr. Hulting has informed me that they 

have looked at parametric Bootstrap confidence intervals, but I 

believe the more general problem remains open. 

Asymptotic Optimal Bilinear And QI~ Estimators 

For Small Area Parameters 

This paper by Dol and Steerneman uses the tools of 

superpopulation models to construct bilinear and QR estimators 

for linear combinations of characteristics of units within small 

areas or subpopulations. Their basic working superpopulation 

model is 

L = z ~  + z (3) 

where y is an N x 1 vector of the population characteristics, x is 

an N x k matrix of auxiliary variables, and e is the model error 

which has mean O and covariance matrix I N  a2. Their goal is to 

estimate (or predict) the linear combination c r y ,  where c t is a 

predefined vector of constants. They do a nice job of deriving 

results in terms of expected designed-based optimality as well as 

model-based optimality, and overall their results form a nice 

notational bridge between designed-based theory and prediction 

theory. I have the following remarks. 

Remark 1. The authors use the replica method to prove their 

asymptotic results which implies that they are letting the number 

of units in each small area tend to infinity. Many people have 

proposed that asymptotics should be done in the small area 

problem by keeping the number units in each small area bounded, 

and let the number of small areas tend to infinity. It would be 

nice to see the authors go back and prove their results in this 

context. 

Remark 2. The authors prove optimality results involving the 

ordinary least squares estimator by using the fact that /~oz~ is the 
e ~  

best linear unbiased estimator of/3 when the covariance matrix of 
e ~  

the model error e is I N  ~2. They go on to say that for more 

general covariance structures generalized least squares would have 

to be used. But there exist situations where /~ol, is still the best 
e ~  

linear unbiased estimator under covariance structures other than 

INCr 2. The authors may want to consider whether this may have 

any useful consequences for their particular problem, since it 

implies that there exist situations where their estimators would 

still be optimal under more general covariance structures. 
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Remark  3. It was unclear to me how tile authors would 

estimate the variance on their estimators in practice. It is true 

that  expressions were given for the expected mean square error, 

but it is unclear how to estimate the components in those 

expressions. Part  of my confusion comes from the mixing of 

design-based and model-based theory. On a related subject, have 

the authors considered developing optimal biquadratic estimators 

to estimate population quadratic forms such as the variance 

within a small area? 

Summary 

Both papers approach the problem of small area estimation by 

using the tools of linear model theory applied at the individual 

unit level. The Hulting and Harville paper allow for a more 

complex error structure than do Dol and Steerneman, but the 

second paper makes more of an a t tempt  to account for the sample 

design by explicitly making use of the first and second order 

design inclusion probabilities. I hope all of the authors continue 

to work in this area, and continue to produce stimulating and 

thought provoking research. Thank you. 
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