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1. Introduct ion 

The superpopulation approach is often used to 

estimate certain populat ion parameters  more 

accurately than is possible by applying the 

classical sampling theory.  By postulating a 

superpopulation model it is for instance possible to 

make inferences about  subpopulations (also called 

small areas) using the whole sample instead of only 

the sampled elements that  are in the subpopulation. 

If such a superpopulat ion model applies, more 

accurate results can be obtained then by classical 

sampling theory.  This is especially the case if we 

are dealing with a small subpopulation and a sample 

that  contains only a very small number of 

individuals from this subpopulation. The accuracy of 

the superpopulation approach,  however, depends on 

the validity of the model used. 

This paper considers bilinear estimators,  i.e. 

estimators that are linear with regard to both the 

model and the sampling design. The mean-squared 

error is used as a yardstick. In the class of 

bilinear estimators, optimal estimators are derived 

under several possible restrictions like 

(asymptotic) design-,  model- ,  and model /des ign-  

unbiasedness. When the superpopulation model 

parameters  are known this can be done easily. If the 

parameters  are unknown and have to be estimated, it 

is more difficult to find optimal estimators. The QR 

estimator is an intuitive extension of the bilinear 

estimator when we have to estimate the 

superpopulation model parameters.  To compare QR 

estimators we will use an asymptotic method similar 

to the one described by Brewer (1979). 

Quite f requent ly  asymptotic design-unbiased 

estimators are preferred,  but  we will see that  the 

ordinary least squares (OLS) estimator is better 

than asymptotic design-unbiased estimators and that 

the OLS estimator is an optimal QR estimator. 

We will use the superpopulation approach to 

estimate a (sub)population parameter  T=c'y ,  with y 

an Nxl vector  of characterist ics under interest and 

c some Nxl vector.  If we are e.g. interested in the 
- 1  

population mean we will use c = N 11 with 11 being the 

Nxl vector  of ones. It is postulated that  the actual 

value Yi of the characterist ic under interest 
.th 

belonging to the ~ population element is a 

realization of the random variable Yi ( i= I , . . . ,N) .  

The random vector  Y=(Y1,...,YN)' satisfies the 

following linear model: 

Y= Xfl+e, e~(O, a~I), (1.1) 

where X is an Nxk matrix of known auxiliary 

variables, fl a kxl  vector  of parameters  and e an Nxl 

vector of uncorrelated identically distributed 

random disturbances. 

In section 2 we will give some definitions and 

notations needed in the subsequent sections. In 

section 3 we will give optimal bilinear estimators 

when model parameters  are known. Section 4 is 

devoted to the QR estimators when the model 

parameters  are unknown. For proofs and more examples 

we refer to Dol and Steerneman (1989). Section 5 

contains a summary of the results and some remarks. 

2. Some Def in i t ions  and Notat ions  

Consider a populat ion that  consists of N elements, 

labelled 1,...,N. The labels are supposed to 

uniquely determine the population units. The number 

of elements N is called the populat ion size. The 

character is t ic  under in teres t  of population unit i 

(i=l, . . . ,N) is denoted by Yi. The Yi's are not 

known. By drawing a sample of size n we get to know 

some of the Yi's. For all elements i there are k 

auxiliary variables with scores xil,... , xik on 
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population unit i which are known to us. 

It is very convenient to write formulas in matrix 

notation. We will use the following matrices: 

I X l l  X 1 2  ••• X l k "  X 1 

X = I X 2 1  X 2 2  x 2 k  " -  X 2 , 

/ 
Y -  (Y1 , . . . ,YN),  

//  = diag(lh, r2,.-., rN), 

where // denotes the diagonal matrix of the f i r s t  

o rde r  inclusion p robab i l i t i e s ,  e.g. ~r i is the 

probability that element i is sampled. The sample 

ma t r ix  

P = diag(px, P2,..-, PN) 

1 if i e sample s f 
with Pi = t. 0 if i ¢~ sample s 

denotes which population elements are sampled. In 

the sequel we frequently identify a sample with the 

matrix P. Because we do not know Y but only a 

sample of Y we are looking at the model 

PY = PX/3 + Pc. 

The samples we shall consider are so-called Fixed 

Effect ive Sample size n samples  (FES(n) samples): 

only samples with n different population elements 

have positive probabili ty of being selected. So e.g. 

simple random sampling with replacement is excluded. 

We also only consider samples with positive first 

order inclusion probabili ty for all population 

elements (Tri>0, i=l , . . . ,N).  This means that every 

population element has a positive probability of 

being sampled. Another restriction is that we only 

consider non in fo rma t ive  (or exogenous)  designs. Non- 

informative sampling designs are designs where the 

inclusion probabilities do not depend on the 

characteristics under interest Yi. The reason why we 

use noninformative sampling designs is that the 

random mechanisms due to the model and the sampling 

design are then independent. 

There are two stochastic components: model 

stochastics and sampling design stochastics. We use 

E to denote the conditional expectation with 
P 

respect to sampling given Y, that is 

Ep(~) = E(~ I Y) 

and E to denote the conditional expectation with 

respect to the disturbances given the sample P, that 

is 

Ee(1')=E(T I P). 

For example we have Ep(P)=II  and E(Y)=X~.  

Because we have two stochastic components, we 

have several forms of unbiasedness: 

^ 
Definition 2.6. An estimator T is called e - u n b i a s e d  

m o d e l - u n b i a s e d  if and only if E ( T - T ) = 0  for all o r  
^ 

samples s with p(s)>0. An estimator T is called 

p - u n b i a s e d  or d e s i g n - u n b i a s e d  if and only if 
^ ^ 

E ( T - T ) = 0  almost everywhere. An estimator T is 
P 

called p c - u n b i a s e d  or unbiased if and only if 

E(T-T) = E Ep(T-T) = EpEe(T-T) = O. 

In order to find an optimal estimator for the 

population parameter T we have to take into account 

both the sampling design and the superpopulation 

model as well• The sampling design has to be 

considered, because the way the characteristics 

under interest are gathered, is important for 

choosing an estimator. The superpopulation model 

gives us extra structure and this should be employed 

when constructing an estimator. To compare 

estimators we will use the mean- squa red  error (MSE). 

The mean- squa red  error of an estimator T for T is 

defined as 

MSE(T) = E Ep(T-  T) 2. 
^ 

It would be nice to find estimators T that are 

optimal in the sense that they have the smallest 

possible (asymptotic) m e a n -  squared error. Often 

there is no estimator with uniformly smallest 

mean-squared  error, so we limit ourselves to smaller 

classes of estimators. It turns out that we can find 

such optimal estimators in a restricted class, e.g. 

the class of bilinear estimators. 

3. Bil inear  e s t i m a t o r s  

In this section we will consider the class of 

bilinear estimators. These estimators are, given the 

vector Y, linear in the matrix P and, given P, 

linear in PY. Since we only get to know the sampled 
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elements PY,  instead of the vector  Y, we can only 
^ 

use P Y  in the estimator T. The general form of a 

bilinear estimator is 

^ 

T = c 'APY + c'BPa + c'b, (3.1) 

where A, B are N x N  matrices and a, b are Nxl 

vectors. We have to choose A, B, a, and b in such a 

way that  the m e a n - s q u a r e d  error (risk function) is 

as small as possible for each FES(n)  sampling 

design. This results in the following theorem: 

Theorem 3.1. Consider the model Y = X f l + e  with e ~ 
2 

(0, a~I) and fl, a are known. Given the class of 

bilinear estimators (3.1), the estimator 

To = c 'PY + c' ( I - P )X fl 

is the unique optimal bilinear estimator for T = c ' Y  

with regard to MSE and 

MSE ( To ) = a2c' ( I - 17)c. 

Because To is an e - u n b i a s e d  estimator, To is also 

the unique optimal e - u n b i a s e d  bilinear estimator. 

Remark: We see that  there is an optimal choice for 

A, B, a, and b that  does not depend on the vector  c. 

The subpopulation elements that  are in the sample 

are directly used (PY)  and those not in the sample 

are estimated by the best model estimator ( I - P ) X f l .  
^ 

Using T o the following corol lary will give us the 

optimal sampling design and hence the optimal 

strategy. 

Corollary 3.1. Let the population elements be 
2 2 2 

ordered such that  c 1 > c2 > ... >_ Cg. An optimal 

sampling design, using the optimal bilinear 

estimator To is such that: 

f 1 for i =  1, ..., n ,  
71" i \ 

0 for i = n + l ,  ..., N. 

In the classical sampling theory p -unb iasedness  

is a desirable proper ty  of an estimator. Suppose we 

limit ourselves to the class of bilinear p - u n b i a s e d  

estimators then the following theorem holds: 

Theorem 3.2. Consider the model Y = X f l + e  with e ~ 

(0, a2I) and fl, a 2 are known, then the estimator 

T~, = c'lI - 1 p y  + c' ( I - lI  - 1p  ) x ~  (3 .2 )  

is the unique optimal bilinear p - u n b i a s e d  estimator 

of T = c ' Y  in the class of bilinear p - u n b i a s e d  
estimators, with 

M S E ( T p ) =  a 2 c ' ( l I - l - I ) c .  

Remark: Note that  Tp defined in (3.2) is also 

e -unb iased .  So both Tp and To are p e - u n b i a s e d  

estimators but MSE(To) is smaller than MSE(7"p). The 

optimal p - u n b i a s e d  bilinear estimator has the same 

MSE as the optimal ( e -unb iased)  bilinear estimator 

if and only if ~r i = 1 for i =  1,... ,N. This means that  

we take the whole population as a sample. The 

difference between MSE(Tp) and MSE(To) will in 

general be large. We conclude that  if a 

superpopulation model is adequate,  we should use 

that  model to estimate T and not trying to estimate 

T using an p - u n b i a s e d  estimator as in classical 

sampling theory. 

For the moment suppose we no longer limit 

ourselves to ~ri>0 for all i, but use ~ri>_0 instead. 

We like to derive the optimal sampling design that  

minimizes the MSE of the optimal p - u n b i a s e d  bilinear 

estimator for subpopulation parameter  T = c'Y. 

Choosing an optimal sampling design when one is only 

interested in a subpopulation parameter  will result 

in a sampling design that  depends on the vector c. 

C..orollary 3.2. An optimal sampling design, using the 

bilinear estimator :Fp is such o p t i m a l  p - u n b i a s e d  

that: 

N 

7r i = n ] c i l / J ~ l  l CJ l i = l , . . . ,N.  

4. QR est imators  

In section 3 we have derived the optimal 

bilinear, p -  unbiased, and e -  unbiased bilinear 

estimators. They all appeared to have the same form 

= c 'RPY + c ' ( I  - RP)Xf l  ( 4.1 ) 

with R = I  if we look at the optimal ( e -unb iased)  
- 1  bilinear estimators and R = I I  if we look at the 

optimal p -  unbiased bilinear estimators. In this 

section we will consider the case that  we do not 

know the superpopulation model parameters.  In order 

to estimate the population parameter  T we have to 
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estimate the model parameters.  This means that  we 

have to estimate /3 by some estimator /}. In the 

l i terature several estimators are proposed. Two 

frequently applied estimators are the OLS and the 

GLS estimators. If we estimate /3 conditionally given 

the sample, that  is given the matrix P, we estimate 

/3 by the OLS method: 

~oZ8 = ( X'PX) - 1X'pY. (4.2) 

-1 
We can calculate (4.2) only if (X'PX) has rank k 

for all matrices P and therefore  we will assume that  

the rank of PX is k, with sampling design 

probabili ty one. If we estimate /3 unconditionally, 

then we want to estimate the model 

PY = PXfl + P¢, 

with 

E(P¢)=O and E(Pee'P)=Ep(PEe(ee')P)=a2II, 

and GLS results in 

flreg = ( X 'Pl l - Ipx)  -1X'PH-1PY = ( X'II-1px) -1X'II-1PY" 

In the l i terature the GLS estimator is also known as 

the regression estimator. 

Both estimators are c - u n b i a s e d  but are in general 

not p - u n b i a s e d  and they can be considered as 

weighted least squares estimators: 

= (X'PQPX) - 1X'pQPY, (4.3) 

with/3 = ~oZs if O = I and ~ = ~reg if 0 = / / -  1. The question 
- 1  

is: 'How to choose O, do we take 0 = I ,  O= /7  or 

should Q be something else ?' 

By replacing fl in (4.1) by ~ given in (4.3) we 

obtain the so called QR estimator. If ~rij=O , the 

probabil i ty that  i and j are sampled both, then 

(PQP)ij = PiPjqij = 0 with probabil i ty one. So, without 

loss of generali ty we may assume that  qij-O for all 

pairs (i,j) with 7rij=O. As in (4.2) we have to 

assume that  X'PQPX has rank k with design 

probabili ty one and therefore  we will assume that  Q 

has full rank N and that  PX has rank k with design 

probabili ty one. 

Definition 4.1. An estimator for the population 

parameter T = c'Y is called a QR estimator if it is 

of the form 

Tp.R = c'RPY + c'( I -  RP)XfloR, 

where 

floR= (X PQPX)- 1X'pQPY. 

The matrices R and Q are N×N matrices and Q is of 

full rank. The matrix Q is symmetric with qij =0 for 

all pairs (i,j) with rij=O. 

Our aim is to find matrices R and Q that  minimize 

the asymptotic MSE (AMSE) in the class of the QR 

estimators. A problem in calculating the MSE of a QR 

estimator is that  we no longer have simple 

expressions when taking the design expectation. That 

is why we will consider the asymptotic distribution 

of T - T ,  if the expiriment is replicated. For 

asymptotics we will use a method slightly different 

from the one introduced by Brewer (1979), known as 

the rep l ica  method.  Our replication scheme considers 

the asymptotics as if the experiment is repeated 

infinely many times. At "time" t e {1,2,3,...} a new 

vector Yt is generated and a new sample Pt is chosen 

according to the fixed sampling design and we 

aggregate  the t vectors Yt and Pt to get the 

population parameter  

t 

Tt = h =~ l c'Yh" 

In the situation of replication we estimate T t by 

t 

Tt = ~ [c'RPhY h +c'(e-RPh)X~t], 
h = l  

where 

t t 

~t = (h=~l X'PhQPhX) - l h = l  ~ X'PhQPhY" 

For examples of the replica approach see e.g. Ten 

Cate (1986) and Rao (1984). In Brewer's replica 

approach the same vector  Y is used at all times t. 

We, however, use the superpopulation model approach 

in full and use a different Yt for each time t. 

The remainder of this section will be devoted to 

the derivation of the asymptotic distribution of a 

QR estimator in case of replication. The following 

theorem shows that  for Q = R = I the asymptotic optimal 

QR estimator Tozs under the replication scheme is 

obtained. We will see that  it is not the unique 

optimal asymptotic QR estimator. If we substitute 

~oZ8 for fl in the general expression for T, then it 
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can be shown that  the choice R = I leads to the unique 

optimal QR estimator in the subclass of QR 
^ 

estimators based on the optimal riots. 

Theorem 4.3. A) If the populat ion parameter  T = c'Y is 

estimated by the OLS estimator 

Tozs = c 'PY  + c' ( I - P )X~ozs , 

~ots = ( X ' P X ) -  1X'pY,  

then under the replication scheme 

-v~.~ £ 
~_, t ( l  ols, t - T t )  , 

N( 0, a 2 c ' ( I - 1 7 ) c + a 2 c ' ( I - 1 7 ) X ( X ' 1 7 x ) - l x ' ( I - 1 7 ) c ) ,  

and it is an asymptotic optimal estimator in the 

class of QR estimators of definition 4.1. 

B) If the populat ion parameter  T = c'Y is estimated by 

an R estimator 

^ ^ 

T R = c 'RPY + c ' ( I  - RP)XfloZs, 

and R is an N×N matrix,  then under the replication 

scheme Tozs is the unique optimal R estimator.  
^ 

C) The QR est imator TQR is asymptotic optimal in the 

class of QR estimators if and only if it can be 

written in the form 

Tpje = c 'PY + c' ( I - P )Xf lo  R + c'(17 - I )X( X ' 1 7 x ) - l x ' p (  Y - X~QR ), 

where the matr ix Q satisfies 

S P Q P X  = P S Q S X  

for all independent sample design matrices P and S 

that  have positive probabil i ty.  

Theorem 4.3 shows that  the OLS procedure is 

optimal in an asymptotic  sense. This is not true for 

the regression est imator 

Treg = c ' 1 7 - 1 p y  + c ' ( I -  17-1p)x f l reg  , 

~3reg= ( X ' 1 7 - 1 p x )  - 1 X ' 1 7 - 1 P Y ,  

- 1  
which is a QR est imator with Q = R = I I  . It can 

be shown that  its AMSE is equal to 

AMSE(Treg ) = o'2c'( H -  1 _ I )c  

which is str ict ly larger  than the AMSE of the OLS 

estimator in case tha t  7ri<l for all i. The theorem 

shows that  the OLS procedure is in general not 

unique in having the smallest AMSE. In fact  any QR 

estimator with R = I  and Q is diagonal gives an 

optimal estimator.  So, one could take Q = 1 7 - 1 .  The 
^ 

theorem gives an optimal QR estimator based on flreg: 

c 'PY + c' ( I - P )Xflreg + c'(17 - I )X( X ' I IX  ) - 1X'p( Y - X~reg ). 

The correction term can be interpreted as being due 

to the fact  that  the residuals contain additional 

information in comparison to the information already 
^ 

contained in P Y  and Xflreg.  If OLS is used the 

correction term is equal to zero. This suggests that  

OLS is more appropr ia te  in the sense that  no 

correction based on residuals is needed. 

The OLS procedure is optimal in an asymptotic 

sense. The choice for Q and R in this case does not 

depend on the part icular  value of c. What happens is 

that  in fact  the vector  of populat ion values Y is 

estimated. The elements in the sample are known (PY)  

and the elements not sampled are estimated (by 
^ 

( I -P)Xf loZs) .  The OLS procedure estimates Y by 

~'oZs = B Y  + ( I -  P)Xflozs. 

A particular choice for c leads to 

^ ^ 

Tols = c'Yols 

as an est imator for T = c ' Y .  In practice various 

values of c will be of interest. All that  will be 
^ 

needed is in fact  Yots, because an estimator for 

some population parameter  c'Y can almost immediately 

be obtained. 

The reason why the regression est imator is so 

popular is that  many sampling designers prefer  

asymptotic des ign -  unbiased estimators,  al though 

their AMSE can be relat ively large in the 

superpopulation context.  

5. Summary and remarks  

In this article we have presented optimal 

bilinear as well as optimal QR estimators. Knowing 

the superpopulation model parameters  it is easy to 

derive optimal bilinear estimators.  Bilinear 

estimators are linear in the model as well as in the 

sampling design. Section 3 gives several optimal 

estimators under several  restrictions. We seldomly 

know the superpopulat ion parameters ,  so we have to 

estimate the vector  of model parameters  fl in order 
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to estimate the population parameter T. Estimating fl 

by fl = (X'PQPX)- 1X'pQPY results in a QR estimator :F 

that is no longer linear in the sampling design. We 

use the QR estimator as an intuitive extension of a 

bilinear estimator. The optimal bilinear estimator 

is given by 

~o = c'PY + c'( I -  P)Xfl (5.1) 

and when we do not know /3, we simply estimate /3 by 
^ 

floZ8 and (5.1) becomes 

Tol8 = c'PY + c' ( I - P )X~ozs. 

When we apply the optimal p -unb iased  bilinear 

estimator 

Tp = c ' l I -  1py +c'( I -  l I -  1p)xfl, 

a popular estimator in case fl is unknown becomes 

T r e g = C ' H - 1 p Y + c ' ( I - I I - 1 p ) x ~ ,  (5.2) 

^ 

where /3 is estimated by ft. 

From theorem 4.3. we see that the OLS estimator is 

an optimal QR estimator. Wright (1983) has shown 

that (5.2) is not exactly p -unb iased  but an 

asymptotic design-unbiased (ADU) QR estimator. The 

regression estimator is not an optimal QR estimator. 

The literature mainly concentrates on the ADU 

estimators (see e.g. Brewer (1979), S~rndal (1980), 

Wright (1983), Hansen, Madow, and Tepping (1983) 

and Brewer, Hanif, and Tam (1988)). The advantage of 

an ADU QR estimator is that it remains asymptotic 

design-unbiased whatever model is used. This means 

that if we specify a wrong model the ADU estimators 

remain asymptotic design-unbiased. When we use a 

model-unbiased estimator and have specified a wrong 

model it will result in a model-bias .  However not 

only the bias is important, the AMSE is the risk 

function we use. Using a wrong model, the OLS 

estimator (optimal model -  unbiased QR estimator) as 

well as the regression estimator (asymptotic 

design-unbiased QR estimator) will have a larger 

AMSE as expected. The question is which estimator 

will have a larger AMSE. 

The optimal OLS estimator has several nice 

properties when looking at small areas: the optimal 

solution is independent of the vector c. This means 

that the OLS estimator is optimal, independent of 

the small area under interest. We do not have to 

know the whole (Nxk) matrix X but only the (kxl) 

vectors Xi of the sampled elements and the small 

area totals of the auxiliary variables Xi (=c'PXi).  
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