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1 Problem Formulation

1.1 Introduction

The topic of small area estimation has received much at-
tention in the recent statistics literature. Small-area esti-
mation is concerned with using sample data from a popu-
lation, scattered over a large domain, to make inferences
about the average, or total, of some quantity in subdo-
mains of that population. One objective is to provide the
best possible estimates for areas which contain few, if any,
sampling units.

The problem of small-area estimation can, in many in-
stances, be formulated as a special case of the general
problem of predicting the realization of a random vari-
able w based on the value of an observable random vector
y, where y follows a mixed linear model with a single set
of random effects and w is a linear combination of fixed
and random effects. A primary purpose of the present pa-
per is to review and discuss some recent results on this
general prediction problem and the special case of small
area estimation. Owur coverage includes both frequentist
and Bayesian approaches. In particular, we discuss the
relationships between the approaches, examine the com-
putations required to implement the various approaches
in the case of unbalanced data, and compare, via a Monte
Carlo study, the frequentist properties of the Bayesian and
non-Bayesian procedures.

1.2 Small-Area Estimation

Let y be the variable of interest, and ¢ the number of
“small areas” under consideration. One model employed
in small-area estimation is

yis = 2,8+ K+ e, (1)
(i=1,...,a; 7 =1,...,n;). Here, y;; represents the value
of y for the 7" unit sampled from the :** small area, gc_’_'-j
and Eij represent the values of two vectors gz’ and k’ of
explanatory or indicator variables, and 8=(4,,..., By) is
a vector of unknown parameters. Further, the elements
of the vector » (v1,...,va) — one element for each
small area — are regarded as uncorrelated random vari-
ables having mean zero and common variance o, while the
ei;’s are random variables that are uncorrelated with each
other and with the v;’s and have mean zero and common
variance o2.
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The quantity of interest is usually the population mean
Vi of y for the i*" small area, which may be expressed as

(2)

where Z; and E: are the population means of £’ and &’ for
the i*" small-area and where g, = Y —Q:E—E:y Following
Prasad and Rao (1986), we assume that the population size
N for the " area is large, in which case g; = 0. Often,
the vector k;; is chosen to be the vector whose i*" element
equals one and remaining elements equal zero, in which
case &'ﬁy = v and Z;8 + Eg = £, + vi is interpretable
as the small-area mean.

Models of the form (1) were adopted by, e.g., Fay
and Herriot (1979), Stroud (1987), Dempster and Rha-
gunathan (1987), and Dempster, Rubin and Tsutakawa
(1981).

Crop-Area Example . Battese et al. (1988) discuss
the application of small-area methods to the prediction
of county crop areas using satellite information. Their
data consists of two different determinations of areas under
corn and soybeans for a sample of segments from 12 north-
central Iowa counties (a segment is about 250 hectares):
(1) the number of hectares reported by farm operators,
and (2) the number of pixels classified as corn or soybeans
(as determined from LANDSAT readings).

Here we focus on the estimation of mean hectares of
corn per segment for the 12 counties represented in the
sample. Let y;; be the reported hectares of corn in the j**
segment of the i*" county, and let z1:; and z2:; represent
the number of satellite pixels in a sample segment classified
as corn and soybeans, respectively. Battese et al. (1988)
propose the nested error regression model

zp+Ev+e,

¥ij = Bo + B171i; + Bagai; + vi + e, (3)

which is a special case of model (1). The data, along with
more details about the sample, are given by Battese et al.
(1988).

1.3 General Prediction Problem

Let y represent an n x 1 observable random vector. Sup-
pose that y follows the mixed-effects linear model

y=XB+Zs+e , (4)
where # i1s a p x 1 vector of unknown parameters and
where s and e are unobservable, statistically indepen-
dent random vectors of dimensions m X 1 and n x 1 that



are distributed as MVN(O 02I), and MVN(0,02L), respec-
tively. Here, the variance components o2 and o2 are un-
known parameters satisfying ¢2 > 0 and ¢ > 0, and
X and Z are given matrices. Define p* = rank(X),
r = rank(X, Z) — rank(X), and f = n — rank(X, Z). We
assume that r > 0 and f > 0.

Let v= 02 /0?2 and § = (02, v)'. The parameter space for
8is Q = {(c2,7)' : 02 > 0,7 > 0}. Letting V., = var(y),
we have that ¥, = o2l +d%22 =o(L+ 7ZZ Y=oV,
with V = K(‘r) =I+vZZ.

Clearly, the problem of small-area estimation can be re-
garded as a special case of the problem of predicting the
realization of a random variable w of the form w = A'8+68's
— we refer to the latter problem as the general prediction
problem. Let vy = var(w) and g,,, = cov(y, w), and note
that E(w) = A8, vuw = 0258’8, a.nd Yy = o2vZ§. Subse-
quently we assume that A is such that A = X'y for some
vector u, or equivalently that w is estimable or predictable.
(Unless otherwise indicated, probabilities and expectations
are defined with respect to the joint distribution of w and

¥)

2 Frequentist Approaches

Traditional procedures for the general prediction problem
are based on a two-stage approach to making inferences
under the mixed-effects model (4): first, estimate the error
variance o2 and the variance ratio 4 and , second, proceed
asif 62 and v were known. In some cases, modifications are
made to account for the additional variability introduced
by the estimation of 62 and ~.

2.1 Point Prediction of w

Suppose that y were known. Then, the best {minimum
MSE) linear unbiased predictor (BLUP) of the value of w
isw(y) =2 ﬂ + 6’3, where ﬂ is any solution to the Aitken

equations X'V~ 1___[3 =X V'ly, and § 7Z %% l(y -
_ﬁ) The MSE of the BLUP is v*(02,7) = 62¥(¥), with

¥(v) &' (L -vZV1 D)+ {A — 82V X]

X[X'VX]TA - 4X' V1 28]}

In the case where k', v = v;, the BLUP of the small-area

k2
mean may be written as

Y - = Y = 7
(m) g + (26_: ;:‘;;1-!.:(3)) B, (5)

y and g; are the sample averages of z' and y for

where z!

the i*" small area.

Except in special cases, the BLUP @(+) depends on the
{unknown) value of 4. A predictor of the value of w can
be obtained from @(y) by replacing v with an estimator
of v. We refer to this predictor as the empirical BLUP.

=2i(s

One popular method for estimating o2 and v is Patter-
son and Thompson’s (1971) restricted maximum likelihood
(REML) procedure. The REML estimators &2 and ¥ are
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obtained by maximizing the modified likelihood function
1*(02, v; ), which is equal to

o? —(n—p‘)/2[det(y_)]—1/2 [det(it'z—l_)_(-ﬁ)}—l/2

x exp{—(202)"'(y - XP'L (¥ - XB)}, (6)
where X in an n X p* matrix whose columns consist of
any p* LIN columas of X.

The REML estimators ¥ and &2 are even, translation-
invariant functions of y. Subsequently, we denote by %
and &2 arbitrary even, translation-invariant estimators of
v and o2. Further, we denote by @ the empirical BLUP
obtained from w(v) by replacing v with ¥; that is = ®(¥).
The predictor 4 is an unbiased predictor of the value of w,

provided that the expected value of & exists (e.g., Kackar
and Harville, 1984).

2.2 Estimation of the MSE of v

Let v* (02, v) represent the MSE of «. Closed-form expres-
sions for v+(a§, v) are available only in very simple special
cases. It is common practice to approximate v+ (a2, ) by
v*(a2,7); however, this approximation is naive in that it
ignores the contribution of the estimator % to the variabil-
ity of & — w (e.g., Khatri and Shah, 1981). Kackar and
Harville (1984) approximated this contribution by a x b,
where ¢ = var[8d(y)/d7] and b equals or approximates
the MSE E[(% — v)%] of 4. The corresponding approxima-
tion to the MSE of & is v®(02,7) = v*(0Z,7) +a x b. If
¥ = ¥, then one choice for b is the large-sample variance
of 7.

The MSE of @ is often estimated by v*(62,%). Letting
@ and b represent the values of @ and b at o2 = 62 and
4 = 4%, a more conservative estimator of the MSE is the
estimator v®(42,9) = v*(62,4) + & x b. The asymptotic
results of Prasad and Rao (1986) indicate that v®(42,%)
tends to underestimate the MSE, though of course to a
lesser extent than v‘(ae,'y), and suggest the alternative
estimator & = v*(82,%) + 2(& x b).

2.3 Interval Prediction of w

Approximate prediction intervals may be obtained by act-
ing as though the quantity t(w,y), defined by t(w,y) =
(% —w)/[]'/2, is a pivotal quantity. Here, % represents
a nonnegative function of 42 and 4, which is to be regarded
as an estimator of the MSE of . It follows from Propo-
sition 1 of Jeske and Harville (1988) that the distribution
of ¢#(w, y) is symmetric about zero. If we approximate the
upper-a/2 point of the distribution of ¢(w, y) by the upper-
a /2 point, say z,,, of the standard normal distribution,
we obtain from #(w, y) the approximate 100(1-o)% predic-
tion interval

Wk Za/2[f’+]1/2 :

(7
This interval, which is similar in form to intervals con-
sidered by Fuller (1988) in a multivariate version of the
small-area problem, is likely to be satisfactory if ¥ and &%
estimate v and vt (03,7) precisely. Here, we focus on the
following version of interval (7): I1 : % z4/[8]*/2 , where
we take §2=52, and y=7.



A potential improvement on interval (7) is obtained by
approximating the upper-a/2 point of the distribution of
t(w,y) by the upper-o/2 point, say t5/2(?) of Student’s
t distribution with 0 degrees of freedom, where ¥ is an
estimate obtained by adapting the approach of Satterth-
waite (1946). By making use of this approximation, we
obtain from ¢(w, y) the approximate 100(1-a)% prediction
interval B

RSN (1 as el (8)
We consider three versions of prediction interval (8);
namely I2 : o £+ ta/2(171)[v0(&§,'7)]1/2, and I3 : @ %
ta/g(ﬁz)[ﬁ]1/2, where D1, and Dy, represent the values of »
obtained by choosing 4% to be v° (6’2,’)’) or 9, respectively.
In both versions, we take §2 = &2, ¥ = 4. Further details
on the implementation of this approach may be found in
Hulting and Harville (1989).

2.4 Computational Aspects

In this section, we give expressions for I*{(aZ, v; z), @(%),
¥(v), a, and b that are useful when these quantities must
be calculated repeatedly for different values of ¥ and ag(as
is required by iterative algorithms for computing REML
estimates). Following Dempster et al. (1984) and Harville
and Fenech (1984),let C = Z'(I-Px)Z, ¢ = Z'(I-Px)y,
and r = rank(C). Define Ay,..., A, to be the nonzero
(and hence positive) characteristic roots of C, and take
R to be a matrix of dimensions m x r whose columns are
orthonormal characteristic vectors of C corresponding to
Ai,...,A,. Furthermore, letting D = diag(Ai,...,A;),
definet = (t1,...,t) = _]__)__1/2_}_{_'1, andlet S, =3 7_, 2,
and S. = }_/_I(-I—"‘ﬂx)ﬂ - Z:=1 2,

Harville and Callanan (1989) showed that *(02,v;2)
is proportional to the function l(az, ¥; 2)
(2#03)_("”"‘)/2M(~/) x exp[—(202)* A(v;t; Se)], where
M@y) = {H:=1(1 + 7A,-)}_1/2, and A(7v;t;Se) = Se +
S s t2/(14+7A;). Note that once Ay,...,A, and R have
been computed, the additional expenditure of computing
resources required to repeatedly evaluate l(az, 7v; z) for dif-
ferent values of o2 and 7 is relatively small.

Let{ = [§—Z'X(X'X)~A]. Analogous to the expression
for I(02, v; 2) are the following expressions for w(7), ¥ (),
a, and b given by Harville (1989):

@(y) = AX'X)" X'y +v¢'R(L++D)* D e, (9)

T(v) (X' X)"A+1¢'¢

—v*¢'R(L++D)' DR,

(10)

a= az_C_'RD(I_+7Q)_3&£, and (when b is taken to be the
large-sample variance of 7) b = 2{>"_, AZJ(1 4+ 700 —
(n—p") 30T, Ai/1 + vA?} . Expressions for vari-
ous other quantities needed to compute the end points of
Intervals I2 and I3 may be found in Hulting and Harville
(1989).
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3 A Bayesian Approach

3.1 Formulation of Problem

As an alternative to the approach discussed in Section 2,
we consider a Bayesian approach to inference about w. In
the Bayesian approach, we select a prior distribution for
p and @ = (0'3,7) and then base our inferences on the
conditional distribution of w given y.

Suppose that a priori 8 and § are statistically indepen-
dent, that § ~ MV N(a,el) (where a is a known p x 1
vector and ¢ is a known positive scalar), and that § has a
proper or improper distribution with p.d.f. equal or pro-
portional to m2(¢Z,v). Then, under model (4), the con-
ditional distribution of w and y given 8 is MVN, with
p.d.fg(w,y|6) =g1(w]|y,8) xg2(y | 8) where g1(w | y,9)
is the p.d.f. of the conditional distribution of w given y
and 6, which is normal with mean w® = Mo + (2, +
eA XYV, +e&_)_(i)"1(g — Xa) and variance v* = (vy +
edA) — (2, + A XNV, +eXX') (v, + cXA), and
g2(y | 8) is the pdf of the conditional distribution of y given
g, which is MVN with mean vector Xa and covariance
matrix V. + eX X'. Thus, the distribution on which the
Bayesian would base his/her analysis is that with p.d.f.

flw ] y) / 0w ] ,0)92(3 | O)ma(o?, 1)de. (1)

In what follows, we assume that the prior distribution
of 8 is a proper or improper distribution with a p.d.f. of
the general form

(02, 7) = G1 (1)(62) P2 (V) exp{~(202) " Ga(7)}, (12)

where Gi1(v), G2(v), and Gs(v) are arbitrary functions
of v such that G1(v) > 0, G2(y) < (n — p* — 4)/2, and
Gs(v) > 0. For prior distributions of the general form
(12), the Bayesian approach is computationally tractable.
Moreover, the class of distributions of general form (12) is
broad enough to cover a wide range of prior opinions. In
a small-area context, Bayesian approaches to the various
special cases of model (4), based on a prior distribution
of the form (12), have been considered, for example, by
Stroud (1987), Ghosh and Lahiri (1988), and Datta and
Ghosh (1989).

3.2 Limiting Posterior f*(w |y)

For sufficiently large values of €, the prior distribution of 8
can be regarded as noninformative. Moreover, the results
of Dempster, Rubin, and Tsutakawa (1981) and Sallas and
Harville (1985) suggest that for “large” values of ¢, f(w |
y) can be approximated by the p.d.f.

fwly) = / oi(w | 9, 0)h(@ | 2)db.
91

Here, g7 (w | y,8) is the p.d.f. of 2 normal distribution with
mean () and variance v*(02,7), and (8| z) = (1/k1) x
(o2, v;2)m2(02,7), where ki = [ (o2, 7;2)m2(07, 7)do.
Subsequently, we regard f*(w |y) as the posterior p.d.f.
of w.



Let I'[] represent the gamma function, and, for ¢ >
0, define b(v,¢) = [n — p* — 2G2(¥) — c]/2, Bi(xy,¢) =
M(7)G1(7)T[b(v, c)], and Ba(7; 8 Se) = (1/2)[A(v; £ Se)+
Gs(7)]. Then,

B = (2m)r/ / Bi(%2)Ba(:5) (1 Day

0
(13)
and the posterior p.d.f. f*(w| y) may be written as

relp =0 7w [ B e
[w — @(7)]

X { 29(7)

where k3 = ki (27r)("_p‘)/2. By making use of expressions
(13) and (14), f*(w | y) can be expressed as the ratio of
two one-dimensional ithegra,]s. In general, these integrals
must be evaluated by numerical integration. In carrying
out the numerical integration, the two integrands must
be repeatedly evaluated for different values of y. Note
that, once Ay,...,A, and R have been computed, the
repeated evaluation of the integrands requires — in light
of expressions (9) and (10) for @(7y) and ¥(y)— very little
additional computation.

Finally, we note that the posterior probability P*(S | y)
of a set S of w-values can also be expressed as a one-
dimensional integral with respect to v, as discussed in
Hulting and Harville (1989).

_b(‘Y) 1)
+ Ba(v; Se)} dvy (14)

3.3 Characterizations of f*(w | y)

As a practical matter, Bayesian inference requires that
summaries of the posterior be computed. In this section,
we describe features of f*(w | y) which are analogous to
quantities used in the frequentigt approach.

Let wp and vp represent the posterior mean and vari-
ance, respectively, of w; that is the mean and variance of
the distribution with p.d.f. f*(w|y). Then, it can be
shown that wp = j;oo @(¥)h1(y | z)dy , where the p.d.f.
hi(v | z), defined by ha(y|z) = [ h(8]z)dol, is ex-

pressible as hi(y | £) = (k317 B1(7,2) Ba(y; 15 52) (D),

and vp = [K]7 [ Bi(v,4)Ba(r:5 5P D (y) +
() — ws]*B2(7;1; Se)b(7,4)}dv. The posterior mean
can be regarded as an estimator of the value of w, and can
be interpreted as a weighted average (with respect to v)
of the BLUP @(%).

A Bayesian counterpart to a prediction interval is
a credible set. A set S of w-values is said to be a
100(1-0)% credible set if P*(S | y) = 1 — . The small-
est 100(1-a)% credible set is S= {w : f*(w|y) > ka},
where ko is a comstant such that P*(S | y) 11—«
(see e.g. Berger 1985, p. 140). This set is called the
100(1-a)% HPD credible set.

Consider an interval 14 : [, ], with endpoints { and «
such that f*(I | y) = f*(v | y) and P*([{,u] | y) = 1—0. By
definition, this interval is a 100(1-a)% credible set, and if
the posterior distribution of w is unimodal, it is the 100(1-
a)% HPD credible set. Interval 14 must be computed iter-
atively via the solution of certain nonlinear equations. An
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efficient computational procedure is described by Hulting
and Harville (1989).

4 Related Approaches

The conditional p.d.f. f(w|g) (and hence f*(w | y)) also
has a hierarchical Bayes (HB) interpretation. To see this,
regard g as a vector of unknown parameters (fixed effects)
rather than as a vector of random effects, and form the
prior distribution of 8, s, and ¢2 in three stages. In the
first stage, assign and s a distribution — conditional on
the values of ¢ and a hyperparameter ¥ — whose p.d.f.
is 77(8,5 | 0%,4); then, in the second stage, assign o2 a
distribution — conditional on the value of ¥ — whose p.d.{.
is 73(02 | ¥); and finally, in the third stage, assign v a
distribution with p.d.f. 73 (). Now, suppose that apriori 8
and s are independent, and that § ~ MVN(g,el) and s ~
MVN(0,02]). Then, clearly, the p.d.f. of the conditional
distribution for w obtained by this three-stage approach is
the same as that obtained by setting m2(02,7) o« 73(0? |
¥)w3(y) in pd.f. (11).

As in the HB approach, parametric empirical Bayes
(PEB) inference procedures are based on a conditional
distribution for w given y which is derived using a mul-
tistage prior on the paraﬁeters of the fixed effects model.
However, in this approach, the prior distribution is spec-
ified only up to the values of 62 and 4. These unknown
quantities must be estimated from the data.

If 02 and v were known, then in the limiting case (as
e — oo and hence where the prior distribution of 8 is
noninformative), the posterior distribution of w givc:l—l Y
and 8 would be the distribution with p.d.f. g{(w | y,Q)_,
so that the posterior mean would be @w(y) and the 15051-
@)% HPD credible set would be @(7y) =& 24/20.[¥(7)]/?.
A simple implementation of the PEB approach is to take
the point predictor to be w(4) and the prediction interval
to be W(%) £ zalzée[\lf(&)]l/z. However, this prediction
interval may not be satisfactory in that it fails to account
for the additional uncertainty about the value of w that
comes from not knowing o2 and 4. Morris (1983), Rubin
(1982), and Laird and Louis (1987), restricting attention
to a special case of the prediction problem and taking o2
to be known, discussed PEB intervals of the form @w(¥) %
Za /2 0. U/ where ¥ is chosen — on the basis of Bayesian,
bootstrap, or Monte Carlo considerations — so that 05‘5[1
is a better estimator of var[®(§) — w] than is ¢2¥(5). To
account for o2 not being known, we could, following Berger
(1985, p. 172), adopt the interval &(5) & tas2(f)a.¥1/?,
where f =n — p* —r.

The application of the PEB approach to small-area es-
timation has been considered by, e.g., Fay and Herriot
(1979), Dempster et. al. (1981), Dempster et. al. (1984),
Ghosh and Meeden (1986), and Dempster and Rhagu-
nathan (1987). Prediction intervals I1 — I3, which were
introduced in Section 2.4, have obvious PEB interpreta-
tions and are applicable to the general problem of pre-
dicting the value of w. They can be used to obtain PEB
intervals for the value of w in applications not covered by
previously considered special cases.



5 Frequentist Properties

For each of the point predictors %, &, and wg, the dis-
tribution of the prediction error is symmetric about zero
(e.g., Harville, 1985). Thus, wg, like @ and 1, is an unbi-
ased predictor, provided that its expected value exists.

To evaluate properties of the point and interval pre-
dictors we carried out a Monte Carlo study. We investi-
gated the properties of the various predictors conditional
on ¥ = 0, as well as their overall properties. Five situations
were considered. They correspond to one set of values for
A, 8, X, and Z in combination with the following five val-
ues of v: y= 0, 0.2, 0.5, 1.0, and 2.0. The set of values
for ), §, X, and Z was that for inference about the mean
amount of corn per segment in Cerro Gordo County in the
crop-area example. The values of § and o2 were (without
loss of generality) taken to be £=0 and a'ﬁ:l, and the Jef-
freys (1961) prior for 8 = (a2, v)' was used in the Bayesian
analysis. For those situations where y=0, 0.2, 0.5 or 1.0
we carried out two simulations — one conditional on =0,
and the other conditional on ¥ > 0. Details may be found
in Hulting and Harville (1989).

Tables 1 and 2 contain unconditional results from the
Monte Carlo study. For very small values of v, the two
estimators vo(&z ,»7), and ¥ tend to severely overestimate
the unconditional MSE »* (02,7). For the larger values
of v, v®(2,7) tends to underestimate v*(o?,v), while &
is nearly unbiased. Also, for the larger values of v, the
unconditional MSE of wp is smaller than that of . How-
ever, the associated standard errors suggest these may not
be real differences.

The unconditional probabilities of coverage of the
Bayesian interval I4 tends to be closer to the nominal level
than that of the frequentist interval I3, and the expected
length of I4 is less than that of I3. The expected length of
Interval I1 compares favorably with that of the Bayesian
interval, but, for some values of v, its unconditional prob-
ability of coverage is significantly less than the nominal
level.

For 4=0.0, 0.2, 0.5, and 1.0, the conditional {on ¥=0)
MSEs of @ were 0.032, 0.227, 0.518, and 0.959, respec-
tively, while those of wp were 0.053, 0.199, 0.422, and
0.680. Thus, conditional on ¥=0, the overall performance
of wp was superior to that of .

Furthermore, conditional on =0, the probability of cov-
erage of Intervals I2 and I3 tended to be much higher than
the nominal level — when 4=0, the estimated degrees of
freedom 7; and p tended to be very small and conse-
quently the percentage points t,2(91) and to/2(92) tended
to be very large. In particular, the conditional probability
of coverage of Interval I3 was 1.000 for y=0.0, 0.2, 0.5, and
1.0. The conditional probability of coverage of Interval I1
declined sharply with the value of v and was only 0.488
for y=1.0.

Overall, the conditional behavior of the Bayesian inter-
val I4 was more sensible than that of Intervals I1 — I3.
For 4= 0.0, 0.2, 0.5, and 1.0, the probabilities of coverage
of Interval 14 were 1.000, 0.952, 0.852, and 0.815, respec-
tively, and its expected lengths were 1.7, 1.8, 2.0, and 2.1.
By way of comparison, the expected lengths of Interval I3
were 7.0, 7.4, 7.6 and 8.0, respectively.

Table 1. Monte Carlo Estimates of Unconditional MSEs and Expectations
(and the Estimated Standard Errors of the Monte Carlo Estimates)

y=00 =02 =05 =10 =20

MSE of &  0.050  0.235  0.443  0.641  0.839
(0.001)  (0.003) (0.007) (0.009) (0.012)
E[°(52,7)] ©0.108 0225  0.379 0567  0.773
(0.000)  (0.001) (0.002) (0.002) (0.002)
E[6(32,7)] 0135 0264  0.431  0.630  0.840
(0.000)  (0.001) (0.002) (0.002) (0.002)
MSE of wg 0076 0234 0423  0.615  0.823
(0.001)  (0.004) (0.006) (0.009) (0.012)
E[vs] 0216 0313 0440  0.608 0.815
(0.000)  (0.001)  (0.002) (0.002)  (0.003)

Table 2. Monte Carlo Estimates of Unconditional Probabilities of
Coverage (and Unconditional Expected Lengths)

v=00 y=0.2

y=05 =10 +y=2.0

11 0.996 0.911

(14)  (2.0)
12 0.999 0.994

(4.6)  (4.2)
13 0.999 0.996
(6.0)  (4.8)
14 0.999 0.970
(18)  (2.2)

0.901 0921  0.938
(2.5) (3.1) (3.6)
0.974 0951  0.938
(3.6) (3.4) (3.5)
0.983 0967  0.957
(39 (37  (38)
0.943 0938  0.944
(2.6) (3.0) (3.5)
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