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P r o b l e m  F o r m u l a t i o n  

1.1 I n t r o d u c t i o n  

The  topic of small  area es t imat ion  has received much at- 
t en t ion  in the  recent  s ta t is t ics  l i te ra ture .  Smal l -area  esti- 
ma t ion  is concerned with using sample  da t a  from a popu-  
lat ion,  sca t t e red  over a large domain ,  to make inferences 
abou t  the  average, or total ,  of some quan t i ty  in subdo-  
mains  of t h a t  popula t ion .  One object ive  is to provide the  
best  possible es t imates  for areas which conta in  few, if any, 
sampl ing  uni ts .  

T h e  p rob lem of smal l -a rea  es t imat ion  can, in many  in- 
s tances,  be fo rmula ted  as a special case of the  general  
p rob lem of predic t ing the  real izat ion of a r andom vari- 
able w based on the value of an observable r a n d o m  vector  
y, where y follows a mixed l inear model  with a single set 
of r a n d o m  effects and w is a l inear  combina t ion  of fixed 
and r a n d o m  effects. A p r imary  purpose  of the present  pa- 
per  is to review and discuss some recent  results  on this 
general  predic t ion p rob lem and the special case of small  
area es t imat ion .  Our  coverage includes bo th  frequent is t  
and Bayesian approaches .  In par t icu lar ,  we discuss the  
re la t ionships  be tween  the  approaches ,  examine  the com- 
pu t a t i ons  required to imp lemen t  the various approaches  
in the case of unba lanced  da ta ,  and compare ,  via a Monte  
Carlo study,  the  f requent is t  proper t ies  of the  Bayesian and 
non-Bayes ian  procedures .  

1.2 S m a l l - A r e a  E s t i m a t i o n  

Let y be the  variable of in teres t ,  and a the number  of 
"small  areas" under  considera t ion.  One model  employed 
in smal l -a rea  e s t ima t ion  is 

, ! 
Yij "- x.T...ijfl__ + k ' i j v  + eij, (1) 

(i = 1 , . . .  ,a;  j = 1 , . . . ,  hi) .  Here, yij represents  the value 
th  ! of y for the  j th  uni t  sampled  fl'om the i small  area, x__.ij 

and k'i j  represent  the  values of two vectors x._~' and k..~' of 
exp lana to ry  or indica tor  variables,  and f l = ( f l l , . . . ,  fib)' is 
a vector  of unknown  pa ramete r s .  Fur ther ,  the e lements  
of the  vector ~2 = ( v l , . . . ,  v~)' one e lement  for each 
small  area are regarded as uncor re la ted  r andom vari- 

9 while the  ables having mean  zero and c o m m o n  variance ~rv, 
eij 's are r a n d o m  variables t ha t  are uncor re la ted  with each 
o ther  and wi th  the  vi's and have mean  zero and common  

2 
v a r i a n c e  o" e . 

The  quan t i ty  of in teres t  is usual ly the  popula t ion  mean 
Yi of y for the i th small  area, which may be expressed as 

- t  ~Z£+k,v+~,, (2) 
- I  - !  

where x_ i and _.k i are the popu la t ion  means  of x__~' and k__~ ~ for 
the  i th smal l -area  and where  e_ i Yi ' - '  = -~f l__-kiv .  Following 
Prasad  and Rao (1986), we assume t h a t  the  popu la t ion  size 
Ni for the i th area is large, in which case £i ~ 0. Often, 
the  vector  ki j  is chosen to be the vector  whose i th  element  
equals one and remain ing  e lements  equal  zero, in which 

! ~_ -, case k_.~.j__v = vi and + ~ v  = ~fl__ + v, is in te rpre tab le  
as the  smal l -area  mean.  

Models  of the form (1) were adopted  by, e.g., Fay 
and Herr iot  (1979), S t roud  (1987), Demps te r  and Rha- 
g u n a t h a n  (1987), and Demps te r ,  Rubin  and Tsu takawa  
(1981). 

C r o p - A r e a  E x a m p l e  . Ba t tese  et al. (1988) discuss 
the  appl icat ion of smal l -area  m e t h o d s  to the predict ion 
of county crop areas using satel l i te  informat ion.  Their  
d a t a  consists of two different de te rmina t ions  of areas under  
corn and soybeans  for a sample  of segments  from 12 nor th-  
cent ra l  Iowa counties  (a segment  is about  250 hectares)" 
(1) the  n u m b e r  of hectares  repor ted  by farm operators ,  
and (2) the n u m b e r  of pixels classified as corn or soybeans 
(as de te rmined  from L A N D S A T  readings) .  

Here we focus on the es t imat ion  of mean  hectares  of 
corn per  segment  for the 12 counties  represented  in the 
sample.  Let yij be the repor ted  hectares  of corn in the j th 
segment  of the i th  county, and let xl i j  and x2ij represent  
the  number  of satel l i te  pixels in a sample  segment  classified 
as corn and soybeans,  respectively. Ba t tese  et al. (1988) 
propose the nes ted  error regression model  

Y i j  --" flO -J¢" f l l  X, l i j  -}- f l 2 X 2 i j  + Vi -[- e-,ij, (3) 

which is a special case of model  (1). T h e  data ,  along with 
more  detai ls  about  the  sample,  are given by Bat tese  et al. 
(1988). 

1.3 G e n e r a l  P r e d i c t i o n  P r o b l e m  

Let y represent  an n × 1 observable  r a n d o m  vector.  Sup- 
pose t ha t  y follows the mixed-effects l inear model  

y = x__z + z__~ + ~_ , (4) 

where fl is a p × 1 vector  of unknown pa ramete r s  and 
where  _s and e.e_ are unobservable ,  s ta t is t ical ly  indepen-  
dent  r andom vectors of d imensions  m × 1 and n × 1 tha t  
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are d i s t r ibu ted  as MVN(0,( r~/ )  and MVN(0  2 , ,(re/), respec- 
2 and 2 tively. Here, the  variance components  (rs (re are un- 

2 known pa rame te r s  satisfying (r~ > 0 and (re > 0, and 
X and Z_. are given matr ices.  Define p* = r ank(X) ,  
r = rank(X,_Z)  - r ank (X) ,  and f = n - r ank (X ,  Z).  We 
assume tha t  r > 0 and f > O. 

2/(r2¢ and 0 ((r~, 3")'. The  pa rame te r  space for Let  3"= a~ = 
2 ~_ is f~ = {((r~, 3 ' ) ' '  (re > 0, 3' > 0}. Let t ing  V_ v = var(_y), 

~(Z+ ~ z z ' )  w~ h~ve that V ,  = ~ Z  + ~ Z____L = ~,  = ~ ,Y,  
with V = V(3') = I+3"ZZ.__.". 

Clearly, the problem of smal l -area  es t imat ion  can be re- 
garded as a special case of the  problem of predict ing the 
real izat ion of a r andom variable w of the form w = A_~3+6's 
- -  we refer to the la t te r  p roblem as the general  predict ion 
problem.  Let v~ - v a t ( w )  and Y-v~ = coy(y, w), and note  

2~/6,6, and = a~3'Zb. Subse- t ha t  E ( w ) =  A_~3_, v~ = (re Y-v~ - - -  
quent ly  we assume tha t  _~ is such tha t  ~_ -- X~_..~u for some 
vector u, or equivalent ly  tha t  w is es t imable  or predictable.  
(Unless otherwise indicated,  probabi l i t ies  and expecta t ions  
are defined with respect  to the joint  d is t r ibut ion  of w and 
y.) 

2 Frequentist Approaches 
Tradi t iona l  procedures  for the general  predict ion problem 
are based on a two-stage approach to making inferences 
under  the mixed-effects model  (4): first, es t imate  the error 

2 and the variance rat io 3' a n d ,  second, proceed variance (re 
2 and were known. In some cases, modif icat ions are as if ae 3' 

made  to account  for the addi t ional  variabil i ty in t roduced  
2 and 3'. by the es t imat ion  of ae 

2 . 1  P o i n t  P r e d i c t i o n  o f  w 

Suppose  t ha t  3" were known. Then,  the best  (min imum 
MSE) l inear unbiased predic tor  (BLUP)  of the  value of w 
is @(3') -- ~ '~_+ _~'~_, where ~_ is any solution to the  Aitken 

equat ions  X'V-1X__fl_ - X ' V - l y ,  and ~ _ -  3"Z'V-a(y_.-  

2 2~(3'),  with X_fi_). The  MSE of the BLUP is v*((re,3") = (re 

~ £ ( / -  v z ' v - ~ z ) ~  + { ~ -  ~6'z'v-'x_J 

x [x 'v- 'x_]-[h-  ~x'v-'z_~} 
! 

In the case where k ' i j v  = vi, the BLUP of the smal l -area  
mean  may be wr i t ten  as 

3 " + n 7 1  3 ' + n ~  -a - 

_ !  
where xi(s) and ~#i are the  sample  averages of x.' and y for 

the i th small  area. 

Except  in special  cases, the BLUP ~(3') depends  on the 
(unknown)  value of 3'. A predic tor  of the value of w can 
be obta ined  from @(3') by replacing 3' with an es t imator  
of 3'. We refer to this predic tor  as the empirical  BLUP.  

2 and 3' is Pa t te r -  One popu la r  me thod  for es t imat ing  (r e 
son and T h o m p s o n ' s  (1971) res t r ic ted max imum likelihood 

--2 (REML)  procedure.  The  R E M L  es t imators  ae and ~ are 

obta ined  by maximizing the  modified l ikelihood function 
l*((r~, 3"; z), which is equal  to 

2 -(,-p*)12[det(V__)]-a /2 [ d e t ( X "  V -a X*)] -~/2 (re 

× exp{- - (2 ( r2 ) -a (y  - X ~ ) t E - l ( y  - X_j~b} , (6) 

where X* in an n × p* ma t r ix  whose columns consist of 
any p* LIN columns of X__. 

The  REML es t imators  ~ and -2 (re are even, t ransla t ion-  
invariant  funct ions of y. Subsequently,  we denote  by 

M 

and ^2 a rb i t ra ry  even, t rans la t ion- invar ian t  es t imators  of ( r e  
2 3' and (re. Fur ther ,  we denote  by @ the  empirical  BLUP 

obta ined  from @(3") by replacing 3" with ~; tha t  is @= @(~). 
The  predic tor  @ is an unbiased predic tor  of the value of w, 
provided tha t  the expec ted  value of @ exists (e.g., Kackar 
and Harvflle, 1984). 

2.2 E s t i m a t i o n  of t h e  M S E  of zb 

Let v + (a~, 3') represent  the MSE of @. Closed-form expres- 
sions for v + (a~, 3') are available only in very simple special 
cases. It is common pract ice to approx imate  v + ((r~, 3') by 
v*((r~,3'); however, this approx imat ion  is naive in tha t  it 
ignores the cont r ibut ion  of the es t imator  ~ to the variabil- 
i ty of @ -  w (e.g., Kha t r i  and Shah, 1981). Kackar and 
Harville (1984) approx imated  this cont r ibut ion  by a × b, 
w h ~ e  a = v a r [ ~ ( ~ ) / ~ ]  ~nd b equals o~ ~pp~ox~m~tes 
the  MSE E [ ( ~ -  3')2] of -~. The  corresponding approxima- 
tion to the MSE of tb is v ° ((r~,3") --- v*((r~,3') + a × b. If 

-- ~, then one choice for b is the large-sample  variance 
of ~. 

The  MSE of @ is often es t imated  by * ^2 v ((re,~/). Let t ing 
2 , , 2  and h and b represent  the values of a and b at (re = (re 

3' = ~, a more conservat ive es t imator  of the  MSE is the 
es t imator  v°(&~,~) = v*(&2e,zy) + (t × b. The  asymptot ic  
results  of P rasad  and Rao ( 1 9 8 6 ) i n d i c a t e  tha t  ve(&~,~/) 
tends  to unde res t ima te  the MSE, though  of course to a 
lesser extent  than  v*(&~,~/), and suggest  the a l ternat ive  
es t imator  ~ = v* (&~,~) + 2(~ × b). 

2 . 3  I n t e r v a l  P r e d i c t i o n  of w 

Approx ima te  predict ion intervals  may be obta ined  by act- 
ing as though  the  quan t i ty  t (w ,y ) ,  defined by t (w ,y )  = 
(@-w) / [ i~+]  1/2, is a pivotal  quanti ty.  Here, ~+ represents  
a nonnegat ive  function of ^ 2 (re and q, which is to be regarded 
as an es t imator  of the  MSE of ~b. It follows from Propo-  
sition 1 of Jeske and Harvil le (1988) t ha t  the dis t r ibut ion 
of t(w, y) is symmet r i c  abou t  zero. If we approx imate  the 
upper-c~/2 point  of the d is t r ibut ion  of t(w, y.y) by the upper-  
c~/2 point,  say Zal2, of the s t anda rd  normal  dis t r ibut ion,  
we obta in  from t (w , y )  the approx imate  100(1-c~)% predic- 
t ion interval  

± z~/~[~+]~/~ . (7) 

This  interval,  which is similar in form to intervals con- 
sidered by Fuller (1988) in a mul t ivar ia te  version of the 
smal l -area  problem,  is likely to be sat isfactory if ~ and ~)+ 
es t imate  3' and v+((r~,3,) precisely. Here, we focus on the 
following version of interval  (7)" I1" ~b -4- z~ /2 [b] ~/2, where 
we take ae ^ 2 =he- 2, and ~=~ .  
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A potential  improvement on interval (7) is obtained by 
approximating the upper-ce/2 point of the distribution of 
t(w,y) by the upper-ce/2 point, say t~/2(f~) of Student 's  
t distribution with 1) degrees of freedom, where b is an 
est imate obtained by adapting the approach of Satterth-  
white (1946). By making use of this approximation, we 
obtain from t(w,y) the approximate 100(I-a)% prediction 
interval 

~o ± t~/~(~)[~+] ~/~ . (s) 

We consider three versions of prediction interval (8); 
namely I2 • @ 4- t~/2(b~)[v°(&~,xr)] ~12, and I3 • @ 4- 

t~/2(f,2)[b] ~/2, where bl, and f,9, represent the values of b 
obtained by choosing ~+ to be vO(&~,q) or ~, respectively. 
In both versions, we take ^2 -2 a~ = a~, q = q. Further details 
on the implementat ion of this approach may be found in 
Hulting and Harville (1989). 

2.4 C o m p u t a t i o n a l  A s p e c t s  

In this section, we give expressions for l*(a~. 3'; z), @(3'), 
~(3'), a, and b that  are useful when these quantities must 

2 ( a s  be calculated repeatedly for different values of 3' and cr~ 
is required by iterative algorithms for computing REML 
estimates).  Following Dempster  et al. (1984) and Harville 
and Fenech (1984), let C_. = Z ~ ( I - P x ) Z ,  q_ = Z ~ ( I - P x ) y ,  
and r -- rank(C). Define /~1,-.. ,mr to be the nonzero 
(and hence positive) characteristic roots of C, and take 
R to be a matr ix of dimensions m × r whose columns are 
or thonormal  characteristic vectors of C corresponding to 
A 1 , . . . , A , .  Furthermore,  l e t t i n g D =  diag(A1, . . . ,A~) ,  
define t_ = ( t l , . . . ,  t r ) '  = D-1/2R~q, and let $8 = Eir__l t~, 

7" 
and S~ = y..~(/- P x ) Y -  ~-,i=1 t~. 

Harvflle and Callanan (1989) showed that  /* (a~ , 3"; z) 
is proportional to the function l(a~, 3'; z) = 
(2~ro'~) -('-p')12M(3") x exp[--(2o'~2) -hA(3'; t; S~)], where 

r M(3') = {YIi=l(1 + 3'Ai)} -1/2, and A(3";t;S,) = S~ + 
~i=1 t ~ / ( l + 3 ' A i ) .  Note that  once A a , . . . , A ~  and R have 
been computed,  the additional expenditure of computing 

2 z) for dif- resources required to repeatedly evaluate l(a~, 3"; 
2 and 3' is relatively small. ferent values of a~ 

Let 4 = [5_-Z'X(X'X)-X_]. Analogous to the expression 

for l(a~, 3"; z) are the following expressions for @(3'), ~(3'), 
a, and b given by Harvflle (1989)" 

@(3") = A_.~(X'X)-.~I + 3'(~__R(I + 3'D) -1D.._ a /2 t ,  (9) 

~(~) = ~'(x'x)-~_ + ~¢__'¢_ 

- 3 " 2 ~ ' R ( / +  3"D) - 1 D R ' ~ ,  (10) 

2~ffRD(/+3'D)-aR~¢, and (when b is taken to be the a = ~ r  e 
l~ge-s~mple v~i~nCe of ~) b= 2{E,=~ a~/(a + va,)~ 
( n -  p . ) - l [ ~ i ~  Ai/1 + 3'Ai]2} -a .  Expressions for vari- 
ous other quantit ies needed to compute the end points of 
Intervals I2 and I3 may be found in Hulting and Harville 
(1989). 

A B a y e s i a n  A p p r o a c h  

3 . 1  F o r m u l a t i o n  o f  P r o b l e m  

As an alternative to the approach discussed in Section 2, 
we consider a Bayesian approach to inference about w. In 
the Bayesian approach, we select a prior distribution for 

2 3") and then base our inferences on the fl and 0__ = (o'~, 
conditional distribution of w given y. m 

Suppose that  a priori fl and 0_ are statistically indepen- 
dent, that  fl ,~ M V N ( ~ , e I )  (where ce is a known p x 1 
vector and ¢ is a known positive scalar), and that  0 has a 
proper or improper distribution with p.d.f, equal or pro- 
portional to r2(a~, 3"). Then, under model (4), the con- 
ditional distribution of w and y given 0 is MVN, with 
p.d.fg(w,y_10) = gl(w [y,O) x g2(Yl~) where gl(w l Y, 0-) 
is the p.d.f, of the conditional distribution of w given y 
and 0_, which is normal with mean w ~ = __)~'cr + (v'y~ + 

eA'X' ) (V u + e X X ' )  -1 ( y -  Xa)  and variance v" = (v~ + 

~ ' ~ )  - (~'~ + ~ ' x ' ) ( y ~  + ~ x x ' ) - ~ ( ~  + ~x__A), ~ d  
g2(y I/9) is the pdf of the conditional distribution of y given 
8_, which is MVN with mean vector X a  and covariance 
matr ix V + e X X  ~ Thus, the distribution on which the 
Bayesian would base his/her  analysis is that  with p.d.f. 

f(~ I _y) ~ f .  gl(~ I y. 0_)g~(y I 0_)~(£, v)d0. (11) 

In what follows, we assume that  the prior distribution 
of/9 is a proper or improper distribution with a p.d.f, of 
the general form 

2)G2(3") exp{--(2 2 -1 7r2(a~, 3") = G1(3')(~r~ ~r~) G3(3")}, (12) 

where G1(7), G2(7), and G3(3') are arbitrary functions 
of 3' such that  G1(3") > 0, G2(3") < ( n -  p* - 4 ) / 2 ,  and 
G3(3') > 0. For prior distributions of the general form 
(12), the Bayesian approach is computationally tractable. 
Moreover, the class of distributions of general form (12) is 
broad enough to cover a wide range of prior opinions. In 
a small-area context, Bayesian approaches to the various 
special cases of model (4), based on a prior distribution 
of the form (12), have been considered, for example, by 
Stroud (1987), Ghosh and Lahiri (1988), and Dat ta  and 
Ghosh (1989). 

3.2 L i m i t i n g  P o s t e r i o r  f*(w ]Y) 

For sufficiently large values of e, the prior distribution of 13 
can be regarded as noninformative. Moreover, the results 
of Dempster,  Rubin, and Tsutakawa (1981) and Sallas and 
Harville (1985) suggest that for "large" values of e, f(w I 
y) can be approximated by the p.d.f. 

f* (w I E) = fa gT(w I E, 0-)h(0-- I z-)d0-- 

Here, g~ (w I y, g) is the p.d.f, of a normal distribution with 
• 2 mean @(7) and variance v (a¢,7), and h(0_ [ z) = ( l / k [ )  x 

, 2 7) d0__. t(£. r; ~ )~ (£ ,  ~), wh~e k~ = f .  Z(£, ~; ~)~(~,, 
Subsequently, we regard f*(w l Y) as the posterior p.d.f. 
o f  W .  
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Let F[.] represent the gamma function, and, for c > 
0, define b(7, c) = In - p* - 2G2(7) - c]/2, Sa(7, c) = 
M ( 7 ) G ,  (7)r[b(7,  c)], and B2(7; t ;  S,)  = (1/2)[A(7; t; Se )+  
G3 (7)]. Then,  

kr = (2,0 ('~-~'~1~ B~(.y,2)B~(.~;t;S~)-b('~'2)e~ , 

(13) 
and the posterior p.d.f, f*(w [Y) may be writ ten as 

f*(w l Y_) = (2r)-a/2[k~] -a Ba(7, 1)~(7)  -a/2 

{ [ w - @ ( 7 ) ]  } - b ( 7 ,  1) 
× 2~(7)  + B2(7; t; S~) d7 (14) 

where k~ = k~ (2~') (n-p•)/2. By making use of expressions 
(13) and (14), f*(w l Y_) can be expressed as the ratio of 
two one-dimensional integrals. In general, these integrals 
must be evaluated by numerical integration. In carrying 
out the numerical  integration, the two integrands must 
be repeatedly evaluated for different values of 7. Note 
that ,  once A ~ , . . . , A ~  and R have been computed,  the 
repeated evaluation of the integrands requires ~ in light 
of expressions (9) and (10) for ~(7)  and ~ ( 7 ) - -  very little 
additional computat ion.  

Finally, we note that  the posterior probabili ty P*(S I Y_) 
of a set S of w-values can also be expressed as a one- 
dimensional integral with respect to 7, as discussed in 
Hulting and Harville (1989). 

3.3 Characterizations of f * ( w  l Y) 

As a practical mat ter ,  Bayesian inference requires that  
summaries  of the posterior be computed.  In this section, 
we describe features of f*(w l y) which are analogous to 
quantit ies used in the frequentist  approach. 

Let wB and vB represent the posterior mean and vari- 
ance, respectively, of w; that  is the mean and variance of 
the distr ibution with p.d.f, f*(w ]y).  Then,  it can be 

shown tha t  wB -- f0 °° ~ (7 )ha (7  ]_z)d7 , where the p.d.f. 

ha (7 I z__), defined by ha (7 I z_) - f0 ~ h(0_ I z_.)da~, is ex- 

pressible as ha (7 I z) = [k~] -a Ba (7, 2)B2(7; t; S~) -b(7, 2), 

and vB = [k;]-a fo '° Ba(y, 4 )B2(7; t ;S , ) -b(7 '4){~(7)  + 
[~(7) - wB]2B2(7;t;S~)b(7,4)}d7 • The posterior mean 
can be regarded as an est imator  of the value of w, and can 
be interpreted as a weighted average (with respect to 7) 
of the BLUP z~(7). 

A Bayesian counterpar t  to a prediction interval is 
a credible set. A set S of w-values is said to be a 
100(I-a)% credible set if P*(S [ y_.) = 1 - a. The small- 
est 100(I-a)% credible set is S= {w"  f*(w [y) > k~}, 
where k~ is a constant  such that  P*(S [ y) = 1 -  o~ 
(see e.g. Berger 1985, p. 140). This set is called the 
100(I-a)% HPD credible set. 

Consider an interval I4 • [l, u], with endpoints l and u 
such that  f* (/I Y) = f* (u [ y) and P* ([/, u ] l y )  = 1 - a .  By 
definition, this interval is a 100(I-a)% credible set, and if 
the posterior distr ibution of w is unimodal,  it is the 100(1- 
ce)% HPD credible set. Interval I4 must be computed iter- 
atively via the solution of certain nonlinear equations. An 

efficient computa t ional  procedure is described by Hulting 
and Harville (1989). 

4 R e l a t e d  A p p r o a c h e s  

The conditional p.d.f, f (w  l g) (and hence f*(w l Y_)) also 
has a hierarchical Bayes (HB) interpretat ion.  To see this, 
regard s as a vector of unknown parameters  (fixed effects) 
ra ther  than as a vector of random effects, and form the 

2 prior distr ibution of fl, s, and ae in three stages. In the 
m 

first stage, assign fl and s a distr ibution - -  conditional on 
2 and a hyperparamete r  7 - -  whose p.d.f. the values of ae 

• 2 2 is 7rl (fl_,s ] he, 7); then, in the second stage, assign ~r¢ a 
distr ibution - -  conditional on the value of 3' w whose p.d.f. 
i s  * 2 7r2(a~ I 7); and finally, in the third stage, assign 7 a 
distr ibution with p.d.f, r* 3 (7). Now, suppose tha t  apriori 
and _s are independent ,  and that  fl ~ MVN(c~, ~/) and _s 

MVN(0,  a~/) .  Then,  clearly, the p.d.f, of the conditional 
distr ibution for w obtained by this three-stage approach is 
the same as that  obtained by set t ing r2(cr~, 7) c< r~(a~ ] 
7 ) r~(7)  in p.d.f. (11). 

As in the HB approach, parametr ic  empirical Bayes 
(PEB) inference procedures are based on a conditional 
distr ibution for w given y which is derived using a mul- 
t istage prior on the parameters  of the fixed effects model. 
However, in this approach, the prior distr ibution is spec- 

2 and These unknown ified only up to the values of a~ 7. 
quanti t ies must be es t imated from the data.  

2 and 3' were known, then in the limiting case (as If ae 
e --. c~ and hence where the prior distr ibution of fl is 

m 

noninformative),  the posterior distr ibution of w given y 
B 

and _0 would be the distr ibution with p.d.f, g~(w ]y,~_), 
so tha t  the posterior mean would be @(7) and the 100(1- 
c~)% HPD credible set would be @(7) + z,~/2o'~[~(7)] a/2. 
A simple implementat ion of the PEB approach is to take 
the point predictor to be @(~) and the prediction interval 
to be @ ( ~ ) +  z,~/2&¢[~(~)] a/2. However, this prediction 
interval may not be satisfactory in that  it fails to account 
for the additional uncer ta inty about  the value of w that  

2 and 3'. Morris (1983), Rubin comes from not knowing a~ 
(1982), and Laird and Louis (1987), restricting attention 

2 to a special case of the prediction problem and taking a~ 
to be known, discussed PEB intervals of the form zb(~) =t= 
z,~/2ae~ a/2 where ~ is chosen ~ on the basis of Bayesian, 

boots t rap,  or Monte Carlo c o n s i d e r a t i o n s -  so that  a¢ 
2 is a bet ter  es t imator  of var[@(~) - w] than is a¢~(~) .  To 

2 account for a¢ not being known, we could, following Berger 
(1985, p. 172), adopt  the interval @(~)=t= t,~/2(f)~'¢~ a/2, 
where f = n - p * - r .  

The application of the PEB approach to small-area es- 
t imation has been considered by, e.g., Fay and Herriot 
(1979), Dempster  et. al. (1981), Dempster  et. al. (1984), 
Ghosh and Meeden (1986), and Dempster  and Rhagu- 
nathan (1987). Prediction intervals I1 - I3, which were 
introduced in Section 2.4, have obvious P EB interpreta- 
tions and are applicable to the general problem of pre- 
dicting the value of w. They can be used to obtain PEB 
intervals for the value of w in applications not covered by 
previously considered special cases. 
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5 F r e q u e n t i s t  P r o p e r t i e s  

For each of the point predictors @, @, and wB, the dis- 
tr ibution of the prediction error is symmetric about zero 
(e.g., Harville, 1985). Thus,  wB, like ~ and @, is an unbi- 
ased predictor, provided that  its expected value exists. 

To evaluate properties of the point and interval pre- 
dictors we carried out a Monte Carlo study. We investi- 
gated the properties of the various predictors conditional 
on ~ = 0, as well as their overall properties. Five situations 
were considered. They correspond to one set of values for 
A_, 6_, X,  and Z in combination with the following five val- 
ues of 7 : 7  = 0, 0.2, 0.5, 1.0, and 2.0. The set of values 
for A_, 6_, X ,  and Z_. was tha t  for inference about the mean 
amount  of corn per segment in Cerro Gordo County in the 

2 (without crop-area example. The values of fl and a ,  were 

loss of generality) taken to be fl_--0 and a~=l, and the Jef- 

freys (1961) prior for ~_ = (a~, 7)' was used in the Bayesian 
analysis. For those situations where 7=0,  0.2, 0.5 or 1.0 
we carried out two simulations - -  one conditional on ~=0, 
and the other conditional on ~ > 0. Details may be found 
in Hulting and Harville (1989). 

Tables 1 and 2 contain unconditional results from the 
Monte Carlo study. For very small values of 7, the two 
estimators v ° ( ~ , ~ ) ,  and ,) tend to severely overestimate 
the unconditional MSE v+(a2,, 7). For the larger values 
of 7, v°(~r~,7) tends to underest imate v + (a,2, 7), while 
is nearly unbiased. Also, for the larger values of 7, the 
unconditional MSE of wB is smaller than that  of @. How- 
ever, the associated s tandard errors suggest these may not 
be real differences. 

The unconditional probabilities of coverage of the 
Bayesian interval I4 tends to be closer to the nominal level 
than that  of the frequentist interval I3, and the expected 
length of I4 is less than that  of I3. The expected length of 
Interval I1 compares favorably with that  of the Bayesian 
interval, but, for some values of 7, its unconditional prob- 
ability of coverage is significantly less than the nominal 
level. 

For 7=0.0, 0.2, 0.5, and 1.0, the conditional (on ~=0) 
MSEs of zb were 0.032, 0.227, 0.518, and 0.959, respec- 
tively, while those of wB were 0.053, 0.199, 0.422, and 
0.680. Thus, conditional on ~=0, the overall performance 
of wB was superior to tha t  of @. 

Furthermore,  conditional on ~=0, the probability of cov- 
erage of Intervals I2 and I3 tended to be much higher than 
the nominal level when ~=0, the estimated degrees of 
freedom #1 and t'2 tended to be very small and conse- 
quently the percentage points t~/2(~1 ) and t~/2(~'2) tended 
to be very large. In particular, the conditional probability 
of coverage of Interval I3 was 1.000 for 7=0.0, 0.2, 0.5, and 
1.0. The conditional probability of coverage of Interval I1 
declined sharply with the value of 7 and was only 0.488 
for 7=1.0. 

Overall, the conditional behavior of the Bayesian inter- 
val I4 was more sensible than that  of Intervals I1 - I3. 
For 7 =  0.0, 0.2, 0.5, and 1.0, the probabilities of coverage 
of Interval I4 were 1.000, 0.952, 0.852, and 0.815, respec- 
tively, and its expected lengths were 1.7, 1.8, 2.0, and 2.1. 
By way of comparison, the expected lengths of Interval I3 
were 7.0, 7.4, 7.6 and 8.0, respectively. 

Table 1. Monte Carlo Estimates of Unconditional MSEs and Expectations 
(and the Est imated Standard Errors of the Monte Carlo Estimates) 

7 = 0.0 3' = 0.2 7 = 0.5 7 = 1.0 7 = 2.0 
MSE of ~ 0.050 0.235 0.443 0.641 0.839 

(0.001) (0.003) (0.007) (0.000) (0.012) 
E[v ° (~'e2,~')] 0.108 0.225 0.379 0.567 0.773 

(o.ooo) (o.ool) (0.002) (0.002) (o.oo2) 
E[~(~,2,~)] 0.135 0.264 0.431 0.630 0.840 

(o.ooo) (o.ool) (0.002) (0.002) (0.002) 
MSE of wB 0.076 0.234 0.423 0.615 0.823 

(0.001) (0.004) (0.006) (0.009) (0.012) 
E[vB] 0.216 0.313 0.440 0,608 0.815 

(o.ooo) (o.ool) (0.002) (0.002) (0.003) 

Table 2. Monte Carlo Estimates of Unconditional Probabilities of 
Coverage (and Unconditional Expected Lengths) 

7 "- 0.0 7 -- 0.2 7 "- 0.5 7 ----- 1.0 7 = 2.0 
I1 0.996 0.911 0.901 0.921 0.938 

(1.4) (2.0) (2.5) (3.1) (3.6) 
I2 0.999 0.994 0.974 0.951 0.938 

(4.6) (4.2) (3.6) (3.4) (3.5) 
I3 0.999 0.996 0.983 0.967 0.957 

(6.0) (4.8) (3.9) (3.7) (3.8) 
I4 0.999 0.970 0.943 0.938 0.944 

(1.8) (2.2) (2.6) (3.0) (3.5) 
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