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ABSTRACT 

The data perturbation technique of masking 
each data vector by adding a random error vector 
is considered. After describing the general 
technique, we consider the approach an intruder 
might use in attempting to determine an indi- 
vidual's confidential attributes. It is shown 
that the conditional expected value of the 
attributes given the masked data and the public 
data is the best predictor of the unknown 
attributes. We present a masking algorithm 
designed to preserve the moments and univariate 
distribution functions of masked variables, while 
providing disclosure protection. The procedure 
is designed so that the covariance structure of 
the masked data is similar to that of the orig- 
inal data. 

i. INTRODUCTION 

The statistical community became concerned 
about maintaining respondent confidentiality in 
the late 1960s when files of linked records, data 
banks, and statistical file systems were ini- 
tially requested by researchers. Steinberg and 
Pritzker (1967) suggested that files of linked 
records be created in a manner that would main- 
tain confidentiality. They advised record 
linkers to "expunge all individual identifiers at 
the instant of creation." Bachi and Baron (1969) 
give a summary of the confidentiality problems 
faced in setting up data banks or linking records 
between data files. Duncan and Lambert (1986) 
provide a good review of the federal statutes 
dealing with confidentiality. 

Mugge (1983) discusses confidentiality 
measures taken at the National Center for Health 
Statistics. Cox, et al. (1985) provide a good 
discussion of Census Bureau data products and the 
techniques used to mask them before release. 

A microdata record contains detailed infor- 
mation about an individual respondent. A 
microdata file is a valuable asset in economic 
modeling, statistical analysis and general 
research. Unfortunately, public access to raw 
microdata records poses a direct threat to 
confidentiality. Even after identifiers such as 
name and address are stripped from the records, 
an indirect threat may still exist if the 
remaining information is abundant. 

Paass (1985) investigates the case of an 
intruder attempting to determine the identity of 
a record in a microdata release by matching to a 
record in a public use file. Paass believes the 
intruder's biggest problem in attempting to 
disclose identity is caused by measurement error 
in the records. The problem defined by Paass is 
similar to matching masked records to the 
unmasked originals. 

In response to Paass' findings, Kim (1986) 
proposed a masking scheme which combines the 
addition of error with a linear transformation 
that adds an additional layer of protection. 
Kim's objective was to create a new data set with 

the same correlation structure as the original 
data. 

Others discussing microdata confidentiality 
problems include include Fellegi (1975), Gates 
(1988), McGuckin and Nguyen (1988), Spruill 
(1983) and Wolf (1988). 

Building upon the ideas for the masking of 
microdata, this research is directed toward 
finding effective ways to preserve respondent 
confidentiality by masking data with added error• 

2. MODEL AND RESULTS FOR T}{ENORMALDISTRIBUTION 

Let S(x) = [x(1), x(2) ..... x(N)] represent 
the N data records belonging to a confidential 
sample. Assume x(1), x(2) ..... x(N) are 
independent N[~, Z(xx)] random vectors, where 
x(j) = [x(jl), x(j2) ..... x(jk)]' . 

A microdata release is to be formed from the 
confidential sample and will contain m 
different records (m s N) _ The released 
microdata file is denoted by 

. . . . .  Xnm)' 
where X~ = Xj . . . .  .. Xjk ) • (Xjl' 2 

3 
X =x +u , j=l, 2 ..... m, 
n. n. n. 
J J J 

u are independent N[O, X(uu)] random vectors, 
and are independent of the x for all i,j . 
Hence, X(nl), X(n2) ..... X(nm) are independent 
N[~, Z(XX)] where Z(XX) = Z(xx) + Z(uu) . 

A confidentiality problem arises when a record 
from an independent private data source, having 
an identification variable (e.g., name), is known 
by an intruder. From the intruder's perspective, 
the objective is to predict the values of the 
confidential variables of the target 
individual. Consider the following as an 
intruder's approach to this problem. 

The target record is partitioned as 

x0 = (x0,1' x0,2 )l×k 

where x(0,1) (~ x I) is known and x(0,2) is 
unknown. The records in the microdata release 
are partitioned in the same way, 

t 

Xn i I x ( in i n. I 

X -- = x 3 + n. , (2.1) 

i Xn i 2 nj \ n i 2 

where 

. X i  - N ,  x22 (2.2) 

Also, 

_- ( uu11  uu12 
uu Zuu21 Zuu22 
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and 

1 xx Xxx21 Xxx22 

are known positive definite matrices. 
Assuming ~ = 0 , the conditional density of 

[X(nl), X(n2) ..... X(nm), x(0,1)] given that 
x(nj) corresponds to the target is 

f[(Xn I' Xn 2 ..... X n , x 0 l) lX n = Xo] 
m ' j 

mk+~ 

: [ ( 2 ~ )  2 l%:xl-m/2lAl- I/2 ] 
m 

x  xpc i 

-i 
+ ( x 0 , 1  - B X n . ) ' A  ( x 0 , 1  - BXn. )  ] } 

3 3 
m 

= ~on~tant × [~xp~-l/2 X X~ ~]~jO ' 
t=l t (2.3) 

where 

: , 

and 

~x~x:Et~n ix~ ' 
j' j 

-I 
A: ~xxll " XXlXxXxXxx I 

Tj0 exp{- 1/2 (x0, I BXn.) 'A -I : - (%,I - BXn.)} ' 
3 3 

for j = 1,2 ..... m . (2.4) 

We now use T(10), T(20) ..... T(m0) , to define 
the conditional probabilities, p(10), p(20), 
.... p(m0) , that each record in the microdata 
release corresponds to the target record. Let 

m 
-i 

Pi0~ -- (tZiTt0)= Ti0~ ' for j = 1,2 ..... m . 

(2.5) 

Thus, p(j0) is the conditional probability that 
the j-th record in the microdata release 
corresponds to the target record, given that the 
target record is contained in the released file 
and given [X(nl) ..... X(nm), x(O,l)] . These 
probabilities are now used as weights in the 
construction of a predictor for the confidential 
variables of the target record. 

The ideal situation for the intruder attempt- 
ing to predict the values of the confidential 
variables of the target record is to have 
p(k0) = 1 for some k ~ {1,2 ..... m} and 
p(j0) = 0 for all other j , {1,2 ..... m} . In 
this case, record x(nk) is the target record, 
where 

X = X + "t.l. . 

% % % 

Consider the partitioning of X(nk) into non- 
confidential and confidential sub-vectors as in 
(2.1). Then, assuming x(0) = x(nk) , the 
minimum mean square error predictor of x(0,2) 
is the conditional expectation of x(nk,2) 
given [X(nk), x(0,1)] . Hence, the best 
predictor of x(nk,2) is 

^ 

%,2 = El%,2[(Xnk , x0,1) and x0 = %} 

= X  - E{ I x 0 

where 

^ 

U nk,2 

and x 0 = %} 

^ 

: X - %,2 ~ , 2  (2.6) 

( if ix I Xuul ~XXII ~XI2 X x x l l  n.,l 

\~x~l ~x~2 ~xll \Xo, 

(2.7) 

is the best predictor of u(nk,2) . Therefore, 
assuming x(nk) is the target record, x(nk, 2) 
is the minimum mean square error predictor of 
x(0,2) . 

The situation with p(k0) -- I for some k 
will rarely occur in a real data situation. If 
the p(j0)'s are nearly equal, information from 
all records in the microdata release should enter 
into the prediction of x(0,2) . We now 
construct such a predictor. 

The knowledge base for prediction of x(0,2) 
is ~-(uu) , Y.(xx) , x(0,1) , and the records in 
the microdata release. The conditional probabil- 
ity that x(nj) is the target, x(0) , given 
[X(nl) ..... X(nm), x(0,1)] is the p(j0) in 
(2.5). The conditional distribution of x(0,2) 
given [X(nl) ..... X(nm), x(0,1) ] and 
x(nj) = x(0) is 

f[x0 21(Xn I' "''' Xn ' x0 1 ) and Xn. = x0] 
' m ' 3 

(k,~) 
= (2~) 2 t y" [- 1/2 

E~ 

x exp{-1/2 [x0, 2 - C (Xn . ,  x 6 , 1 ) '  ] '  
J 

x X  " I  
~E[x0,2 - C(Xn., X~,l)']} 

3 
( 2 . 8 )  

where 

C = 

XxxI2 ' 

~xx22 

~x12 

XXXII XXXI2 ~xxll 

XXX21 XXX22 Xxx21 

~xxll ~x~12 ~xxll 

-1 

( 2 . 9 )  
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and 

Z ~ = ~xx22 - C(~xxl2' ~xx22' ~xxl2 )' " (2.10) 

Hence, the conditional distribution of x(0,2) 
given [X(nl), X(n2) ..... X(nm), x(0,1)] and 
given that x(0) corresponds to some record in 
the microdata release, is 

f[x 0 2](xnl .., Xn , x 0 i) and x 0 == x 
' " n. 

' m ' J 

for some j ~ {1,2 ..... m}] 

_m(k-~) m 
-- m 

-- (2~) 2 {F.E { .2 Z p. 
j=l J0 

× exp{- 1/2 Ix0, 2 - C(Xn., X;,l)']' 

J 

× z~1[~o C(Xn :'6 1 )']~ ,2 .' , 
J (2.11) 

where C and Y.(~E) are defined in (2.9) and 
(2.10), respectively. The best predictor of 
x(0,2) is then the mean of the conditional 
distribution of x(0,2) , given [X(nl) ..... 
x(nm), x(0,1)] , 

^ m 

= y.P.oC(Xn., x6,1)' • x0'2 j=l J j 
(2.12) 

If we let J = {1,2 ..... m} , the variance of 
the predictor error can be expressed as 

^ 

V{(x0, 2 - x0,2)l(Xnl ..... Xnm, x0, I) 

and x = x 0 for some j e J} 
n. 

J m m m 

~e j=l j j=l j j=l j 
(2.13) 

where W(j) = [X'(nj), x'(0,1)]C' . 
We now investigate the problem of selecting an 

error covariance matrix to use in masking normal 
data. We consider the problem in the context of 
protection against an intruder with a data record 
of non-confidential variables, x(0,1) , from a 
private source. Again, the microdata release 
consists of X(nl) ..... X(nm) with 

x ( x  n x ) n. i' nj , 2 j j' 
= (x' ) + (Un , 1  + u' nj,l' Xnj,2 j nj,2 ) 

for j--I, 2 ..... m . 
Certainly a large error variance will lower 

the probability of matching a record. At the 
same time adding large error will distort the 
data. The data provider must balance the 
objectives of providing a file that resembles the 
original data as closely as possible and 
providing confidentiality protection for the 
respondents. It is always possible to transform 
the x-vectors so that 

x -N(~, 6 n. Ik) " 
J 

We assume in this section that the covariance 
matrix is 61(k) and that a decision has been 
made to fix the ratio of error variance to total 
variance at i/(i + 5) for all variables. 
Hence, 

u - N(O ~uu ) 
n. ' ' 
J 

where 

I P12 " " " Plk 

P12 i " " " P2k 

Y. -- . . , (2.14) 
uu 

Plk P2k . . . i 

and ~.(uu) is positive definite. We proceed to 
determine the optimal structure of Y.(uu) from 
the standpoint of the data provider. 

Recall that the intruder computes the 
predictor defined in (2.12) as 

^ m A 

= E pj x . 
x0 2 j=l , 0 n j,2 

Suppose x(0,1) corresponds to the k-th 
record in the microdata release. A high 
probability for p(kk) means a more accurate 
predictor of the confidential variables. Hence, 
the data provider attempts to minimize p(kk) 
thereby improving confidentiality protection. 
Minimizing p(kk) is closely related to 
minimizing the. log odds ratio, 
~n[p(kk)p(jk) -i] , for a randomly chosen 
element j and fixed k . So, we consider the 
problem of choosing the correlations in Y.(uull) 
to minimize the expected value of the log odds 
ratio, E{~n[p(kk)] - ~n[p(jk)]} . The data 
dependence is removed by considering the 
expectation. We proceed to show that in order to 
minimize E{~n[p(kk)] - ~n[p(jk)]} , the data 
provider should add vectors of error having a 
covariance matrix equal to a multiple of 61 , 
the covariance matrix of the unmasked data 
vectors. We first give some results which lead to 
the main theorem. 

Theorem 2.1. Assume the microdata release 
consists of X(nl) , X(n2) ..... X(nm) where 
X(nj) satisfies (2.1, 2.2) for j--i, 2 ..... 

m . Also, for all j , 

- N(O Zxx) n. ' ' 
J 

u - N(O ~uu ) 
n. ' ' 
J 

where ~.(xx) -- 61(~) and ~.(uu) is given by 
(2.14). Assume the target record, x(0) , 
corresponds to the k-th record in the microdata 
release. Then minimizing E{~n[p(kk) ] - 
~n[p(jk)]} (j ~ k) , where p(jk) is defined in 

-i 
(2.5), is equivalent to minimizing tr{A } , 
where 
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and 

-I 
A-- Zxxll - ZxlxZxiZxx I 

~Xx I = E{X n x' j nj,l 

Proof. Omitted. 

. 

-i 
We now investigate tr{A } . It follows from 

the definition of A that 

where 

A-1 _- {6-I[ i2 . E-1]-l} 

L e t  A(1)  >_ X(2)  >_ . . .  >_ A(2)  be  t h e  c h a r a c -  
t e r i s t i c  r o o t s  o f  

1( I  2 - E " I )  - I i 1 2 1 - - 0  . 

If we define the roots of R as ~(i) > 

~(2) >_ ... > ~(2) , then ~(i) = i/[i - A(i)] 
and A(i) = [~(i) - l]/~(i) , for i = 1,2 ..... 
2 . So, minimizing 

£ 
tr{[12 - F. " 1 ] - I }  : Z ~ . i  

i 
i = l  

is equivalent to minimizing 

2 2 

Z (~i - l)-l~i = 2 + Z (~i - I)-I " (2.15) 
i=l i=l 

We now show that the minimum of 
2 
z 1 / [ ~ ( i )  - l ]  

i = l  
i s  a t t a i n e d  when  p ( i j )  = 0 f o r  a l l  
i _< j _< 2 . We b e g i n  by  d e m o n s t r a t i n g  t h a t  t h e  
r o o t s  o f  E a r e  i n d i v i d u a l l y  m a x i m i z e d  when  
Z(XX21) = 0 . 

Lemma 2. i. Assume S and T are real, 

symmetric (n × n) matrices. Define the 
characteristic roots of S and T to be 
w(l,S) _> ... _> w(n,S) and w(l,T) _> ... _> 
v(n,T) , respectively. Then, 

w(j,S) + w(n,T) _< w(j,S+T) for j=l,2 ..... n . 

Proof. See Bhatia (1987, p.34). 

Theorem 2 . 2 .  Let 

~XXII ~XXI2 ) 

I~XX21 ~XX22 

be a real, symmetric (k x k) positive definite 

matrix, with Y.(XXII) having dimension 

(2 x 2) . Let fl(1) >_ fl(2) _> ... >_ fl(2) and 
7(1) >- 7(2) >- .... >- 7(~) be the roots of 
Z(XXII) and 
[Z(XXII) - Y.(XXI2)Z(XX22)'Iy.(XX21) ] 

respectively. Then fl(i) >_ 7(i) for 
i=l, 2 ..... 2 . 

Proof. Follows directly from Lemma 2.1. 

Therefore, the roots of 
E = Z(XXII) - Z(XXI2)Z(XX22)-Iz(xx21) are 

individually maximized when Z(XX21) = 0 or when 
E = Z(XXlI) . 

We have now reduced the problem to minimizing 

(2.15) where ~i a ... ~ ~2 > I are the roots of 

ZXXll = 612 + ~uull ' 

with 6 > 0 and Z(uull) having the structure 
of a correlation matrix. Since the roots of 
Z(XXII) are equal to the roots of Z(uull) each 
increased by 6 , our objective is to minimize 

2 
Z ~I = tr{~-i 

i=l uull} (2.16) 

where 4(1) e 4(2) z ... ~ 4(~) > max{0, 1-6} 
are the roots of ~(uull) . Theorem 2.3 states 
that the minimum is obtained when all 
correlations are set equal to zero. 

Theorem 2.3. Assume Z(uull) is a symmetric 
non-singular matrix of the form given in 

(2.14). The minimum of (2.16) is attained when 
Z(uull) = I(I) . 

P r o o f .  Omitted. 

We have shown that, for the identity 

covariance matrix and the ratio of error variance 
to total variance fixed at i/(i + 6) , the 
correct match probability, p(kk) , is minimized 
on the average when ~(uull) = 61(2) . Therefore, 
when creating a microdata file, there is a sense 
in which a data provider affords respondents 
maximum protection against disclosure by adding 
error vectors which have a covariance matrix 
equal to a multiple of the covariance matrix of 
the original data vectors. 

3. A~I]P.EMENT ERROR~RITI~4FOR 

CONFIDENTIALITY PROTECTION 

In this chapter we outline a method of adding 
measurement error to the variables of a data set 
to protect the confidentiality of the respon- 
dents. The objectives of the procedure are to 
create a new data set such that: 

i. The variables in the new data set are the sum 

of the original variables and a measurement 
error. 

2. The covariance matrix of the new set of 

variables is nearly the same as the covariance 
matrix of the original variables. 

3. The marginal sample cumulative distribution 

function of each of the created variables is 
nearly the same as the marginal cumulative 
distribution function of the corresponding 
original variable. 

4. The probability that an intruder with some 
information on an individual can correctly 

identify the record of that individual is 
considerably less than one. 

These objectives are competitive. The 
covariance matrix and the marginal distribution 
functions are maintained with small error, while 
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larger error reduces the probability of correct 
identification. 

In order to use the properties of the normal 
distribution, the masking procedure consists of 
several steps. The observed variables are 
transformed into pseudo normal random variables, 
normal error is added to the normal variables, 
and then the sum is back transformed to the 
original scale. We outline the procedure of 
transforming data to normality prior to adding 

normal measurement error. The treatment for each 
variable is" 

i. Construct the sample cumulative distribution 
function (CDF). Reduce any extreme 
observations. The reduction of very extreme 
observations is required if measurement error 
of reasonable variance is to protect 
confidentiality. 

2. Convert the sample CDF to the sample CDF of a 
uniform random variable. 
A. If the original variable is a continuous 

variable, the step function CDF is 

converted to a continuous piece-wise linear 

function using linear interpolation between 
the points that are half-way between the 
jump points. 

B. If the variable is a discrete variable, 

there is a proportion of the observations 

associated with each value of the discrete 

variable. A corresponding proportion of 
the interval (0, i) is assigned to each 

value. For each observation a pseudo 
uniform observation is generated by making 
a random selection of a value within the 

assigned interval. 
3. Convert the new uniform observation from step 

I or step 2 to a N(0, i) random variable. 

A multinomial variable with k categories 
requires k-i zero-one variables to identify the 
category into which an observation falls. 
These k-i variables satisfy certain restric- 
tions. If the number one is used to identify the 
occupied category, no more than one of the 

variables for a particular observation can take 
on the value one. Let 

Zti = I if observation t falls in category i 

= 0 otherwise, 

for t=l, 2 ..... n and i=l, 2 ..... k , 

where n is the number of observations and k 

is the number of categories. 

The first step in transforming these variables 
is to create a new set of uncorrelated binomial 

variables. These are based on the conditional 

distribution of Z(ti) given Z(t,l), Z(t,2), 

.... Z(t,i-l) . To illustrate the procedure, 
assume there are 5 cells and let 

41 = P{cell i} , 

42 = P{cell 21Not I} = (I - PI)-IP2 , 

43-- P{cell 3]Not (I, 2)} = (I - PI - P2)-IP3 ' 

44 = P{cell 41Not (I, 2, 3)} 

= (I- PI- P2- P3)-IP4 " 

To create the uncorrelated pseudo variables, let 

W I = Z I , 

W 2 = Z 2 if Z I = 0 

= I with Prob. 42 if Z I = i 

= 0 with Prob. (I - 42 ) if Z I = i , 

W 3 = Z 3 if Z I = Z 2 = 0 

= I with Prob. 43 if Z I + Z 2 = i 

= 0 with Prob. (i - 43 ) if Z I + Z 2 = i , 

W 4 = Z 4 if Z I = Z 2 = Z 3 = 0 

= i with Prob. 44 if Z I + Z 2 + Z 3 = i 

= 0 with Prob. (i - 44) if Z I + Z 2 + Z 3 = I . 

Note that the created W variables are binomial 

variables with mean equal to the conditional 

probabilities. The W's go into the transform 
operation for discrete variables. After the 

error masking operation, the masked W-variables 
are transformed back into Z-variables or, 

equivalently, into a variable that identifies the 

category. 
The above operations define transformations of 

continuous, discrete and categorical random 
variables into normal random variables. The 
sample covariance matrix of the set of normal 
variables is then computed. Let the column 

vector of normal observations be Z(t) and let 

m(ZZ) be the sample covariance matrix. By the 

method of construction, the diagonal elements of 

m(ZZ) will be approximately equal to one. Let 

f(t) be a vector of normal independent (0, I) 
random variables of the same dimension as 
Z(t) . Then the masked variable is 

Z t = Z t + r ~t 

= Z t + a t , 

where a(t) = r m(ZZ) 1/2 ~(t) and r is a 

constant chosen by the data provider. The larger 
r , the greater the confidentiality protection 

gives to the respondents. The data provider can 

experiment with r and matching programs to 

choose a r that affords the desired level of 

protection. The r will be a function of the 

number of observations, the number of variables 
and the distribution of the observations. 

During the masking operation, it seems 
desirable to check that no generated error vector 
is "too close" to zero. The exact details of 
this restriction on the generated vector would 
probably be kept secret. The program developed 

at Iowa State University has a routine that 
rejects error vectors for which ~'(t)~(t) is 
too small. . 

The elements of Z(t) are mapped back to 

uniform random variables and, hence, back to the 
original scale using the inverse of the sample 

~DF. The masked variables 'are denoted by 

X(t) . Because the sample CDF is used, to map the 
variables back, the sample CDF of the X(t)- 
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variables will be very close to that of the 
original X(t)-v~riables. Also the covariance 
matrix of the X(t)-variables will be close to 
that of the X(t)-variables because the added 
error has the same covariance matrix as the 
transformed variables. If the original variables 
are normal, the covariance matrix of the 
transformed variables will differ from the 
original covariance matrix only because of random 
variation. For nonnormal variables, additional 
differences between the two covariance matrices 
are introduced by the transformations of the 
variables into normal variables and the 
associated back transformations of the masked 
variables. 
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